Supporting Information

Pd(II)-Catalyzed Annulation Reactions of Epoxides with Benzamides to Synthesize Isoquinolones

Huihong Wang, ${ }^{\text {a, } \dagger}$ Fei Cao ${ }^{a, \dagger}$ Weiwei Gao, ${ }^{\text {a }}$ Xiaodong Wang, ${ }^{\text {b }}$ Yuhang Yang, ${ }^{\mathrm{b}}$ Tao Shi* ${ }^{\text {b }}$, and Zhen Wang ${ }^{\text {a,b }}$
${ }^{[a]}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China.
${ }^{[b]}$ School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China.
${ }^{\dagger}$ H. W. and F. C. contributed equally to this work.
Corresponding authors: zhenw@lzu.edu.cn; shit18@lzu.edu.cn

Table of Contents

1. General Information 2
2. Experimental Procedures and Characterization Data of Compounds S3
3. Crystal Data and Structure Refinement for Compound 3ae S20
4. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR Spectra S22

1. General Information

All reactions were performed in oven-dried glassware fitted with rubber septa under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled immediately before use from calcium hydride. Diethyl ether and tetrahydrofuran (THF) were distilled immediately before use from sodium-benzophenone ketyl. All other solvents were processed through the reference Purification of Laboratory Chemicals (Seventh Edition). External bath temperatures were used to record all reaction temperatures. Silica gel (300~400 mesh) and petroleum ether, EtOAc, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH were used for product purification by flash column chromatography. NMR spectra were recorded on Bruker $400 \mathrm{MHz}\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ NMR and 101 MHz for ${ }^{13} \mathrm{C} \mathrm{NMR}$) spectrometers. Proton chemical shifts were reported relative to a residual solvent peak $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm) and carbon chemical shifts were reported relative to a residual solvent peak $\left(\mathrm{CDCl}_{3}\right.$ at 77.00 ppm$)$ in order to compare with natural products conveniently. The following abbreviations were used to designate multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. High-resolution mass spectra $(H R M S)$ were measured on a BruckerDaltonics Apex II 47e Specification (for HRMS). Chiral HPLC analysis was performed using an Agilent 1100 Alliance instrument. Fourier transform infrared spectra (FT-IR) were recorded on an Agilent Technologies Cary 630 FT-IR instrument. Optical rotations were measured on an Autopol IV, and are reported as $[\alpha]_{\mathrm{D}}^{\mathrm{T}}$ (concentration in g / mL solvent).

2. Experimental Procedures and Characterization Data of Compounds

General Procedure for the Synthesis of \mathbf{N}-alkoxybenzamide:

To a solution of the benzoic acid $(3.0 \mathrm{mmol})$ in dry $\mathrm{DCM}(10 \mathrm{~mL})$ was added oxalyl chloride $(0.30 \mathrm{~mL}, 3.6 \mathrm{mmol})$, dropwise at $0^{\circ} \mathrm{C}$, followed by a catalytic amount of dry DMF (2 drops). The reaction was stirred at room temperature until the acid was completely consumed. The solvent was removed under vacuum to afford the corresponding crude acyl chloride. Methoxyamine hydrochloride $(4.0 \mathrm{mmol})$ was added to a biphasic mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(828 \mathrm{mg}$, $6.0 \mathrm{mmol})$ in a mixture of $\mathrm{EtOAc}(12 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and then acyl chloride in a minimum amount of EtOAc was added dropwise. The reaction was stirred at room temperature for 4 h . The organic phase was separated, and the aqueous phase was extracted for three times with EtOAc and dried over with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the mixture was directly purified by flash column chromatography with EtOAc to give the product.

Procedure for alkylation of N-methoxybenzamide.
N -methoxybenzamide (0.1 mmol) and epoxide (0.2 mmol), $\mathrm{CF}_{3} \mathrm{COOK}(15.2 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 10 \mathrm{mmol} \%)$, TEA $(3 \mu \mathrm{~L}, 20 \mathrm{mmol} \%) 4 \AA$ molecular sieve $(10 \mathrm{mg})$ and hexafluoro isopropanol $(0.3 \mathrm{~mL})$ in a sealed tube was stirred at $100^{\circ} \mathrm{C}$ in heating mantle. After 24 hours, the reaction mixture was concentrated and purified by column chromatography to give the product. (Petroleum ether : AcOEt $=\mathrm{PE}: \mathrm{EA})$

2,6,8-trimethoxy-3-pentylisoquinolin-1(2H)-one (3aa):
Purification by column chromatography on silica gel (PE: EA $=4: 1$ to $2: 1$), white solid (25.1 $\mathrm{mg}, 82 \%$ yield $){ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.35$ $(\mathrm{s}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.63$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.93$
 $-0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 163.0,162.3,157.3,144.2,140.5,109.8,102.5$, 98.5, 97.4, 63.7, 56.1, 55.3, 31.4, 30.5, 27.6, 22.4, 13.9. IR (KBr, v/cm ${ }^{-1}$) 2957, 2937, 1660,

1621, 1468, 1244, 1269, 1036, 993, 751. HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 306.1700; found: 306.1703.

6,8-dimethoxy-3-pentylisochroman-1-one (4a): Purification by column chromatography on silica gel (PE: EA $=4: 1$ to $3: 1$), white solid ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ $\delta 6.39(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 1 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.70$ $-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}$,
 $4 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) 164.2,163.0,162.7,143.9,107.0$, $103.8,97.7,77.2,56.1,55.4,34.8,34.6,31.5,24.6,22.5,13.9$. IR (KBr, v/ cm ${ }^{-1}$) 2937, 2862, 1720, 1595, 1459, 1412, 1340, 1258, 1108, 851, 758. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}: 279.1591$; found: 279.1594 .

2,6,7-trimethoxy-3-pentylisoquinolin-1(2H)-one (3ab): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=4: 1$ to $2: 1$), White solid (23.4 $\mathrm{mg}, 77 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.73$ (s, 1H), 6.79 (s, $1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.65$
 $(\mathrm{m}, 2 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 158.3,153.4,148.6,141.6,131.5,119.6,107.3,105.5,102.8,63.7,56.1,56.0,31.4$, 30.5, 27.9, 22.4, 13.9. IR (KBr, v/ cm$\left.{ }^{-1}\right)$ 2937, 2868, 1668, 1602, 1565, 1444, 1414, 1373, 1209, 1153, 831. HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 306.1700$; found: 306.1701

6-methoxy-7-pentyl-[1,3]dioxolo[4,5-g]isoquinolin-5(6H)-one (3ac): Purification by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1$ to $1.5: 1$), colorless oil $(17.6 \mathrm{mg}, 61 \% \text { yield })^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.99(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}$,
 $3 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 158.5,149.5,143.9,140.7,122.9,121.0,120.4,108.2,102.1,95.8$, $63.8,31.4,30.8,27.8,22.4,13.9$. IR (KBr, v/ cm ${ }^{-1}$) 2935, 2862, 1515, 1405, 1468, 1422, 1220,

1179, 978, 728. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$: 290.1387; found: 290.1390.

2,5,6,7-tetramethoxy-3-pentylisoquinolin-1(2H)-one (3ad): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=3: 1$ to $1: 1$), white solid (29.1 $\mathrm{mg}, 87 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.06$ $(\mathrm{s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.68-$ $2.59(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 3 \mathrm{H})$.
 ${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 156.9,156.6,154.1,142.8,141.5,134.8,113.9,102.4,102.1$, 63.6, 62.0, 61.4, 55.8, 31.3, 30.4, 27.6, 22.4, 13.9. IR (KBr, v/ cm ${ }^{-1}$) 2959, 2862, 1664, 1604, 1455, 1369, 1215, 1131, 1107, 918, 833. HRMS (ESI, m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]$ +: 336.1805; found: 336.1811.
methyl 2,5,7-trimethoxy-1-oxo-3-pentyl-1,2-dihydroisoquinoline-6-carboxylate (3ae): Purification by column chromatography on silica gel (PE: EA = 2:1 to $1: 1$), white solid ($29.1 \mathrm{mg}, 80 \%$ yield) CCDC: 2042086.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}$,
 $3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 2 \mathrm{H})$, $1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.89(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 166.1,159.5,159.2,156.3,145.2,140.9,118.2,113.1,102.5,101.6,63.8,63.6,56.0,52.5$, $31.4,30.5,27.6,22.4,13.9$. IR (KBr, v/ cm ${ }^{-1}$) 2933, 2860, 1660, 1612, 1500, 1463, 1246, 1161, 1030, 870. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 364.1755$; found: 364.1751.

8-hydroxy-2,6-dimethoxy-3-pentylisoquinolin-1(2H)-one (3af):

To the crude mixture of 3 af' was added 1 mL THF and 1 mL 1 M HCl solution, the resulting mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was extracted three times with CHCl_{3}. The
combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. purified by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=1: 1$) to give the product $\mathbf{3 a f}$ as a white solid (29.1 $\mathrm{mg}, 78 \%$ yield $){ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 12.43(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.18$ $(\mathrm{s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}$, 4H), $0.97-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{C D}_{3}$) $\delta 164.5,162.6,161.8,142.8,138.2$, 106.2, 104.7, 99.6, 98.9, 64.2, 55.4, 31.3, 30.2, 27.7, 22.3, 13.9. IR (KBr, v/ cm ${ }^{-1}$) 2903, 2846, 1624, 1602, 1484, 1472, 1227, 1134, 1013, 937, 768. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 292.1543$; found: 292.1545.

2-methoxy-3-pentylisoquinolin-1(2H)-one (3ag): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=4: 1)$, colorless oil $\left(8.8 \mathrm{mg}, 36 \%\right.$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 8.33(\mathrm{dd}, J=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}$, $1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{td}, J=7.8$,
 $2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 158.7,143.0,135.8,132.0,127.3,125.6,125.3,103.2,63.6,31.2,30.4,27.7$, 22.2, 13.8. IR (KBr, v/cm ${ }^{-1}$) 2945, 2742, 1620, 1606, 1484, 1403, 1248, 1157, 1243, 995, 823. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 246.1489$; found: 246.1492 .

2-methoxy-6-methyl-3-pentylisoquinolin-1(2H)-one (3ah): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=4: 1)$, colorless oil $(13.8 \mathrm{mg}$, 53% yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.46$
 $(\mathrm{s}, 3 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 159.0,149.9,143.2,142.8,136.2,127.5,125.2,123.6,103.2,63.8,31.4,30.7,27.9$, 22.4, 21.8, 14.0. IR (KBr, v/cm ${ }^{-1}$) 2965, 2939, 1664, 1602, 1563, 1453, 1340, 1131, 982, 772. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 260.1645$; found: 260.1644.

2-methoxy-7-methyl-3-pentylisoquinolin-1(2H)-one (3ai): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=4: 1$ to $3: 1)$, colorless oil (12.2 $\mathrm{mg}, 47 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 2.72$
 $-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 158.9,142.1,135.8,133.7,133.7,127.0,125.7,125.4,103.3$, $63.7,31.4,30.5,27.9,22.4,21.3,13.9$. IR (KBr, v/ cm ${ }^{-1}$) 2978, 2947, 1668, 1602, 1463, 1366, 1150, 984, 840. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 260.1645$; found: 260.1640.

6-(tert-butyl)-2-methoxy-3-pentylisoquinolin-1(2H)-one (3aj): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=5: 1)$, colorless oil $(18.3 \mathrm{mg}$, 61% yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}$,
 $1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$, $0.93(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.9,155.8,143.0,136.0,127.3$, $124.1,123.5,121.4,103.8,63.8,35.1,31.4,31.1,30.6,27.9,22.4,14.0 . \operatorname{IR}\left(\mathrm{KBr}, \mathrm{v} / \mathrm{cm}^{-1}\right)$ 2931, 2871, 1666, 1602, 1584, 1453, 1240, 1133, 1058, 838. HRMS (ESI, m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 302.2115$; found: 302.2121.

2,8-dimethoxy-3-pentylisoquinolin-1(2H)-one (3ak): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=2: 1$ to $1: 1$), colorless oil (14.9 $\mathrm{mg}, 54 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.51-7.45(\mathrm{~m}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}$,
 $3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 160.8,157.6,143.9,139.0,132.8,117.8,115.2$, $107.1,102.7,63.6,56.2,31.4,30.5,27.6,22.4,13.9$. $\mathbf{I R}\left(\mathrm{KBr}, \mathbf{v} / \mathbf{c m}^{-1}\right) 2931,2860,1669,1602$, 1564, 1453, 1404, 1151, 1091, 838. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$: 276.1594; found: 276.1590 .

2,6-dimethoxy-3-pentylisoquinolin-1(2H)-one (3al): Purification by column chromatography on silica gel (PE: EA $=2: 1$ to 1:1), colorless oil ($18.4 \mathrm{mg}, \mathbf{6 7 \%}$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.28(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}$,
 $1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 4 \mathrm{H})$, $0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.7$, 158.7, 143.7, 138.0, 129.5, $119.6,115.5,106.1,103.0,63.8,55.4,31.4,30.6,27.8,22.4,13.9$. IR (KBr, v/ cm$\left.{ }^{-1}\right) 2942$, 2873, 1670, 1619, 1484, 1423, 1250, 1114, 1041, 982, 845. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 276.1594$; found: 276.1596 .

2,7-dimethoxy-3-pentylisoquinolin-1(2H)-one (3am): Purification by column chromatography on silica gel (PE : $\mathrm{EA}=2: 1$ to $1: 1$), colorless oil $(17.3 \mathrm{mg}, 63 \%$ yield $){ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.77(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}$,
 $1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 3.91$ (s, 3H), 2.73 - 2.66 (m, 2H), 1.78 - 1.66 (m, 2H), 1.44 $1.33(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\left.\mathbf{C D C l}_{3}\right)\right) \delta$ 158.6, 158.0, 140.6, 130.2, 127.1, 126.9, 123.1, 107.0, 103.2, 63.7, 55.6, 31.4, 30.5, 27.9, 22.4, 13.9. IR (KBr, v/ $\mathbf{c m}^{-1}$) 2939, 2238, 1664, 1605, 1564, 1453, 1399, 1152, 1052, 915. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 276.1594$; found: 276.1596 .

7-chloro-2,6-dimethoxy-3-pentylisoquinolin-1(2H)-one (3ao): Purification by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=3: 1$), colorless oil (6.8 mg , 22% yield) ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}$, $1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 2 \mathrm{H})$,
 $1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 157.9,157.7,144.2,136.5,129.0,122.1,119.8,105.9102 .5,63.8,56.2,31.3,30.5$, 27.7, 22.4, 13.9. IR (KBr, v/ $\mathbf{c m}^{-1}$) 2961, 2875, 1663, 1607, 1485, 1443, 1235, 1158, 944, 833. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClNO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 310.1204$; found: 310.1205.

2,6-dimethoxy-8-methyl-3-pentylisoquinolin-1(2H)-one (3ap): Purification by column chromatography on silica gel (PE : $\mathrm{EA}=3: 1$), colorless oil (21.3 $\mathrm{mg}, 74 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 6.72$ $(\mathrm{s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.65(\mathrm{~m}$,
 $2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 161.5,158.7,142.7,136.3,129.0,126.9,119.1,103.8,103.0,63.8,55.5$, 31.4, 30.6, 27.9, 22.4, 16.3, 14.0. IR (KBr, v/ cm ${ }^{-1}$) 2923, 2852, 1668, 1612, 1463, 1346, 1155, 1021, 985. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 290.1751$; found: 290.1750.

2-methoxy-6,8-dimethyl-3-pentylisoquinolin-1(2H)-one (3aq): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=5: 1$ to $3: 1)$, colorless oil $\left(18.0 \mathrm{mg}, 66 \%\right.$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.01(\mathrm{~s}, 1 \mathrm{H})$, $6.95(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.61$
 $(\mathrm{m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 159.7,142.8,141.7,141.5,137.8,130.4,123.6,121.9,103.3,63.6$, 31.4, 30.5, 27.8, 23.3, 22.4, 21.4, 14.0. IR (KBr, v/ cm ${ }^{-1}$) 2975, 2942, 1665, 1610, 1563, 1455, 1408, 1213, 1192, 1080, 947. HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 274.1802$; found: 274.1801.

2-methoxy-3-pentylbenzo[g]isoquinolin-1(2H)-one (3ar): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=4: 1$ to $3: 1$), white solid $\left(19.7 \mathrm{mg}, 67 \%\right.$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 10.14$ (d, J $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}$,
 $1 \mathrm{H}), 7.74(\mathrm{ddd}, J=8.6,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{p}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.37$ $(\mathrm{m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 144.7,137.6,133.7,132.0$, $131.7,128.4,128.2,126.9,126.1,125.0,124.3,118.8,103.9,63.8,31.5,30.7,27.8,22.4,14.0$. IR (KBr, v / cm ${ }^{-1}$) 2968, 2865, 1689, 1605, 1446, 1248, 1231, 1134, 1049, 862, 736. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 296.1645$; found: 296.1643 .

2-ethoxy-6,8-dimethoxy-3-pentylisoquinolin-1(2H)-one (3ba): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=4: 1$ to $2: 1$), white solid (28.1 $\mathrm{mg}, 88 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 6.39-6.32$ $(\mathrm{m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.84$
 $(\mathrm{s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 7 \mathrm{H}), 0.94-0.87(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 163.0,162.3,157.4,144.5,140.5,109.8,102.3,98.4,97.4$, $71.5,56.1,55.3,31.4,30.6,27.6,22.4,13.9,13.2$. IR (KBr, v/cm$\left.{ }^{-1}\right) 2944,2861,1622,1615$, 1485, 1461, 1342, 1156, 909, 855. HRMS (ESI, m/z): calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]{ }^{+}$: 320.1856 ; found: 320.1854 .

2-isopropoxy-6,8-dimethoxy-3-pentylisoquinolin-1(2H)-one (3bb): Purification by column chromatography on silica gel (PE : $\mathrm{EA}=4: 1$ to $3: 1$), white solid ($18.6 \mathrm{mg}, 56 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.38-6.33$ $(\mathrm{m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.04-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}$,
 $3 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{p}, J=6.7,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 162.9,162.2,157.9,145.7$, $140.5,109.8,102.1,98.3,97.3,76.7,56.1,55.3,31.4,31.1,27.4,22.3,20.4,13.9$. IR (KBr, v / $\mathbf{c m}^{-1}$) 2946, 2864, 1660, 1623, 1568, 1485, 1247, 1190, 987, 844. HRMS (ESI, m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 334.2013; found: 334.2014.

2-isobutoxy-6,8-dimethoxy-3-pentylisoquinolin-1(2H)-one (3bc): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=4: 1$ to $3: 1$), white solid $\left(32.0 \mathrm{mg}, 92 \%\right.$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.37(\mathrm{~s}, 1 \mathrm{H})$, $6.34(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$,
 $3.85(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{p}, J=7.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.37$ $(\mathrm{s}, 4 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.94-0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.9$, $162.4,157.4,144.6,140.5,109.9,102.4,98.4,97.3,81.3,56.1,55.3,31.4,30.7,27.8,27.6$, 22.4, 19.2, 14.0. IR (KBr, v/ cm ${ }^{-1}$) 2931, 2867, 1664, 1615, 1568, 1455, 1409, 1256, 1134, 1093, 839. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 348.2169$; found: 348.2170.

2-butoxy-6,8-dimethoxy-3-pentylisoquinolin-1(2H)-one (3bd): Purification by column chromatography on silica gel (PE: EA $=5: 1$ to $4: 1$), white solid $\left(28.1 \mathrm{mg}, 81 \%\right.$ yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 6.38-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.34-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.20$
 $(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.67(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.9,162.3,157.3,144.5,140.5$, $109.8,102.3,98.4,97.3,75.5,56.1,55.3,31.4,30.6,30.1,27.6,22.3,19.1,13.9$. IR (KBr, v/ $\mathbf{c m}^{-1}$) $2926,2868,1654,1628,1562,1472,1443,1246,1166,982$. HRMS (ESI, m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 348.2169$; found: 348.2166 .

2-isobutoxy-6-methoxy-3-pentylisoquinolin-1(2H)-one (3bf): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=4: 1$ to $3: 1$), brown oil $\left(23.7 \mathrm{mg}, 75 \%\right.$ yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.25$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=$
 $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{dq}$, $J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.94$ $-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.6,158.8,144.0,138.0,129.4,119.6,115$. 4, 106.0, 102.9, 81.7, 55.3, 31.4, 30.9, 28.0, 27.6, 22.4, 19.1, 13.9. IR (KBr, v/ cm ${ }^{-1}$) 2955, 2861, 1664, 1614, 1500, 1463, 1343, 1153, 989, 836. HRMS (ESI, m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 318.2064$; found: 318.2065.

2-isobutoxy-6-methyl-3-pentylisoquinolin-1(2H)-one (3bg): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=5: 1$ to $4: 1$), yellow oil $(18.6 \mathrm{mg}, 62 \%$ yield $){ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.27-8.23$ $(\mathrm{m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}$,
 $2 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.08(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.95-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 159.1,143.4$, $142.5,136.1,127.4,127.4,125.1,123.6,103.1,81.7,31.4,30.9,28.0,27.6,22.4,21.7,19.2$,
14.0. IR (KBr, v/ cm ${ }^{-1}$) 2933, 2860, 1672, 1616, 1521, 1265, 1246, 1127, 1030, 870. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 302.2115$; found: 302.2112.

2-(benzyloxy)-6,8-dimethoxy-3-pentylisoquinolin-1(2H)-one (3bh): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=2: 1$ to $1: 1)$, white solid (17.9 mg, 47\% yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{dd}, J=$
 16.8, 2.3 Hz, 2H), 6.04 (s, 1H), 5.25 (s, 2H), 3.98 ($\mathrm{s}, 3 \mathrm{H}$), $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 163.1,162.4,157.6,144.8,140.7,134.6,129.7,128.9,128.5,109.9$, $102.4,98.6,97.4,77.5,56.2,55.4,31.4,30.7,27.5,22.3,13.9$. IR (KBr, v/cm $\left.\mathbf{c m}^{-1}\right) 2923,2854$, 1666, 1627, 1564, 1462, 1408, 1155, 1032, 874, 732. HRMS (ESI, m/z): calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 382.2013$; found: 382.2010.

2,6,8-trimethoxy-3-methylisoquinolin-1(2H)-one (3ca): Purification by column chromatography on silica gel $(\mathrm{PE}: \mathrm{EA}=2: 1)$, white solid (21.1 $\mathrm{mg}, 85 \%$ yield $){ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.38(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.94$
 $(\mathrm{s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 163.1,162.4,157.3,140.6$, $140.3,109.9,103.4,98.4,97.4,63.6,56.2,55.4,17.2$. IR (KBr, v/ cm ${ }^{-1}$) 2931, 2843, 1665, 1643, 1524, 1457, 1406, 1371, 1248, 957. HRMS (ESI, m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]$ +: 250.1074; found: 250.1075 .

3-isopropyl-2,6,8-trimethoxyisoquinolin-1(2H)-one (3cb): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=1: 1$ to $1: 2$), white solid $\left(22.7 \mathrm{mg}, 82 \%\right.$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 6.39(\mathrm{~s}$, $2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.13$
 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 163.1,162.3,157.3,149.9,140.6,109.8,100.0,98.8,97.6,63.9,56.2,55.4$,
28.3, 22.0. IR (KBr, v/ cm ${ }^{-1}$) 2941, 2856, 1673, 1625, 1598, 1486, 1410, 1365, 1249, 1167, 909. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 278.1387$; found: 278.1391.

3-decyl-2,6,8-trimethoxyisoquinolin-1(2H)-one (3cc): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=2: 1$ to $1: 1$), white solid $(30.0 \mathrm{mg}, 80 \%$ yield $){ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.36(\mathrm{~d}, \mathrm{~J}$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H})$,
 $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 14 \mathrm{H})$, $0.85(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 163.0,162.2,157.3,144.2,140.5$, $109.7,102.5,98.5,97.3,63.6,56.1,55.3,31.8,30.4,29.5,29.4,29.3,29.2,29.2,27.9,22.6$, 14.0. IR (KBr, v/ cm ${ }^{-1}$) 2948, 2858, 1667, 1625, 1485, 1423, 1346, 1257, 1167, 987, 826. HRMS (ESI, m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 376.2482$; found: 376.2481.

3-benzyl-2,6,8-trimethoxyisoquinolin-1(2H)-one (3cd): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=1: 1$ to $1: 2$), white solid $\left(24.3 \mathrm{mg}, \mathbf{7 5 \%}\right.$ yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \quad \delta 7.38-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$
 $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 163.1,162.3,157.4,143.1,140.3,136.7,129.2,128.7,127.0,109.9,104.3$, 98.8, 97.8, 63.8, 56.2, 55.4, 36.8. IR (KBr, v/ cm ${ }^{-1}$) 2985, 2875, 1665, 1612, 1548, 1446, 1408, 1367, 1265, 1087, 934, 778. HRMS (ESI, m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 326.1387$; found: 326.1383.

2,6,8-trimethoxy-3-(phenoxymethyl)isoquinolin-1(2H)-one (3ce): Purification by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=1: 1$ to $1: 3$), white solid ($24.6 \mathrm{mg}, 72 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \quad \delta$ $7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.48-6.42(\mathrm{~m}, 2 \mathrm{H})$, $6.40(\mathrm{~s}, 1 \mathrm{H}), 5.07$ (s, 2H), 4.14 (s, 3H), 3.97 (s, 3H), 3.87 (s,
 3H). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 163.3,162.4,158.0,152.9,140.0,138.7$ 129.7, 121.7, $114.8,110.5,103.9,99.6,98.4,64.5,64.4,56.3,55.5 \mathbf{I R}\left(\mathrm{KBr}, \mathbf{v} / \mathbf{c m}^{-1}\right) 2953,2875,1670$,
$1617,1584,1483,1440,1264,1141,917$. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+$ H^{+}: 342.1336; found: 342.1343.

2,6,8-trimethoxy-3-((2-methoxyphenoxy)methyl)isoquinolin-1(2H)-one (3cf): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=1: 1$ to 1:2), white solid ($22.6 \mathrm{mg}, 61 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 7.01-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.47-6.41(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~s}$, $1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$,
 $3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 163.2,162.4,157.2,149.9,147.5,140.1,138.7$, $122.5,120.9,114.7,112.1,110.5,104.0,99.6,98.3,65.9,64.3,56.3,55.9,55.4 . \mathbf{I R}(\mathbf{K B r}, \mathbf{v} /$ $\mathbf{c m}^{-1}$) $2956,2942,1670,1635,1583,1467,1345,1247,1173,1017,947$. HRMS (ESI, m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 372.1442$; found: 372.1441.

3-(((tert-butyldimethylsilyl)oxy)methyl)-2,6,8-trimethoxyisoquinolin-1(2H)-one
(3cg): Purification by column chromatography on silica gel (PE: EA $=$ 1:1), colorless oil ($23.4 \mathrm{mg}, 62 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 6.42(\mathrm{~s}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$,
 $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 163.2$, $162.3157 .2,142.7,140.5,110.0,101.5,99.3,97.8,64.0,59.5,56.2,55.4,25.9,18.4,-5.4$. IR (KBr, v/ cm ${ }^{-1}$) 2956, 2894, 1677, 1634, 1494, 1447, 1362, 1179, 1048, 993 . HRMS (ESI, m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NNaO}_{5} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 402.1707$; found: 402.1711 .

3-(tert-butoxymethyl)-2,6,8-trimethoxyisoquinolin-1(2H)-one (3ch): Purification by column chromatography on silica gel ($\mathrm{PE}: \mathrm{EA}=1: 2$), white solid (23.7 $\mathrm{mg}, 74 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 6.41$ $-6.38(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}$,
 3H), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 1.29 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (~} \mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 163.0,162.2,157.2,141.4$, $140.4,110.1,102.9,99.2,97.8,74.3,64.1,58.6,56.1,55.3,27.4 . \operatorname{IR}\left(\mathbf{K B r}, \mathbf{v} / \mathbf{c m}^{-1}\right) \mathbf{2 9 3 6}, 2892$, 1664, 1621, 1567, 1466, 1407, 1348, 1132, 1047, 893. HRMS (ESI, m/z): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 322.1649$; found: 322.1652.

3-(hydroxymethyl)-2,6,8-trimethoxyisoquinolin-1(2H)-one (3ci): Purification by column chromatography on silica gel (PE: $\mathrm{EA}=1: 1$ to EA) yellow oil ($12.1 \mathrm{mg}, 46 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.39(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}$,
 2H), $4.05(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 163.2,162.2$, $157.3,142.3,140.3,109.9,102.7,99.3,98.0,64.2,59.7,56.1,55.4 . \operatorname{IR}\left(\mathrm{KBr}, \mathbf{v} / \mathrm{cm}^{-1}\right) 3648$, 2937, 2884, 1664, 1609, 1536, 1447, 1246, 1152, 1013, 924, 821. HRMS (ESI, m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$266.1023; found: 266.1023.

2-((2,6,8-trimethoxy-1-oxo-1,2-dihydroisoquinolin-3-yl)methyl)isoindoline-1,3-dione (3cl): Purification by column chromatography on silica gel (EA only), white solid ($25.2 \mathrm{mg}, 64 \%$ yield), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (4 0 0 ~ M H z , ~} \mathbf{C D C l}_{3}$) δ $7.91(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.42$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}$,
 2H), 4.16 (s, 3H), 3.94 ($\mathrm{s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 167.5,163.3,162.4,157.1,139.8,137.1,134.4,131.9,123.7,110.3,103.5,99.4,98.4$, 64.2, 56.3, 55.4, 36.9. IR (KBr, v/ cm ${ }^{-1}$) 2946, 2865, 1720, 1686, 1603, 1562, 1456, 1440, 1345, 1267, 1143, 920, 768. HRMS (ESI, m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 395.1238$; found: 395.1237.

3-((((1R,3S,5r,7r)-adamantan-2-yl)oxy)methyl)-2,6,8-trimethoxyisoquinolin-1(2H)-one $(3 \mathrm{~cm})$: Purification by column chromatography on silica gel (PE: $\mathrm{EA}=1: 1$ to $1: 3$), colorless oil ($26.7 \mathrm{mg}, 67 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \quad \delta 6.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=2.2$
 Hz, 1H), $6.37(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,162.3,157.3$ 141.1, 140.4, $110.2,102.7,99.2,97.9,82.4,64.1,63.8,56.2,55.4,37.4,36.4,31.8,31.6,27.3,27.3$. IR (KBr,
$\mathbf{v} / \mathbf{c m}^{-1}$) $2964,2952,2872,1672,1618,1560,1453,1240,1145,1041,799$. HRMS (ESI, m/z): calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{5}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 400.2118 ; found: 400.2123.

2,6,8-trimethoxy-3-((((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)methyl)isoquinolin-1(2H)-one (3cn): Purification by column chromatography on silica gel (PE: EA $=$ $1: 1$ to EA), white solid ($30.0 \mathrm{mg}, 58 \%$ yield) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.6,2.7 \mathrm{~Hz}, 1 \mathrm{H})$,
 $6.74(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.43(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.03$
$(\mathrm{s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{dd}, J=$ $18.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93$ $(\mathrm{m}, 3 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta 163.3,162.4,157.2,156.1,140.1,138.8,138.1,133.2,126.6,114.8,112.4,110.5,103.9,99.6$, $98.4,77.2,64.6,64.4,56.3,55.5,50.4,48.044 .0,38.3,35.9,31.6,29.7,26.5,25.9,21.6,13.8$. IR (KBr, v / cm ${ }^{-1}$) 2960, 2856, 1718, 1669, 1623, 1537, 1448, 1426, 1345, 1154, 1033, 923, 764. HRMS (ESI, m/z): calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NO}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 518.2537$; found: 518.2544.

Rupreschstyril (1)

To a suspension of NaH (60% in mineral oil, $10.8 \mathrm{mg}, 0.27 \mathrm{mmol}$) in dry DMF (1 mL) was added a solution of crude 3af' $(30.0 \mathrm{mg}, 0.09 \mathrm{mmol})$ in dry DMF $(1 \mathrm{~mL})$ and stirred for 30 min at $120^{\circ} \mathrm{C}$, after cooling to rt , the mixture was dilution with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to leave the residue, which was used directly in the next step. To the residue was added 1 mL 1 M HCl and 1 mL of THF, the resulting mixture was stirred at RT for 1 h . Then the mixture was diluted with water and extracted three times with CHCl_{3}. The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated. Column chromatography (PE: EA $=3: 1$) gave $19.5 \mathrm{mg}(83 \%$ over two steps) of Rupreschstyril (1) as brown crystals. Spectral data (NMR, MS) of the synthesized ruprechstyril are identical to those of the published data.

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 12.47(\mathrm{~s}, 1 \mathrm{H}), 10.28(\mathrm{br}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.40-$ $1.31(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 167.0,165.0,162.9$, 141.8, 141.2, 105.5, 105.2, 99.5, 99.0, 55.4, 33.3, 31.2, 28. 0, 22.4, 13.9. HRMS (ESI, m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 262.1438$; found: 262.1442.

Siamine (2)
To a suspension of NaH (60% in mineral oil, $9.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) in dry DMF (1 mL) was added a solution of $\mathbf{3 c a}(20.0 \mathrm{mg}, 0.08 \mathrm{mmol})$ in dry DMF $(1 \mathrm{~mL})$ and stirred for 30 min at $120^{\circ} \mathrm{C}$, after cooling to rt , the mixture was dilution with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to leave the residue, which was used directly in the next step. To the residue was added 1 mL DCM and cooling to $0^{\circ} \mathrm{C}$, then the mixture was added dropwise $3 \mathrm{eq} \mathrm{BBr}_{3}(2 \mathrm{~mol} / \mathrm{L}$ solution in DCM$)$. The resulting mixture was warm to rt and stirred for 24 h . the reaction was quenched with 1 ml MeOH and concentrated under reduced pressure to leave the residue. Column chromatography with $\mathrm{DCM}-$ $\mathrm{MeOH}(20: 1)$ as an eluent gave 11.5 mg (76% over two steps) of siamine (2) ${ }^{1}$ as white crystals.

${ }^{1} \mathbf{H}$ NMR (400 MHz, methanol- $\left.\boldsymbol{d}_{4}\right) \delta 6.27(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, 1H), $2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, methanol- $\left.d_{4}\right) \delta 166.4,163.3,162.8,141.5,137.5$, 105.1, 103.7, 100.3, 99.6, 17.4. HRMS (ESI, m/z): calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}:$191.0577; found: 191.0574.

Cassiarin A

6,8-dimethoxy-3-methylisoquinolin-1-yl trifluoromethanesulfonate (4):
To a stirred solution of 3ca ($120 \mathrm{mg}, 0.48 \mathrm{mmol}$) in dry DMF (5 mL) was added NaH (60% in mineral oil, $57.0 \mathrm{mg}, 1.44 \mathrm{mmol})$) at $0^{\circ} \mathrm{C}$. The reaction mixture was then warmed to $120{ }^{\circ} \mathrm{C}$ until the start material was completely consumed. The reaction mixture was then cooled to rt , and $\mathrm{PhN}(\mathrm{Tf})_{2}$
 ($205.5 \mathrm{mg}, 0.58 \mathrm{mmol}$) was added in one portion. The resulting mixture was stirred at rt for 14 h. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with saturated aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification of the crude product using column chromatography with PEEtOAc (2:1) as an eluent provided $122 \mathrm{mg}(73 \%)$ of the triflate 9 as white solid.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}\right.$, CDCl $\left._{3}\right) \delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.97 ($\mathrm{s}, 3 \mathrm{H}$), 3.92 ($\mathrm{s}, 3 \mathrm{H}$), $2.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.7,156.8,150.5$, 150.4, 144.2, 119.5, 117.1, 107.0, 100.2, 96.8, 55.7, 55.6, 23.2. HRMS (ESI, m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 352.0461$; found: 352.0457.

6,8-dimethoxy-3-methyl-1-(prop-1-yn-1-yl)isoquinoline (5):
1-Bromo-1-propene ($102.5 \mathrm{mg}, 0.85 \mathrm{mmol}$) was dissolved in 1.3 mL of THF. After cooling to $-78^{\circ} \mathrm{C}$, to the solution was added $n-\operatorname{BuLi}(1.60 \mathrm{M}$ in hexane, 0.64 $\mathrm{mL}, 1.02 \mathrm{mmol})$. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h. Water ($15 \mu \mathrm{~L}, 0.85 \mathrm{mmol}$) was added, and the temperature was allowed to rise to $0^{\circ} \mathrm{C}$ where the mixture was further stirred for 30
 min . To the mixture was added a solution of triflate $9(100.0 \mathrm{mg}$, $0.28 \mathrm{mmol})$ in THF (0.5 mL), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($\left.14.2 \mathrm{mg}, 0.02 \mathrm{mmol}\right), \mathrm{CuI}(9.5 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $i-\operatorname{Pr}_{2} \mathrm{NH}(0.5 \mathrm{~mL})$. The resulting mixture was stirred at rt for 20 h . The reaction was quenched by addition of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ solution. After separation, the water layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried and concentrated.

Purification of the crude product by column chromatography with $\mathrm{PE}-\mathrm{EtOAc}(1: 1)$ as an eluent provided $67 \mathrm{mg}(87 \%)$ of the alkyne $\mathbf{1 0}$ as white crystals.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.3$, 158.0, 152.3, 140.7, 140.0, 117.7, 116.1, 98.9, 96.6, 89.1, 81.6, 55.8, 55.4, 24.1, 5.0. HRMS (ESI, \mathbf{m} / \mathbf{z}): calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 242.1176$; found: 242.1172 .

Cassiarin A (3):

To a solution of alkyne $5(50.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ in 1 mL of DCM was added $3 \mathrm{eq} \mathrm{BBr}_{3}(0.31 \mathrm{ml}$, $2 \mathrm{~mol} / \mathrm{L}$ solution in DCM). The resulting mixture was stirred at rt for 30 h until the start material was completely consumed. The reaction was quenched with 1 ml MeOH and added 2 mL of aq 10% ammonia solution, and then the resulting mixture was vigorously stirred for 1 h . After evaporation of the solvents, the residue was extracted with $\mathrm{DCM}-\mathrm{MeOH}(4: 1)$. The extract was purified by column chromatography with $\mathrm{DCM}-\mathrm{MeOH}(10: 1)$ to give $28.9 \mathrm{mg}(68 \%)$ of cassiarin A (1) as a yellow solid. Spectral data (NMR, MS) of the synthesized Cassiarin A are identical to those of the published data ${ }^{2}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}: \mathbf{M e O D = 1 : 1)} \delta 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right.$: $\mathbf{M e O D}=1: 1) \delta 164.1,161.7,155.4,149.2,146.9,137.8,112.9,110.2$, 102.4, 101.8, 100.0, 21.1, 19.2. HRMS (ESI, m/z): calcd for $\mathrm{Cl}_{13} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 214.0863$; found: 214.0862.

6-methoxy-3-pentylisochroman-1-one (3as):
Purification by column chromatography on silica gel (PE: EA=1.5:1), colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}$ (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.6$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 2.98-2.81(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.66(\mathrm{~m}$,
 $1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 165.6,163.7,141.5,132.5,117.8,113.3,112.0,78.4,55.5,34.9$,
33.5, 31.5, 24.6, 22.5, 14.0. HRMS (ESI, m/z): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 249.1485$; found: 249.1474.

3-hydroxy-2,6-dimethoxy-3-pentyl-3,4-dihydroisoquinolin-1(2H)-one (3at):
Purification by column chromatography on silica gel (PE: EA $=2: 1$ to $1.5: 1$), white solid. ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.{ }_{3}\right) \delta 8.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=$ 8.7, 2.5 Hz, 1H), $6.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.45(\mathrm{~s}, 1 \mathrm{H}), 3.29-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.82$
 $(\mathrm{m}, 1 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.84(\mathrm{~m}$, 3H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 165.1,163.0,137.0,130.3,120.3,112.9,112.6,91.1$, 64.6, 55.4, 39.4, 37.9, 31.9, 23.7, 22.5, 13.9. HRMS (ESI, m/z): calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{4}{ }^{+}[\mathrm{M}$ $+\mathrm{Na}]^{+}: 316.1519$; found: 316.1524 .

3. Crystal Data and Structure Refinement for Compound 3ae

Experimental: Single crystals of $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{6}$ were obtained by recrystallization from mixed solvents of dichloromethane and ethanol. A suitable crystal was selected and carried out on a SuperNova, Dual, Cu at zero, Eos diffractometer. The crystal was kept at 296 K during data collection. Using Olex2, ${ }^{[1]}$ the structure was solved with the ShelXS ${ }^{[2]}$ structure solution program using Direct Methods and refined with the ShelXL ${ }^{[3]}$ refinement package using Least Squares minimisation.
[1] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
[2] Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
[3] Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data:

Non-hydrogens atoms are shown as 30% ellipsoids.

Bond precision:
$\mathrm{C}-\mathrm{C}=0.0049 \mathrm{~A}$
Wavelength=0. 71073

Cell: | $\mathrm{a}=10.210(4)$ | $\mathrm{b}=13.109(4)$ | $\mathrm{c}=14.900(5)$ |
| :--- | :--- | :--- |
| | alpha $=92.742(5)$ | beta $=92.289(6)$ |

Temperature: 153 K

	Calculated	Reported
Volume	$1866.7(11)$	$1866.6(11)$
Space group	$\mathrm{P}-1$	$\mathrm{P}-1$
Hall group	-P 1	-P 1
Moiety formula	C19 H25 N 06	$?$
Sum formula	C19 H25 N 06	C19 H25 N 06
Mr	363.40	363.40
Dx, g cm-3	1.293	1.293
Z	4	4
Mu (mm-1)	0.096	0.096
F000	776.0	776.0
F000'	776.43	$12,16,18$
h, k, lmax	$12,16,18$	7628
Nref	7839	$0.596,0.745$
Tmin, Tmax	$0.977,0.981$	0.972

Correction method= \# Reported T Limits: Tmin=0. 596 Tmax=0. 745 AbsCorr $=$ MULTISCAN

Data completeness $=0.973 \quad$ Theta $(\max)=26.617$
$R($ reflections $)=0.0719(4828)$
$S=1.000 \quad$ Npar $=479$

References:

1. (a) B. Z. Ahn and F. Zymalowsky, Tetrahedron Lett., 1976, 821. (b) B. D. Krane and M. Shamma, J. Nat. Prod., 1982, 45, 377. (c) M. Kennedy, C. J. Moody, C. W. Rees, and J. J. Vaquero, J. Chem. Soc. Perkin I., 1987, 1395.
2. (a) H. Morita, S. Oshimi, Y. Hirasawa, K. Koyama, T. Honda, W. Ekasari, G. Indrayanto and N. C. Zaini, Org. Lett., 2007, 9, 3691. (b) M. Rudyanto, Y. Tomizawa, H. Morita and T. Honda, Org. Lett. 2008, 10, 1921. (c) S. Gutierrez, A. Coppola, D. Sucunza, C. Burgos and J. J. Vaquero, Org. Lett. 2016, 18, 3378.

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{fl}(\mathrm{ppm})\end{array}$

