$\alpha-\mathbf{C}-\mathbf{H}$ Bond Functionalization of Unprotected Alicyclic Amines: Lewis Acid Promoted Addition of Enolates to Transient Imines

Jae Hyun Kim, ${ }^{\mathrm{a}, \dagger}$ Anirudra Paul, ${ }^{\mathrm{a}, \dagger}$ Ion Ghiviriga, ${ }^{\mathrm{b}}$ and Daniel Seidel ${ }^{\mathrm{a}, *}$
${ }^{a}$ Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
${ }^{b}$ Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
* Correspondence to: seidel@chem.ufl.edu
${ }^{\dagger}$ These authors contributed equally to this work.

Supporting Information

Table of Contents
General Information .. S-2
General Procedures... S-3
Characterization Data .. S-5
References .. S-40
NMR Spectra .. S-41

General Information: Starting materials and reagents were purchased from commercial sources and used as received unless stated otherwise. Anhydrous diethyl ether and tetrahydrofuran was dried using a JC Meyer solvent system. All liquid amines, liquid esters, nitriles, and trifluoroacetophenone were distilled prior to use. n - BuLi solution in hexanes was purchased from commercial sources and freshly titrated using N-pivaloyl-o-toluidine prior to use. ${ }^{1}$ Purification of reaction products was carried out by flash column chromatography using Sorbent Technologies Standard Grade silica gel ($60 \AA, 230-400$ mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60 F254 plates. Visualization was accomplished with UV light, Dragendorff-Munier or KMnO_{4} stains, followed by heating. Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR) were recorded on Bruker 400 MHz and Varian Unity Inova 500 MHz instrument and chemical shifts are reported in ppm using the solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm$)$. Data are reported as app = apparent, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, comp = complex, br = broad; coupling constant(s) in Hz. Proton-decoupled carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker 400 MHz and Varian Unity Inova 500 MHz instrument and chemical shifts are reported in ppm using the solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.16 ppm$)$. High resolution mass spectra (HRMS) were obtained from an Agilent 6230 ESI-TOF instrument. Compounds $(\pm) \mathbf{- 1 a},{ }^{2}(\pm) \mathbf{- 1 a},{ }^{2}{ }^{2}(\pm)-\mathbf{1 e},{ }^{3}$ $(\pm) \mathbf{- 1 1},{ }^{4}(\pm) \mathbf{3 a},{ }^{5}(\pm) \mathbf{3 b},{ }^{5}(\pm)-\mathbf{3 f},{ }^{6}(\pm)-\mathbf{4 a},{ }^{7}(\pm)-\mathbf{4 a},{ }^{,}{ }^{7}(\pm)-\mathbf{4 b}{ }^{8}(\pm)-\mathbf{4 c},{ }^{9}(\pm)-\mathbf{4 c},{ }^{,},{ }^{9}(\pm)-\mathbf{4 d}{ }^{10}$ and $(\pm)-\mathbf{6}^{11}$ were previously reported and their published characterization data matched our own in all respects.

General Procedure A for the $\boldsymbol{\alpha}-\mathbf{C}-\mathbf{H}$ Bond Functionalization of Unprotected Alicyclic Amines with Ester or Nitrile Enolates:

To a stirred solution of diisopropylamine ($1 \mathrm{mmol}, 1$ equiv, $141 \mu \mathrm{~L}$) in anhydrous THF (1.5 mL) was added dropwise n-BuLi in hexanes ($1 \mathrm{mmol}, 1$ equiv) at $-78^{\circ} \mathrm{C}$ under nitrogen and the resulting solution was stirred at the same temperature for 10 min . To this was then added a solution of the corresponding ester or nitrile ($1 \mathrm{mmol}, 1$ equiv) in anhydrous THF (1.0 mL). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . To a separate dry round-bottom flask charged with the corresponding cyclic amine (2 mmol , 2 equiv) was added dry ether (1.5 mL). The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and n-BuLi in hexanes ($2 \mathrm{mmol}, 2$ equiv) was added dropwise. The mixture was stirred at the same temperature for 10 minutes, and a solution of trifluoroacetophenone ($2.1 \mathrm{mmol}, 2.1$ equiv, $295 \mu \mathrm{~L}$) in dry ether (1 mL) was then added dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 10 minutes to give the corresponding cyclic imine solution in ether. The imine solution was then taken up by a syringe and added in one portion to the stirred lithium-enolate solution at $-78^{\circ} \mathrm{C}$ followed immediately by the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.4 \mathrm{mmol}, 2.4$ equiv, $296 \mu \mathrm{~L}$). Subsequently, the reaction vessel was taken out of the low temperature bath and stirred at room temperature for 2 h . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and saturated NaHCO_{3} aqueous solution (4 mL) was added. The resulting mixture was diluted with $\mathrm{EtOAc}(20 \mathrm{~mL})$ and washed with saturated NaHCO_{3} aqueous solution (20 mL). The aqueous layer was then extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography.

General Procedure B for the $\alpha-\mathbf{C}-\mathbf{H}$ Bond Functionalization of Unprotected Alicyclic Amines with Ester or Nitrile Enolates:

To a stirred solution of diisopropylamine (1 mmol , 1 equiv, $141 \mu \mathrm{~L}$) in anhydrous THF (1.5 mL) was added dropwise n-BuLi in hexanes ($1 \mathrm{mmol}, 1$ equiv) at $-78^{\circ} \mathrm{C}$ under nitrogen and the resulting solution was stirred at the same temperature for 10 min . To this was then added a solution of the corresponding ester or nitrile ($1 \mathrm{mmol}, 1$ equiv) in anhydrous THF (1.0 mL). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . Subsequently, the reaction vessel was taken out of the low temperature bath and stirred at room temperature for 15 min after which it was cooled back down to $-78{ }^{\circ} \mathrm{C}$. To a separate dry round-bottom flask charged with the corresponding cyclic amine ($2 \mathrm{mmol}, 2$ equiv) was added dry ether (1.5 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$ and $n-\mathrm{BuLi}$ in hexanes ($2 \mathrm{mmol}, 2$ equiv) was added dropwise. The mixture was stirred at the same temperature for 10 minutes, and a solution of trifluoroacetophenone (2.1 mmol , 2.1 equiv, $295 \mu \mathrm{~L}$) in dry ether (1 mL) was then added dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 10 minutes to give the corresponding cyclic imine solution in ether. The imine solution was then taken up by a syringe and added in one portion to the stirred lithium-enolate solution at $-78{ }^{\circ} \mathrm{C}$ followed immediately by the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.4 \mathrm{mmol}, 2.4$ equiv, $296 \mu \mathrm{~L}$). Subsequently, the reaction vessel was taken out of the low temperature bath and stirred at room temperature for 2 h . The reaction mixture was then cooled to 0 ${ }^{\circ} \mathrm{C}$ and saturated NaHCO_{3} aqueous solution (4 mL) was added. The resulting mixture was diluted with EtOAc (20 mL) and washed with saturated NaHCO_{3} aqueous solution $(20 \mathrm{~mL})$. The aqueous layer was then extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography.

General Procedure \mathbf{C} for the $\alpha-\mathbf{C}-\mathbf{H}$ Bond Functionalization of Unprotected Alicyclic Amines with 1,3-Diketone Dianions:

To a stirred solution of diisopropylamine (2 mmol , 2 equiv, $282 \mu \mathrm{~L}$) in anhydrous THF (1.5 mL) was added dropwise n - BuLi in hexanes ($2 \mathrm{mmol}, 2$ equiv) at $-78^{\circ} \mathrm{C}$ under nitrogen and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . To this was then added a solution of the corresponding 1,3 -diketone ($1 \mathrm{mmol}, 1 \mathrm{equiv}$) in anhydrous THF (1.0 mL). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then cooled down to $-78^{\circ} \mathrm{C}$. To a separate dry round-
bottom flask charged with the corresponding cyclic amine ($2 \mathrm{mmol}, 2$ equiv) was added dry ether (1.5 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$ and $n-\mathrm{BuLi}$ in hexanes ($2 \mathrm{mmol}, 2$ equiv) was added dropwise. The mixture was stirred at the same temperature for 10 minutes, and a solution of trifluoroacetophenone ($2.1 \mathrm{mmol}, 2.1$ equiv, $295 \mu \mathrm{~L}$) in dry ether (1 mL) was then added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 10 minutes to give the corresponding cyclic imine solution in ether. The imine solution was then taken up by a syringe and added in one portion to the stirred lithium-enolate solution at $-78^{\circ} \mathrm{C}$ followed immediately by the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.4 \mathrm{mmol}$, 2.4 equiv, $296 \mu \mathrm{~L}$). The reaction mixture was stirred at the same temperature for 16 h after which saturated NaHCO_{3} aqueous solution (4 mL) was added. Subsequently, the reaction vessel was taken out of the low temperature bath and stirred at room temperature for 10 h . The resulting mixture was diluted with EtOAc $(20 \mathrm{~mL})$ and washed with saturated NaHCO_{3} aqueous solution $(20 \mathrm{~mL})$. The aqueous layer was then extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography.

General Procedure D for the $\alpha-C-H$ Bond Functionalization of Unprotected Alicyclic Amines with α, β Unsaturated Ketone Enolates:

To a solution of diisopropylamine ($1 \mathrm{mmol}, 1$ equiv, $141 \mu \mathrm{~L}$) in anhydrous THF (1.5 mL) was added dropwise $n-\mathrm{BuLi}$ in hexanes ($1 \mathrm{mmol}, 1$ equiv) at $-78^{\circ} \mathrm{C}$ under nitrogen and the resulting solution was stirred at the same temperature for 10 min . To this was then added a solution of the corresponding α, β-unsaturated ketone ($1 \mathrm{mmol}, 1$ equiv) in anhydrous THF (1.0 mL). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . To a separate dry round-bottom flask charged with the corresponding cyclic amine ($2 \mathrm{mmol}, 2$ equiv) was added dry ether (1.5 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$ and n - BuLi in hexanes (2 mmol , 2 equiv) was added dropwise. The mixture was stirred at the same temperature for 10 minutes, and a solution of trifluoroacetophenone ($2.1 \mathrm{mmol}, 2.1$ equiv, $295 \mu \mathrm{~L}$) in dry ether (1 mL) was then added dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 10 minutes to give the corresponding cyclic imine solution in ether. The imine solution was then taken up by a syringe and added in one portion to the stirred lithium-enolate solution at $-78^{\circ} \mathrm{C}$ followed immediately by the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(2.4 \mathrm{mmol}, 2.4$ equiv, $296 \mu \mathrm{~L}$). The reaction vessel was taken out of the low temperature bath and stirred at room temperature for 2 h . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and saturated NaHCO_{3} aqueous solution $(4 \mathrm{~mL})$ was added and stirred at room temperature for $2-72 \mathrm{~h}$. The resulting mixture was diluted with EtOAc $(20 \mathrm{~mL})$ and washed with saturated NaHCO_{3} aqueous solution $(20 \mathrm{~mL})$. The aqueous layer was then extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography.

Methyl-(R)*-2-phenyl-2-((S)*-piperidin-2-yl)acetate

(\pm)-1a'

To a stirred solution of diisopropylamine ($141 \mu \mathrm{~L}, 1 \mathrm{mmol}$, 1 equiv) in anhydrous THF (1.5 mL) was added dropwise a 2.5 M solution of $n-\mathrm{BuLi}$ in hexanes $\left(400 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1\right.$ equiv) at $-78^{\circ} \mathrm{C}$ under nitrogen and the resulting solution was stirred at the same temperature for 10 min . To this was then added a solution of methyl phenylacetate $(150 \mathrm{mg}$, $1 \mathrm{mmol}, 1$ equiv) in anhydrous THF (1.0 mL). The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . To a separate dry round-bottom flask charged with piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}, 2$ equiv) was added dry ether (1.5 mL). The solution was cooled to $-78^{\circ} \mathrm{C}$ and a 2.5 M solution of n - BuLi in hexanes ($800 \mu \mathrm{~L}, 2 \mathrm{mmol}, 2$ equiv) was added dropwise. The mixture was stirred at the same temperature for 10 minutes, and a solution of trifluoroacetophenone ($295 \mu \mathrm{~L}, 2.1$ $\mathrm{mmol}, 2.1$ equiv) in dry ether (1 mL) was then added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 10 minutes to give a solution of 1-piperideine in ether. The 1-piperideine solution was then taken up by a syringe and added in one portion to the stirred lithium-enolate solution at $-78^{\circ} \mathrm{C}$ followed immediately by the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(296 \mu \mathrm{~L}, 2.4 \mathrm{mmol}, 2.4$ equiv). The reaction mixture was stirred at the same temperature for 30 min and then saturated NaHCO_{3} aqueous solution $(4 \mathrm{~mL})$ was added. The reaction vessel was taken out of the low temperature bath and warmed up to room temperature. The resulting mixture was diluted with EtOAc (20 mL) and washed with saturated NaHCO_{3} aqueous solution $(20 \mathrm{~mL})$. The aqueous layer was then extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography to yield (\pm)-1a' and (\pm)-1a in 89% combined yield ($0.89 \mathrm{mmol}, 207$ mg) and $1.5: 1$ diastereomeric ratio. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography. The major diastereomer was isolated as a clear oil.

Characterization data of the major diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.40$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42-7.36(\mathrm{comp}, 2 \mathrm{H}), 7.35-7.29(\mathrm{comp}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.45$ $(\mathrm{d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\operatorname{app} \mathrm{td}, J=10.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.48(\operatorname{app} \mathrm{td}, J=11.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-$ $1.74(\mathrm{comp}, 2 \mathrm{H}), 1.59-1.49(\mathrm{comp}, 2 \mathrm{H}), 1.48-1.30(\mathrm{comp}, 2 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.9,135.9,128.7,128.5,127.7,58.9,58.1,51.7,46.9,30.9,25.6,24.3$.
HRMS (ESI-TOF): Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 234.1489$, Found: 234.1481.

Methyl-(R)*-2-phenyl-2-((R)*-piperidin-2-yl)acetate

$(\pm)-1 \mathbf{a}$

From the reaction shown above, the minor diastereomer was isolated as a clear oil.

Characterization data of the minor diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.23$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\operatorname{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.22(\mathrm{comp}, 5 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\operatorname{app} \mathrm{td}, J=$ $10.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{td}, J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{brs}, 1 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52$ $(\mathrm{m}, 1 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.14(\mathrm{comp}, 2 \mathrm{H}), 1.01-0.89(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.7,136.4,128.5,128.4,127.4,58.8,58.6,51.8,46.8,29.9,26.0,24.3$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 234.1489$, Found: 234.1477.
(\pm)-1a was obtained as the major diastereomer using the following procedure: To a stirred solution of diisopropylamine ($212 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF (1.5 mL) under nitrogen was added dropwise a 2.5 M solution of n - BuLi in hexanes ($600 \mu \mathrm{~L}, 1.5 \mathrm{mmol}, 1.5$ equiv) at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at the same temperature for 10 min . To this was then added a solution of methyl phenylacetate ($225 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5$ equiv) in anhydrous THF (1.0 mL). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . To a separate dry roundbottom flask charged with piperidine ($99 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1$ equiv) was added dry ether (1.5 mL). The resulting solution was cooled to $-78^{\circ} \mathrm{C}$ and a 2.5 M solution of $n-\mathrm{BuLi}$ in hexanes ($400 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1$ equiv) was added dropwise. The mixture was stirred at the same temperature for 10 minutes, and a solution of trifluoroacetophenone ($147 \mu \mathrm{~L}, 1.05$ mmol, 1.05 equiv) in dry ether (1 mL) was then added dropwise. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another 10 minutes to give a solution of 1-piperideine in ether. The lithium-enolate solution was then taken up by a syringe and added in one portion to the stirred 1-piperideine solution at $-78^{\circ} \mathrm{C}$ followed immediately by the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($296 \mu \mathrm{~L}, 2.4 \mathrm{mmol}, 2.4$ equiv). Subsequently, the reaction vessel was taken out of the low temperature bath and stirred at room temperature for 2 h . The reaction mixture was then cooled to $0{ }^{\circ} \mathrm{C}$ and saturated aqueous NaHCO_{3} solution $(4 \mathrm{~mL})$ was added. The resulting mixture was diluted with EtOAc $(20 \mathrm{~mL})$ and washed with saturated aqueous NaHCO_{3} solution (20 mL). The aqueous layer was then extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography to yield (\pm)-1a and $(\pm)-1 \mathbf{a}^{\prime}$ in 66% combined yield $(0.66 \mathrm{mmol}, 154 \mathrm{mg})$ and $3.2: 1$ diastereomeric ratio. EtOAc containing methanol (1-9\%) and isopropylamine (1\%) was used as the eluent for silica gel chromatography. The major diastereomer was isolated as a clear oil.

Methyl-(R)*-2-phenyl-2-((S)*-pyrrolidin-2-yl)acetate

(\pm)-1b

Following general procedure A, compound (\pm)-1b was obtained from pyrrolidine ($164 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and methyl phenylacetate ($150 \mathrm{mg}, 1 \mathrm{mmol}$) in 46% combined yield ($0.46 \mathrm{mmol}, 101 \mathrm{mg}$) and 2.4:1 diastereomeric ratio (erythro : threo). Dichloromethane containing methanol (5-10\%) followed by EtOAc containing methanol (1-20\%) and isopropylamine (1%) was used as the eluent for silica gel chromatography. The major diastereomer was isolated as a clear oil.

Characterization data of the major diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.37$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.35(\mathrm{comp}, 2 \mathrm{H}), 7.35-7.22(\mathrm{comp}, 3 \mathrm{H}), 3.71-3.59(\mathrm{comp}, 4 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{ddd}, J=9.9,7.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, J=9.9,8.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{dddd}, J=$ $12.2,8.9,6.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.68(\mathrm{comp}, 2 \mathrm{H}), 1.48$ (app ddt, $J=12.5,9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.2,137.5,128.8,128.5,127.7,61.3,57.5,52.0,45.8,30.0,24.5$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 220.1332$, Found: 220.1332.

Methyl-(R)*-2-phenyl-2-((R)*-pyrrolidin-2-yl)acetate

(\pm)-1 \mathbf{b}^{\prime}

From the reaction shown above, the minor diastereomer was isolated as a clear oil.

Characterization data of the minor diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.11$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.23(\mathrm{comp}, 5 \mathrm{H}), 3.79-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04-2.90(\mathrm{comp}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{app} d d t, J=$ $12.7,9.0,7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.2,137.4,128.8,128.3,127.6,61.4,59.0,52.1,46.7,29.6,25.2$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$220.1332, Found: 220.1342.

Benzyl-2-(pyrrolidin-2-yl)acetate

(\pm - $\mathbf{- 1 c}$

Following general procedure B , compound $(\pm)-1 \mathbf{c}$ was obtained from pyrrolidine ($164 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and benzyl acetate ($150 \mathrm{mg}, 1 \mathrm{mmol}$) in 40% yield ($0.40 \mathrm{mmol}, 88 \mathrm{mg}$) as a colorless oil. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.16$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40-7.29(\mathrm{comp}, 5 \mathrm{H}), 5.16-5.10(\mathrm{comp}, 2 \mathrm{H}), 3.44(\mathrm{app} \mathrm{qd}, J=7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99 (ddd, $J=10.1,7.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=10.1,8.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.40(\mathrm{comp}, 2 \mathrm{H}), 2.28-2.12(\mathrm{~m}, 1 \mathrm{H})$, 1.92 (dddd, $J=12.1,8.7,7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.59(\mathrm{comp}, 2 \mathrm{H}), 1.35(\operatorname{app} \operatorname{ddt}, J=12.3,9.2,7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.3,136.0,128.6,128.2,66.2,54.9,46.4,41.0,31.2,25.0$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$220.1332, Found: 220.1343.

Ethyl-2-((1R*, 3a $\left.R^{*}, 6 \mathrm{a} S^{*}\right)$-octahydrocyclopenta[c]pyrrol-1-yl)acetate

(\pm)-1d

Following general procedure A, compound (\pm)- $\mathbf{1 d}$ was obtained from octahydrocyclopenta[c]pyrrole ($222 \mathrm{mg}, 2 \mathrm{mmol}$) and ethyl acetate ($98 \mu \mathrm{~L}, 1 \mathrm{mmol}$) in 32% yield ($0.32 \mathrm{mmol}, 63 \mathrm{mg}$) as a colorless oil in $>20: 1$ diastereomeric ratio. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.26$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{ddd}, J=10.1,8.2,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (ddd, $J=8.8$, $7.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.48(\mathrm{comp}, 2 \mathrm{H}), 2.46-2.33(\mathrm{comp}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.45(\mathrm{comp}$, $4 \mathrm{H}), 1.43-1.32(\mathrm{comp}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.7,62.3,60.4,53.5,49.7,43.7,40.1,31.8,30.9,25.3,14.3$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 198.1489$, Found: 198.1488.

tert-Butyl-2-(piperidin-2-yl)acetate

(\pm)-1e

Following general procedure B , compound $(\pm)-1 \mathbf{e}$ was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and tert-butyl acetate ($116 \mathrm{mg}, 1 \mathrm{mmol}$) in 30% yield ($0.3 \mathrm{mmol}, 60 \mathrm{mg}$) as a colorless oil. Dichloromethane containing methanol ($1-10 \%$) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.55$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10 \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.34-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dddd}, J=10.4,7.7,5.7,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.65 (app td, $J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.26(\mathrm{comp}, 2 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.53(\mathrm{comp}, 2 \mathrm{H}), 1.48-1.28$ (comp, 11H), 1.18 (app tdd, $J=12.5,10.8,3.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR (100 MHz, CDCl_{3}): $\delta=171.7,80.7,53.5,46.7,42.432 .1,28.2$ 25.7, 24.5

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 200.1645$, Found: 200.1642.

Ethyl-2-((2R*,4R*)-4-benzylpiperidin-2-yl)acetate

$(\pm)-1 f$

Following general procedure A, compound (\pm)-1f was obtained from 4-benzylpiperidine ($351 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and ethyl acetate ($98 \mu \mathrm{~L}, 1 \mathrm{mmol}$) in 92% yield ($0.92 \mathrm{mmol}, 240 \mathrm{mg}$) as a colorless oil in $>20: 1$ diastereomeric ratio. EtOAc containing methanol ($1-19 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.16$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2}$ 80:19:1 v/v/v.
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30-7.21(\mathrm{comp}, 2 \mathrm{H}), 7.21-7.07(\mathrm{comp}, 3 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.96-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.10$ (brs, 1H), 2.03-1.95 (m, 1H), 1.69-1.57 (m, 1H), 1.52-1.37 (comp, 2H), 1.41-1.28 (m, 1H), $1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=172.2,140.6,128.8,128.0,125.6,60.1,48.1,40.5,39.9,39.2,35.8,33.2,30.5$, 14.0.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 262.1802$, Found: 262.1789.

Ethyl-2-((2' $\left.\mathbf{R}^{*}, \mathbf{4}^{\prime} \mathbf{R}^{*}\right)$-[1,4'-bipiperidin]-2'-yl)acetate

$(\pm)-1 \mathrm{~g}$

Following general procedure A , compound (\pm)- $\mathbf{1 g}$ was obtained from $1,4^{\prime}$-bipiperidine ($336.3 \mathrm{mg}, 2 \mathrm{mmol}$) and ethyl acetate ($98 \mu \mathrm{~L}, 1 \mathrm{mmol}$) in 42% yield $(0.42 \mathrm{mmol}, 107 \mathrm{mg})$ as a colorless oil in $>20: 1$ diastereomeric ratio. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.18$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2}$ 80:19:1 v/v/v.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{app} \mathrm{dtd}, J=9.3,5.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=$ $12.2,6.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=12.0,7.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=15.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.30(\mathrm{comp}, 5 \mathrm{H})$, $2.26(\mathrm{dd}, J=15.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=12.9,8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.53(\mathrm{comp}, 2 \mathrm{H}), 1.53-$ 1.37 (comp, 5H), 1.37-1.29 (comp, 2H), 1.17 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.4,60.3,57.7,50.5,48.7,40.4,38.3,33.6,28.8,26.4,24.7,14.2$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 255.2067$, Found: 255.2070.

Ethyl-2-(4-benzylpiperazin-2-yl)acetate

$(\pm)-1 \mathrm{~h}$

Following general procedure A, compound (\pm)- $\mathbf{1 h}$ was obtained from 1-benzylpiperazine ($348 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and ethyl acetate $(98 \mu \mathrm{~L}, 1 \mathrm{mmol})$ in 66% yield $(0.66 \mathrm{mmol}, 172 \mathrm{mg})$ as a colorless oil. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1\%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.15$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\operatorname{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.23(\mathrm{comp}, 4 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.41$ (comp, 2H), 3.16 (dddd, $J=10.1,7.9,5.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.84$ (comp, 2H), 2.74-2.66 (comp, 2H), 2.55 (s, 1H), 2.43-2.20 (comp, 2H), 2.15-2.03 (m, 1H), 1.86-1.76 (m, 1H), 1.20 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=171.7,137.8,128.8,128.0,126.8,63.0,60.2,58.6,53.3,51.3,45.1,38.5,14.0$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 263.1754, Found: 263.1746.

Ethyl-2-methyl-2-(piperidin-2-yl)propanoate

$(\pm)-1 \mathbf{i}$

Following general procedure B , compound $(\pm)-\mathbf{1 i}$ was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and ethyl isobutyrate ($116 \mathrm{mg}, 1 \mathrm{mmol}$) in 30% yield $(0.30 \mathrm{mmol}, 60 \mathrm{mg})$ as a colorless oil. Dichloromethane containing methanol ($1-10 \%$) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.51$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10 \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.18-4.05(\mathrm{comp}, 2 \mathrm{H}), 3.08(\mathrm{app} \mathrm{dq}, J=12.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.52(\mathrm{comp}, 2 \mathrm{H})$, $1.85-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}), 1.61-1.50(\mathrm{comp}, 2 \mathrm{H}), 1.41-1.27(\mathrm{comp}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.15-1.06(\mathrm{comp}$, $7 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=177.5,63.4,60.4,47.8,46.1,27.2,26.8,25.2,22.2,21.1,14.2$.
HRMS (ESI-TOF): Calculated for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 200.1645$, Found: 200.1644.

Methyl-1-(piperidin-2-yl)cyclohexane-1-carboxylate

$(\pm)-\mathbf{1 j}$

Following general procedure B , compound $(\pm) \mathbf{- 1} \mathbf{j}$ was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and methyl cyclohexanecarboxylate ($142 \mathrm{mg}, 1 \mathrm{mmol}$) in 62% yield $(0.62 \mathrm{mmol}, 140 \mathrm{mg})$ as a colorless oil. Dichloromethane containing methanol ($1-10 \%$) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.44$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10 \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.68(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.50(\mathrm{comp}, 2 \mathrm{H}), 2.46(\mathrm{dd}, J=11.4,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.18-2.02(\mathrm{comp}, 2 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.47(\mathrm{comp}, 5 \mathrm{H}), 1.41-1.17(\mathrm{comp}, 6 \mathrm{H}), 1.17-1.00(\mathrm{comp}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.8,64.6,51.6,51.4,47.9,31.2,31.0,27.5,26.5,25.9,25.2,23.6$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 226.1802$, Found: 226.1807.

Ethyl-1-(piperidin-2-yl)cyclobutane-1-carboxylate

$(\pm)-1 \mathrm{k}$

Following general procedure B , compound $(\pm)-\mathbf{1 k}$ was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and ethyl cyclobutanecarboxylate ($128 \mathrm{mg}, 1 \mathrm{mmol}$) in 52% yield $(0.52 \mathrm{mmol}, 110 \mathrm{mg})$ as a colorless oil. Dichloromethane containing methanol ($1-10 \%$) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.42$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10 \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.63(\mathrm{comp}, 2 \mathrm{H}), 2.57$ (app ddt, $J=12.3,9.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.23(\mathrm{comp}, 2 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.01(\operatorname{app} \mathrm{dddt}, J=11.9,9.4,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.89-1.67(\mathrm{comp}, 3 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.25(\mathrm{comp}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07$ (app tdd, $J=12.6,11.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=176.3,62.3,60.5,51.4,47.5,27.9,27.4,26.9,26.4,24.9,15.8,14.3$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 212.1645$, Found: 212.1649.

Ethyl-2-(azepan-2-yl)acetate

Following general procedure A, compound (\pm)-11 was obtained from azepane ($225 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and ethyl acetate (98 $\mu \mathrm{L}, 1 \mathrm{mmol}$) in 52% yield ($0.52 \mathrm{mmol}, 96 \mathrm{mg}$) as a colorless oil. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.16$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dddd}, J=9.6,7.6,5.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.89(\mathrm{~m}$, $1 \mathrm{H}), 2.77-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.29(\mathrm{comp}, 3 \mathrm{H}), 1.83-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.54(\mathrm{comp}, 4 \mathrm{H}), 1.54-1.46(\mathrm{comp}, 2 \mathrm{H})$, $1.49-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.4,60.3,55.5,46.8,42.3,36.2,31.0,27.2,25.5,14.2$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 186.1489$, Found: 186.1497.

Ethyl-2-(azocan-2-yl)acetate

(\pm)-1m

Following general procedure A , compound (\pm)-1m was obtained from azocane ($253 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and ethyl acetate $(98 \mu \mathrm{~L}, 1 \mathrm{mmol})$ in 51% yield ($0.51 \mathrm{mmol}, 102 \mathrm{mg}$) as a colorless oil. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.18$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 1 \mathrm{H})$, $2.43-2.28(\mathrm{comp}, 2 \mathrm{H}), 1.95(\mathrm{brs}, 1 \mathrm{H}), 1.75-1.57(\mathrm{comp}, 6 \mathrm{H}), 1.57-1.45(\mathrm{comp}, 3 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=$ 7.1 Hz, 3H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.6,60.2,54.1,46.7,42.5,33.6,29.3,27.6,25.3,24.0,14.2$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 200.1645$, Found: 200.1638 .

2-((2R*, $\left.4 R^{*}\right)$-4-Benzylpiperidin-2-yl)acetonitrile

$(\pm)-\mathbf{2 a}$

Following general procedure A, compound (\pm)-2a was obtained from 4-benzylpiperidine ($351 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and acetonitrile ($52 \mu \mathrm{~L}, 1 \mathrm{mmol}$) in 43% yield $(0.43 \mathrm{mmol}, 92 \mathrm{mg})$ as a colorless oil and in $>20: 1$ diastereomeric ratio. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.22$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\mathrm{PrNH}_{2} 90: 10: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$
${ }^{1} \mathbf{H}$-NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.27(\mathrm{comp}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.12(\mathrm{comp}, 2 \mathrm{H}), 3.37(\operatorname{app} \mathrm{dtd}, J$ $=7.8,6.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{ddd}, J=12.6,8.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=12.6,7.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.63$ (comp, $2 \mathrm{H}), 2.56(\mathrm{dd}, J=16.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (dd, $J=16.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.97$ (comp, 2H), 1.77-1.62 (m, 1H), 1.65$1.50(\mathrm{comp}, 2 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.1,128.9,128.3,126.0,118.2,48.6,40.5,40.2,35.4,33.0,30.4,23.1$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 215.1543$, Found: 215.1524.

2-((2R*,4R*)-4-Benzylpiperidin-2-yl)-2-methylpropanenitrile

$(\pm)-2 b$

Following general procedure B , compound (\pm) $\mathbf{- 2 b}$ was obtained from 4-benzylpiperidine ($351 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and isobutyronitrile ($69 \mathrm{mg}, 1 \mathrm{mmol}$) in 45% yield ($0.45 \mathrm{mmol}, 109 \mathrm{mg}$) and 10:1 diastereomeric ratio. EtOAc containing methanol ($1-9 \%$) and isopropylamine (1%) was used as the eluent for silica gel chromatography. The major diastereomer was obtained as a colorless oil.

Characterization data of the major diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.28$ in Hexanes/EtOAc 50:50 v/v/.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33-7.26(\mathrm{comp}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{comp}, 2 \mathrm{H}), 3.04-2.90$ $(\mathrm{comp}, 2 \mathrm{H}), 2.84-2.70(\mathrm{comp}, 3 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.39(\mathrm{comp}, 5 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, CDCl_{3}): $\delta=140.9,129.0,128.5,126.1,124.4,57.7,42.0,37.7,37.3,33.7,30.6,29.5,24.1$, 23.0.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 4 3 . 1 8 5 6}$, Found: 243.1848 .

1-(Piperidin-2-yl)cyclohexane-1-carbonitrile

$(\pm)-2 c$

Following general procedure B, compound (\pm)-2c was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and cyclohexanecarbonitrile ($109 \mathrm{mg}, 1 \mathrm{mmol}$) in 58% yield ($0.58 \mathrm{mmol}, 111 \mathrm{mg}$) as a colorless oil. Dichloromethane followed by hexanes containing EtOAc (40-90\%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.33$ in Hexanes/EtOAc 30:70 v/v/.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.17-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{app} \mathrm{td}, J=12.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=10.8,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.09(\mathrm{ddd}, J=13.3,3.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.68(\mathrm{comp}, 4 \mathrm{H}), 1.66-1.51$ (comp, 3H), 1.47-1.40 (m, 1H), 1.40-1.18 (comp, 5H), 1.18-1.03 (m, 1H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=122.8,63.3,47.5,44.2,32.6,31.9,27.8,26.6,25.5,24.8,23.1,23.1$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 193.1699$, Found: 193.1682.

1-(Pyrrolidin-2-yl)cyclohexane-1-carbonitrile

(\pm)-2d

Following general procedure A, compound (\pm)-2d was obtained from pyrrolidine ($164 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and cyclohexanecarbonitrile ($109 \mathrm{mg}, 1 \mathrm{mmol}$) in 54% yield ($0.54 \mathrm{mmol}, 96 \mathrm{mg}$) as a colorless oil. Dichloromethane followed by hexanes containing EtOAc ($60-100 \%$) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.42$ in $\mathrm{EtOAc} / \mathrm{MeOH} / i-\operatorname{PrNH}_{2} 90: 9: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.09-2.83(\mathrm{comp}, 3 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.79(\mathrm{comp}, 4 \mathrm{H}), 1.77-1.49$ (comp, 7H), 1.30-1.21 (comp, 2H), 1.15 (app tdd, $J=12.4,8.7,3.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (100 MHz, CDCl_{3}): $\delta=123.0,65.8,47.1,45.2,33.7,33.1,28.0,26.1,25.5,23.0$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 179.1543, Found: 179.1530.

4-Methyl-1,6,7,8,9,9a-hexahydro-2H-quinolizin-2-one

$(\pm)-\mathbf{3 a}$

Following general procedure C, compound (\pm)-3a was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and acetylacetone $(103 \mu \mathrm{~L}, 1 \mathrm{mmol})$ as a clear oil in 55% yield $(0.55 \mathrm{mmol}, 91 \mathrm{mg})$. EtOAc containing methanol $(1-9 \%)$ was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.14$ in EtOAc.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.94(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{app} \mathrm{td}, J=12.8,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47(\mathrm{dd}, J=16.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=16.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.68(\mathrm{~m}$, 1H), 1.68-1.53 (comp, 2H), 1.53-1.34 (comp, 2H).
${ }^{13} \mathbf{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=190.7,162.5,101.1,58.0,47.6,42.4,30.9,25.2,23.2,20.7$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 166.1226$, Found: 166.1235.

4-Phenyl-1,6,7,8,9,9a-hexahydro-2H-quinolizin-2-one

(\pm)-3b

Following general procedure C , compound (\pm)- $\mathbf{3 b}$ was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and 1-phenyl-1,3butanedione ($162 \mathrm{mg}, 1 \mathrm{mmol}$) as a yellow solid in 56% yield ($0.56 \mathrm{mmol}, 127 \mathrm{mg}$). Hexanes containing EtOAc (15$50 \%$) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.31$ in hexane/EtOAc 75:25 v/v.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.29(\mathrm{comp}, 3 \mathrm{H}), 7.28-7.19(\mathrm{comp}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.43$
(ddd, $J=14.2,11.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.51(\mathrm{comp}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=16.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ 1.67 (comp, 2H), 1.56-1.47 (m, 1H), 1.47-1.33 (comp, 2H).
${ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.3,165.8,136.6,128.8,128.4,126.8,103.1,58.4,50.2,42.5,31.2,25.8,23.7$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 228.1383$, Found: 228.1374.

4-(Furan-2-yl)-1,6,7,8,9,9a-hexahydro-2H-quinolizin-2-one

(\pm)-3c

Following general procedure C , compound (\pm)-3c was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and 1-(furan-2-yl)butane-1,3-dione ($152 \mathrm{mg}, 1 \mathrm{mmol}$) as a light brown solid in 39% yield ($0.39 \mathrm{mmol}, 85 \mathrm{mg}$). Hexanes containing EtOAc (50-90\%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.34$ in hexane/EtOAc $25: 75 \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{dd}, \mathrm{J}=3.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, \mathrm{J}=3.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.29(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{app} \mathrm{td}, J=12.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=16.4,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{dd}, J=16.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.64(\mathrm{comp}, 3 \mathrm{H}), 1.59(\operatorname{app} \mathrm{ddt}, J=16.7,12.9,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.1,154.3,148.7,143.5,112.2,111.3,103.1,58.8,50.4,42.5,31.3,25.8,23.6$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 218.1176$, Found: 218.1168.

2-Benzyl-6-phenyl-1,2,3,4,9,9a-hexahydro-8H-pyrido[1,2-a]pyrazin-8-one

(\pm - $\mathbf{- 3 d}$

Following general procedure C , compound (\pm)-3d was obtained from 1-benzylpiperazine ($348 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and acetylacetone ($103 \mu \mathrm{~L}, 1 \mathrm{mmol}$) as a brown oil in 50% yield $(0.50 \mathrm{mmol}, 128 \mathrm{mg})$. EtOAc containing methanol (5$20 \%$) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.37$ in EtOAc/methanol 90:10 v/v.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.25(\mathrm{comp}, 5 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{app} \mathrm{dt}, J=12.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.46$ $(\mathrm{comp}, 3 \mathrm{H}), 3.03(\mathrm{app} \mathrm{td}, J=12.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.85(\mathrm{comp}, 2 \mathrm{H}), 2.37-2.26(\mathrm{comp}, 2 \mathrm{H}), 2.19(\mathrm{app} \mathrm{td}, J=11.9$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.2,163.2,137.3,129.0,128.4,127.4,102.7,62.5,58.4,56.7,52.3,46.4,40.3$, 20.8.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 257.1648$, Found: 257.1659.

$(\pm)-3 e$

Following general procedure C , compound $(\pm)-\mathbf{3 e}$ was obtained from 4-benzylpiperidine ($351 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and acetylacetone ($103 \mu \mathrm{~L}, 1 \mathrm{mmol}$) as a yellow oil in 56% yield $(0.56 \mathrm{mmol}, 144 \mathrm{mg})$ and in $>20: 1$ diastereomeric ratio. EtOAc containing methanol (1-10\%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.26$ in EtOAc.
${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.25(\mathrm{comp}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.08(\mathrm{comp}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 3.64$ (app tdd, $J=12.1,5.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{ddd}, J=13.2,4.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\operatorname{app} \mathrm{td}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{dd}, J=16.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=16.4,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$, 1.83-1.69 (comp, 2H), 1.66-1.55 (comp, 2H).
${ }^{13}$ C-NMR (125 MHz, CDCl_{3}): $\delta=191.4,163.3,140.1,128.8,128.5,126.2,102.2,52.9,43.1,42.2,36.8,34.9,32.2$, 28.4, 21.1.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 256.1696$, Found: 256.1680.

1,2,3,4,4a,5,7,8,9,10-Decahydro-6H-pyrido[1,2-a]quinolin-6-one

(\pm)-3f

Following general procedure C , compound (\pm)-3f was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and 2-acetylcyclohexan-1-one ($130 \mu \mathrm{~L}, 1 \mathrm{mmol}$) as a yellow solid in 60% yield ($0.60 \mathrm{mmol}, 122 \mathrm{mg}$). Hexanes containing EtOAc (66-80\%) was used as the eluent for silica gel chromatography.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.34$ in hexane/EtOAc $25: 75 \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.83-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{app} \operatorname{tdd}, J=11.6,5.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{app} \mathrm{td}, J=12.7$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=16.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.11(\mathrm{comp}, 5 \mathrm{H}), 1.82-1.65(\mathrm{comp}, 3 \mathrm{H}), 1.65-1.56(\mathrm{comp}, 2 \mathrm{H})$, 1.56-1.43 (comp, 3H), 1.43-1.30 (comp, 2H).
${ }^{13} \mathbf{C}$-NMR (125 MHz, CDCl_{3}): $\delta=191.2,160.6,109.3,58.1,47.0,43.0,31.5,27.6,25.7,23.6,22.6,21.9,21.6$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 206.1539$, Found: 206.1548 .

($4 S^{*}, 9 \mathrm{a} R^{*}$)-4-(3,4-Dimethoxyphenyl)octahydro-2H-quinolizin-2-one

$(\pm)-4 \mathbf{a}$

Following general procedure D , compound (\pm) $-\mathbf{4 a}$ was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and 3,4dimethoxybenzylideneacetone ($206 \mathrm{mg}, 1 \mathrm{mmol}$) in 63% yield $(0.63 \mathrm{mmol}, 180 \mathrm{mg})$ and $5: 1$ diastereomeric ratio (cis : trans). Hexanes containing EtOAc (75-80\%) was used as the eluent for silica gel chromatography. The major diastereomer was isolated as a yellow solid.

Note - After addition of saturated NaHCO_{3} aqueous solution, the reaction mixture was stirred for 10 h .

Characterization data of the major diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.16$ in hexane/EtOAc $25: 75 \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.64(\mathrm{comp}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.83(\mathrm{comp}, 3 \mathrm{H}), 2.65-2.53(\mathrm{comp}, 2 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.64-1.55(\mathrm{comp}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=209.7,148.7,148.4,131.5,120.9,111.7,110.6,63.9,55.9,55.8,54.3,51.3,47.6$, 46.8, 31.9, 24.0, 23.4.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 290.1751$, Found: 290.1742.

(4R*, 9a R^{*})-4-(3,4-Dimethoxyphenyl)octahydro-2H-quinolizin-2-one

(\pm)-4a'

From the reaction shown above, the minor diastereomer was isolated as a yellow solid.

Characterization data of the minor diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.40$ in hexane/EtOAc 25:75 v/v
${ }^{1} \mathbf{H}-$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.77(\mathrm{comp}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=$ $12.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{comp}$, $2 \mathrm{H}), 1.76-1.60(\mathrm{comp}, 3 \mathrm{H}), 1.58-1.39(\mathrm{comp}, 3 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=207.9,149.3,148.3,135.2,119.5,111.0,109.8,70.0,62.4,56.0,55.9,52.8,50.9$, 48.7, 34.3, 25.8, 24.2.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 290.1751$, Found: 290.1721.

($5 R^{*}, 8 \mathrm{a} R^{*}$)-5-(3,4-Dimethoxyphenyl)hexahydroindolizin-7(1H)-one

(\pm)-4b

Following general procedure D , compound $(\pm) \mathbf{- 4 b}$ was obtained from pyrrolidine ($164 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and 3,4dimethoxybenzylideneacetone ($206 \mathrm{mg}, 1 \mathrm{mmol}$) as a yellow oil in 34% yield ($0.34 \mathrm{mmol}, 93 \mathrm{mg}$) and $>20: 1$ diastereomeric ratio. Hexanes containing EtOAc (33-66\%) was used as the eluent for silica gel chromatography.

Note - After addition of saturated NaHCO_{3} aqueous solution, the reaction mixture was stirred for 10 h .

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.23$ in hexane/EtOAc 50:50 v/v
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.57(\mathrm{comp}, 2 \mathrm{H}), 2.52-2.37(\mathrm{comp}$, $3 \mathrm{H}), 2.11-1.91(\mathrm{comp}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, CDCl_{3}): $\delta=208.8,149.2,148.5,134.9,119.3,111.0,109.8,66.6,64.0,56.0,55.9,51.5,49.9$, 47.3, 31.1, 21.5.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 276.1594$, Found: 276.1602.

($4 S^{*}, 9 \mathrm{a} R^{*}$)-4-(Furan-2-yl)octahydro-2H-quinolizin-2-one

Following general procedure D , compound $(\pm)-4 \mathrm{c}$ was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and (E)-4-(furan-2-yl)but-3-en-2-one ($136 \mathrm{mg}, 1 \mathrm{mmol}$) in 51% yield ($0.51 \mathrm{mmol}, 112 \mathrm{mg}$) and $4: 1$ diastereomeric ratio (cis : trans). Hexanes containing EtOAc (33-66\%) was used as the eluent for silica gel chromatography. The major diastereomer was isolated as a yellow oil.

Note - After addition of saturated NaHCO_{3} aqueous solution, the reaction mixture was stirred for 10 h .

Characterization data of the major diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.27$ in hexane/EtOAc 50:50 v/v
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=3.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{dd}, J=7.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.42(\mathrm{comp}, 3 \mathrm{H}), 2.26(\mathrm{dd}, J$ $=15.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\operatorname{app} \mathrm{td}, J=11.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.53(\mathrm{comp}, 4 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.02(\mathrm{~m}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=208.0,152.6,142.1,109.8,109.0,59.1,54.5,52.3,47.8,45.0,34.4,25.9,23.2$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 220.1332$, Found: 220.1338.

($4 R^{*}, 9 \mathrm{a} R^{*}$)-4-(Furan-2-yl)octahydro-2H-quinolizin-2-one

From the reaction shown above, the minor diastereomer was isolated as a yellow oil.

Characterization data of the minor diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.18$ in hexane/EtOAc 75:25 v/v
${ }^{1} H-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.42(\mathrm{dd}, J=12.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\operatorname{app} \mathrm{t}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43(\operatorname{app~dt}, J$ $=14.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\operatorname{app~dt}, J=14.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\operatorname{apptd}, J=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\operatorname{app~td}, J=11.9,3.0$ Hz, 1H), 1.77-1.65 (comp, 2H), 1.65-1.45 (comp, 3H), 1.33-1.20 (m, 1H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=207.1,153.3,142.3,110.0,108.1,62.6,61.8,52.6,48.5,46.9,34.0,25.6,23.9$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 220.1332$, Found: 220.1327.

(4R*,9aR*)-4-Methyloctahydro-2H-quinolizin-2-one

(\pm)-myrtine (4d)

Following general procedure $\mathrm{D},(\pm)$-myrtine ($\mathbf{4 d}$) was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and (E)-pent-3-en2 -one ($98 \mu \mathrm{~L}, 1 \mathrm{mmol}$) in 38% yield ($0.38 \mathrm{mmol}, 64 \mathrm{mg}$) and 10:1 diastereomeric ratio (cis : trans). Dichloromethane containing methanol ($2-10 \%$) was used as the eluent for silica gel chromatography.

Note - After addition of saturated NaHCO_{3} aqueous solution, the reaction mixture was stirred for 2 h .

Characterization data of the major diastereomer:

$\mathbf{R}_{\mathbf{f}}=0.45$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10 \mathrm{v} / \mathrm{v}$
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.34-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=13.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.54$ $(\mathrm{m}, 1 \mathrm{H}), 2.41(\mathrm{app} \mathrm{td}, J=11.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.12(\mathrm{comp}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.60(\mathrm{comp}, 3 \mathrm{H}), 1.60-$ $1.49(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.09(\mathrm{comp}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C-NMR (125 MHz, CDCl_{3}): $\delta=209.4,57.0,53.3,51.3,48.5,47.9,34.1,25.7,23.3,10.9$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 168.1383$, Found: 168.1388.

$\left(1 S^{*}, 4 S^{*}, 9 \mathrm{a} R^{*}\right)$-Octahydro-2H-1,4-ethanoquinolizin-2-one

(\pm-4e

Following general procedure D , compound $(\pm)-4 \mathbf{e}$ was obtained from piperidine ($197 \mu \mathrm{~L}, 2 \mathrm{mmol}$) and cyclohex-2-en-1-one ($97 \mu \mathrm{~L}, 1 \mathrm{mmol}$) as a clear oil in 34% yield ($0.34 \mathrm{mmol}, 62 \mathrm{mg}$) and $7: 1$ diastereomeric ratio. EtOAc containing methanol ($2-5 \%$) was used as the eluent for silica gel chromatography.

Note - After addition of saturated NaHCO_{3} aqueous solution, the reaction mixture was stirred for 72 h .

Characterization data for (\pm)-4e:

$\mathbf{R}_{\mathbf{f}}=0.31$ in EtOAc.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{app} \mathrm{dt}, J=10.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.47$ (ddd, $J=17.1,4.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.12(\mathrm{comp}, 2 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.61$ (comp, 3H), 1.59-1.52 (comp, 2H), 1.52-1.44 (m, 1H), 1.34-1.20 (comp, 2H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=215.1,64.3,55.4,52.5,49.3,47.6,31.5,26.5,24.8,23.0,20.2$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 180.1383$, Found: 180.1393.

$\left(4 \mathrm{a} R^{*}, 6 \mathrm{a} S^{*}, 10 \mathrm{a} R^{*}\right)$-Dodecahydro-6H-pyrido[1,2-a]quinolin-6-one

$(\pm)-4 f$

Following general procedure D , compound (\pm)-4f and compound (\pm) $\mathbf{- 4 f}$ ' were obtained from piperidine ($197 \mu \mathrm{~L}, 2$ mmol) and 1-acetyl-1-cyclohexene ($129 \mu \mathrm{~L}, 1 \mathrm{mmol}$) as a clear oil in 49% combined yield ($0.49 \mathrm{mmol}, 101 \mathrm{mg}$) in a 7:1 diastereomeric ratio as an inseparable mixture. Hexanes containing EtOAc (75-90\%) was used as the eluent for silica gel chromatography.

Note - After addition of saturated NaHCO_{3} aqueous solution, the reaction mixture was stirred for 72 h .

Characterization data for (\pm)-4f:

$\mathbf{R}_{\mathbf{f}}=0.19$ in hexane/EtOAc $25: 75 \mathrm{v} / \mathrm{v}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}$ (major isomer is assigned, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.06(\mathrm{ddd}, J=12.1,5.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 1 \mathrm{H})$, $2.82-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.70(\operatorname{app} \mathrm{tt}, J=10.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\operatorname{apptd}, J=11.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.14(\mathrm{comp}, 3 \mathrm{H})$, 1.89-1.75 (comp, 2H), 1.75-1.53 (comp, 4H), 1.50-1.34 (comp, 2H), 1.32-1.00 (comp, 5H).
${ }^{13} \mathbf{C}$-NMR (major isomer is assigned, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=210.3,65.2,54.2,50.7,50.5,48.0,34.5,26.1,25.4,24.7$, 23.3, 22.0, 21.2.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 208.1696$, Found: 208.1686.

(4R*, $6 R^{*}$)-4-Benzyl-1-azabicyclo[4.2.0]octan-8-one

$(\pm)-5$

Following a modified literature procedure, ${ }^{12}$ to a solution of $t-\mathrm{BuMgCl}(1.35 \mathrm{M}$ in THF, $295 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv) in anhydrous THF (0.5 mL) cooled to $-20^{\circ} \mathrm{C}$ was slowly added a solution of $(\pm) \mathbf{- 1 f}(52 \mathrm{mg}, 0.2 \mathrm{mmol})$ in anhydrous THF (0.5 mL) over 2 h via cannula under the protection of nitrogen. The reaction mixture was stirred at the same temperature for 10 min and quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL). Subsequently, the reaction vessel was taken out of the low temperature bath and warmed up to room temperature. The resulting mixture was diluted with EtOAc (10 mL) and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The aqueous layer was then extracted with EtOAc ($2 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography using hexanes containing EtOAc ($30-60 \%$) as the eluent to provide compound $(\pm)-5(0.144 \mathrm{mmol}, 31 \mathrm{mg}, 72 \%)$ as a crystalline solid.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.35$ in hexane/EtOAc $50: 50 \mathrm{v} / \mathrm{v}$
${ }^{1} \mathbf{H}-$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.30(\mathrm{comp}, 2 \mathrm{H}), 7.27-7.17(\mathrm{comp}, 3 \mathrm{H}), 3.75$ (ddd, $\left.J=13.7,6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.65 (app dtd, $J=10.9,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=14.5,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.73$ (comp, $2 \mathrm{H}), 2.58(\mathrm{dd}, J=14.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.95(\operatorname{app~dt}, J=13.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.58-$ $1.51(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{app} \mathrm{ddd}, J=13.2,10.9,4.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.6,140.3,128.7,128.6,126.3,45.1,43.3,36.2,34.8,33.9,33.3,27.6$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 216.1383$, Found: 216.1367.

1-Azabicyclo[5.2.0]nonan-9-one

$(\pm)-6$

Following a modified literature procedure, ${ }^{12}$ to a solution of $t-\mathrm{BuMgCl}(1.35 \mathrm{M}$ in $\mathrm{THF}, 296 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv) in anhydrous THF $(0.5 \mathrm{~mL})$ cooled to $-20^{\circ} \mathrm{C}$ was slowly added a solution of $(\pm)-11(37 \mathrm{mg}, 0.2 \mathrm{mmol})$ in anhydrous THF (0.5 mL) over 2 h via cannula under the protection of nitrogen. The reaction mixture was stirred at the same temperature for 10 min and quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL). Subsequently the reaction vessel was taken out of the low temperature bath and warmed up to room temperature. The resulting mixture was diluted with EtOAc (10 mL) and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$. The aqueous layer was then extracted with EtOAc ($2 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography using hexanes containing EtOAc (30-60\%) to provide compound (\pm)-6 ($0.146 \mathrm{mmol}, 20 \mathrm{mg}, 73 \%$) as a clear oil.

Characterization data:

$\mathbf{R}_{\mathbf{f}}=0.18$ in hexane/EtOAc 50:50 v/v
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.23(\mathrm{comp}, 2 \mathrm{H}), 2.97(\mathrm{ddd}, J=14.4,4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.81(\mathrm{comp}, 3 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.28(\mathrm{comp}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR (100 MHz, CDCl_{3}): $\delta=166.9,52.7,43.0,41.6,35.8,29.3,28.6,26.9$.

HRMS (ESI-TOF): Calculated for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 140.1070$, Found: 140.1072.

References

1. Suffert, J. J. Org. Chem. 1989, 54, 509.
2. Davies, H. M. L.; Hansen, T.; Hopper, D. W.; Panaro, S. A. J. Am. Chem. Soc. 1999, 121, 6509.
3. Baenziger, M.; Gobbi, L.; Riss, B. P.; Schaefer, F.; Vaupel, A. Tetrahedron: Asymmetry 2000, 11, 2231.
4. Sielecki, T. M.; Wityak, J.; Liu, J.; Mousa, S. A.; Thoolen, M.; Wexler, R. R.; Olson, R. E. Bioorg. Med. Chem. Lett. 2000, 10, 449.
5. Turunen, B. J.; Georg, G. I. J. Am. Chem. Soc. 2006, 128, 8702.
6. Akiba, M.; Ohki, S. Chem. Pharm. Bull. 1970, 18, 2195.
7. Reddy, A. A.; Reddy, P. O.; Prasad, K. R. J. Org. Chem. 2016, 81, 11363.
8. Virk, S.; Pansare, S. V. Org. Lett. 2019, 21, 5524.
9. Gołȩbiewski, W. M. Org. Mass Spectrom. 1982, 17, 601.
10. Back, T. G.; Hamilton, M. D.; Lim, V. J. J.; Parvez, M. J. Org. Chem. 2005, 70, 967.
11. Edwards, O. E.; Paton, J. M.; Benn, M. H.; Mitchell, R. E.; Watanatada, C.; Vohra, K. N. Can. J. Chem. 1971, 49, 1648.
12. Śniezek, M.; Stecko, S.; Panfil, I.; Furman, B.; Chmielewski, M. J. Org. Chem. 2013, 78, 7048.

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-1 \mathrm{a}$ ', $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{n} \end{aligned}$	$\infty \infty$ - ~~~ స-1~	든 প্ gin in	
	<		

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-1 \mathbf{a}^{\prime}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (\pm)-1a, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

∞	กั\％	ㅇํ웅	にア7
ベ	¢	－	¢－
	1 －	！	
）			

${ }^{13} \mathrm{C}$－NMR of（ \pm ）－1a， $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

No

00

${ }^{1} \mathrm{H}$-NMR of (\pm)-1b, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\underset{\substack{\text { Ph } \\ \mathrm{H}}}{\substack{\mathrm{H}}} \mathrm{CO}_{2} \mathrm{Me}$
$\stackrel{\rightharpoonup}{N}$
$\stackrel{N}{7}$

$\stackrel{\circ}{\circ} \stackrel{\sim}{\sim}$
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 b}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										(ppres									

${ }^{1} \mathrm{H}$-NMR of (\pm)-1b' $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
C

 -
${ }^{\sim}$
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 b} \mathbf{b}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (\pm)-1c, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\sim}{m}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 c}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (\pm) - $\mathbf{1 d}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 d}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\mathrm{CO}_{2} \mathrm{Et}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 e}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\infty}{\stackrel{+}{+}}$
충
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{e} \mathbf{e}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										(

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (\pm)-1f, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$9 \varepsilon^{\prime} Z \angle \square^{-}$
충
N
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of (\pm)-1f, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm) \mathbf{- 1} \mathbf{g}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm) \mathbf{- 1} \mathbf{g}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$


```
O
```


 $\underset{\underset{\sim}{7}}{\sim}$
${ }^{3} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-1 \mathrm{~h}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 i}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\text { giv }}{\stackrel{\text { N}}{N}}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 i}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-1 \mathbf{j}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\infty}{\infty}$
©
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{1} \mathbf{j}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 k}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

লo
${ }^{13} \mathrm{C}$-NMR of (\pm) - $\mathbf{1 k}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

H-NMR of (\pm)-11, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
\begin{aligned}
& \underset{\sim}{\sim}
\end{aligned}
$$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{1 I}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20
									(pp								

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-1 \mathrm{~m}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

o
${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-1 \mathrm{~m}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (\pm)-2a, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm) \mathbf{- 2 a}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of (\pm)-2b, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of (\pm)-2b, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ (\mathrm{pp} \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-\mathbf{2 c}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-2 \mathrm{c}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-\mathbf{2 d}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

®
స్

눙

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-\mathbf{2 d}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $(\pm)-\mathbf{3 a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

∞	$\stackrel{\square}{6}$	へ
9	$\stackrel{\text { - }}{\sim}$	

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $(\pm)-3 \mathrm{a}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

\overbrace{i}^{∞}
 ~~~




${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)-\mathbf{3 b}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


| $\stackrel{?}{0}$ |
| :--- |
| $\stackrel{\rightharpoonup}{9}$ |
|  |

$\stackrel{\underset{\sim}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$
Non
$\begin{array}{r}\text { N} \\ \stackrel{N}{\text { ® }} \\ \\ \hline\end{array}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $( \pm)-\mathbf{3 b}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)-\mathbf{3 c}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


O
$\underset{\sim}{i}$
$\underset{\sim}{1}$



${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $( \pm)-\mathbf{3 c}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)$-3d, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$





${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)$-3e, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\stackrel{\underset{1}{~}}{\stackrel{\rightharpoonup}{2}}$ $\stackrel{\stackrel{8}{0}}{\stackrel{\rightharpoonup}{0}}$
-
$\begin{array}{r}\underset{\sim}{i} \\ \underset{\sim}{\sim} \\ \hline\end{array}$

${ }^{13} \mathrm{C}$-NMR of $( \pm)-3 \mathrm{e}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$




## 

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)-3 \mathrm{f}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\widetilde{N}$
$\stackrel{\rightharpoonup}{\theta}$
$\underset{\sim}{2}$
$\stackrel{\rightharpoonup}{0}$
$\stackrel{\rightharpoonup}{0}$
$\stackrel{1}{2}$



## -

${ }^{13} \mathrm{C}$-NMR of $( \pm)$-3f, $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)-4 \mathrm{a}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



웅
${ }^{13} \mathrm{C}$-NMR of $( \pm)-4 \mathbf{a}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


俞芯




'H-NMR of ( $\pm$ )-4a', $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$





${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm) \mathbf{4 b}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\infty$
$\infty$
$\stackrel{i}{0}$


${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $( \pm) \mathbf{- 4 b}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)-4 \mathrm{c}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$\stackrel{\text { No }}{\substack{\infty \\ \text { in }}}$
$\stackrel{\stackrel{\infty}{\sim}}{\stackrel{n}{\sim}} \stackrel{\stackrel{n}{\underset{\sim}{\sim}}}{\stackrel{\sim}{\sim}}$
产

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $( \pm)-4 \mathrm{c}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

 (


$\stackrel{9}{\stackrel{\circ}{i}}$



${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $( \pm)-\mathbf{4 c}$ ', $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$


高䓂
,

${ }^{1} \mathrm{H}$-NMR of $( \pm)$-myrtine ( 4 d ), $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{13} \mathrm{C}$-NMR of ( $\pm$ )-myrtine ( 4 d ), $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{1} \mathrm{H}$-NMR of $( \pm)-\mathbf{4 e}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$



| 1.0 | 9.'5 | 9. 0 | 8.5 | 8. 0 | 7.5 | 7. 0 | 6.5 | 6.'0 | 5.5 | 5.10 | 4. 5 | 4. ${ }^{1}$ | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $( \pm)-4 \mathrm{e}, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$



${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)-\mathbf{4 f}, 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(7:1 inseparable mixture)



S-105


$-N M R$ of $( \pm)-4 f, 125 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(7:1 inseparable mixture)


,


${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $( \pm)-5,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

哃

${ }^{13} \mathrm{C}-$ NMR of $( \pm)-5,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$




${ }^{1} \mathrm{H}$-NMR of $( \pm)$ - $6,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

능
$\stackrel{-}{\circ}$
$\stackrel{-}{6}$

${ }^{13} \mathrm{C}$-NMR of $( \pm)-6,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$




