An improved methane adsorption model in shale by considering variable adsorbed phase density

Xingxing Kong^{$\ddagger 1$}, Hongjun Fan^{$\dagger 1^*$}, Dianshi Xiao^{$\ddagger 2^*$}, Pengfei Mu^{$\dagger 3$}, Shuangfang Lu^{$\dagger 2$}, Shu

Jiang^{†4}, Guohui Chen^{†4}

¹ CNOOC Research Institute Co. Ltd., Beijing 100028, China

² School of Geosciences, China University of Petroleum (East China), Qingdao 266580,

China

³ Bohai Oilfield Research Institute, Tianjin Branch of CNOOC Ltd., Tianjin 300452,

China

⁴ Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education,

School of Earth Resources, China University of Geosciences, Wuhan 430074, China

Nine shale samples from the Wufeng-Longmaxi Formation in the Sichuan Basin were tested for total organic carbon (TOC), X-ray diffraction (XRD) analysis, low-temperature nitrogen adsorption, and methane isothermal adsorption. The experimental results are shown in Table S1, Figures S1 and S2.

(1) TOC and XRD

The TOC was measured on the CS230 high-frequency infrared carbon-sulfur analyzer produced by the American LECO company. During the experiment, the samples need to be crushed to 100-200 mesh and treated with hydrochloric acid to remove inorganic carbon.

The XRD is to measure the mineral composition of shale samples. The experiment was carried out on a high-resolution X-ray diffractometer of Rigaku Corporation. The samples need to be crushed to more than 200 meshes before the experiment.

(2) Low temperature nitrogen adsorption

This low-temperature nitrogen adsorption was performed on the ASAP 2460 specific surface area and pore size analyzer produced by Micromeritics, USA. First, weigh 3-5g of 60-80 mesh shale powder sample into a sample tube, and dry it under vacuum at 110°C for 12 hours. Then weigh the mass of the dried sample, load the sample tube with the dried sample into the system, so that the entire sample tube is immersed in liquid nitrogen (77K), and the entire adsorption process is performed below the critical temperature of nitrogen (126.1K), so the experimental process is subcritical adsorption. The measurement of the adsorption curve and the desorption curve is automatically completed by the instrument.

This time the adsorption curve measures 33 pressure points and the desorption curve 23 pressure points. The calculation of the specific surface area uses the BET model¹.

(3) Methane isotherm adsorption

The methane isotherm adsorption is conducted by gravimetric method. The gravimetric method mainly measures the amount of shale methane adsorbed by the change in the buoyancy of the adsorption phase². The tested sample is a 60-80 mesh powder sample, which should be vacuum dried at 110°C for more than 10 hours before the test. The maximum experimental pressure is 28MPa, the number of measurement pressure points for a single experiment is not less than 14, and the experimental temperature is 60°C.

Sample	TOC	S_{BET}	V _{DR}	Quartz	K- feldspar	Plagioclase	Calcite	Dolomite	Pyrite	Barite	Fluorapatite	Ankerite	Clay
	/(%)	/(m ² /g)	/(cm ³ /Kg)	/(%)	/(%)	/(%)	/(%)	/(%)	/(%)	/(%)	/(%)	/(%)	/(%)
AY1	2.10	12.13	5.78	29.9	0.8	3	0.6	32.8	2.6	0	0	0	30.3
BY1	4.10	18.42	8.43	34.5	0.5	3.2	0	1.2	8.3	4.6	27	0.2	20.5
BY2	2.93	14.56	6.85	53.8	1.1	3.8	5.2	4.6	3	0	0	0	28.5
BY3	1.25	2.66	1.43	31.8	2.1	7.2	6.9	4.6	2.6	0	0	0	44.8
CY1	0.98	7.58	3.69	36.6	1	6.6	2	2.6	3.1	0	0	0	48.1
CY2	2.84	17.68	8.86	46.9	1	4.3	1.6	2.7	2.7	0	0	0	40.8
CY3	3.10	17.70	8.45	45.3	1.8	5.4	3.2	3.5	3.4	0	0	0	37.4
CY4	2.61	13.73	6.58	53.6	1.1	5.7	2.9	5.6	2.2	0	0	0	28.9
CY5	3.90	23.65	11.55	58.7	1.1	4.5	0.2	3.6	0.3	0	0	0	31.6

Table S1The information of the samples

 1 S_{BET}, the total surface area by the BET equation; V_{DR}, the surface area and the micropores volume by the DR equation 1

Figure S1 Measured excess adsorption isotherms of methane at 333.15K for the nine samples

Figure S2 N₂ sorption/desorption curves for the nine samples

In recent years, the Langmuir model (Formula S1) has also been widely used in the study of shale methane isotherm adsorption²⁻⁴. In order to compare the models more comprehensively, we added the fitting results of the Langmuir model (Formula S1, Table S2). There are many abnormalities in the adsorption phase density obtained by the Langmuir model (the ρ_{abs} is bigger than 424mg/cm³, the density of liquid methane at its boiling temperature under 0.1 MPa ³), and the fitted RESM is significantly higher than the VD model and the SDR model. It shows that the fitting stability of SDR model and VD model has been significantly higher than that of the Langmuir model.

$$n_{ex} = n_0 \frac{kp}{1+kp} \left(1 - \frac{\rho_g}{\rho_{abs}} \right) \tag{S1}$$

where n_0 represents the maximum absolute adsorption capacity at a given temperature, with units of mg/cm³; ρ_{abs} is the adsorbed phase density, with unit of mg/cm³; k is the Langmuir constant, with units of Mpa⁻¹; ρ_g is the bulk gas density, with units of mg/cm³, which can be obtained from NIST's REFPROP program⁵; n_{ex} is the excess adsorption, with units mg/g; P is the equilibrium pressure in units of MPa.

	Temperature	VD-based			SDR-based				Langmuir-based				
Sample	(K)	ρ_f	d	Va	DMCE	n_0	$ ho_{abs}$	D	RMSE ²)	n_0	$ ho_{abs}$	k	DMCE
		(mg/cm ³)) (cm ³ /mg)	(cm^3/g)	KWBL	(mg/g)) (mg/cm ²	3) (mol ² /Kj ²)		(mg/g)	(mg/cm^3)) (MPa ⁻¹)	RIVISL
	300.00	127.72	0.58306	0.00673	0.02212	24.017	655.54	0.00856	0.01422	nd ^a	nd	nd	nd
	303.00	129.74	0.59240	0.00625	0.02113	3.813	659.56	0.00836	0.01449	nd	nd	nd	nd
	308.00	88.95	0.48361	0.00974	0.01688	3.507	467.17	0.00917	0.01091	2.750	5132.06	0.72577	0.04159
	318.00	82.30	0.36899	0.01120	0.02784	3.338	419.61	0.00942	0.02085	2.749	1372.61	0.58683	0.04786
	338.00	89.82	0.25224	0.01086	0.01903	3.180	428.71	0.01039	0.01546	2.631	1598.61	0.43997	0.03122
Alum shale	358.00	73.34	0.14209	0.01733	0.02067	2.883	318.26	0.01009	0.02154	2.897	387.56	0.27678	0.02807
	373.00	65.67	0.10790	0.02173	0.01816	52.528	256.82	0.01049	0.02241	2.908	249.69	0.21934	0.02318
	398.00	65.88	0.06713	0.02727	0.01556	52.130	216.68	0.01077	0.02085	2.991	179.05	0.14556	0.01754
	423.00	67.33	0.04320	0.03877	0.00932	21.845	169.60	0.01129	0.01943	3.381	129.26	0.09788	0.01023
	448.00	72.75	0.02899	0.05430	0.00819	01.547	130.37	0.01191	0.02022	3.817	98.80	0.06730	0.00845
	473.00	66.59	0.03110	0.04710	0.01216	51.179	114.22	0.01093	0.01958	2.956	88.20	0.06878	0.01242

Table S2Value of fitted parameters of different models

	308.55	69.18	0.29931	0.00665	0.00893 1.444	338.69	0.01107	0.00731 1.347	464.72	0.48966	0.01721
YC4-04	323.55	69.20	0.20482	0.00767	0.00933 1.413	312.46	0.01138	0.00859 1.400	379.51	0.36728	0.01535
	338.55	68.96	0.16891	0.00833	0.00899 1.386	298.16	0.01107	0.00919 1.415	345.11	0.31458	0.01386
	308.55	70.57	0.28595	0.00910	0.01483 1.994	344.91	0.01112	0.01173 1.866	473.97	0.47302	0.02635
YC4-08	323.55	69.41	0.21713	0.00999	0.01222 1.899	317.66	0.01116	0.01133 1.841	406.31	0.38800	0.01938
	338.55	71.03	0.15404	0.01102	0.00648 1.830	299.86	0.01141	0.00741 1.869	353.44	0.29923	0.01171
	308.55	75.67	0.28401	0.00745	0.01443 1.794	374.46	0.01090	0.01119 1.636	576.95	0.47377	0.02409
YC4-33	323.55	73.33	0.22833	0.00802	0.011601.689	344.68	0.01075	0.00983 1.589	484.41	0.40093	0.01887
	338.55	75.35	0.19268	0.00801	0.01026 1.625	344.32	0.01028	0.00930 1.544	477.82	0.34817	0.01585
	308.55	74.93	0.35886	0.00908	0.01961 2.354	387.93	0.01013	0.01425 2.098	631.08	0.54431	0.03518
YC4-47	323.55	71.85	0.29502	0.00950	0.01769 2.160	355.34	0.00994	0.01396 1.977	525.07	0.46765	0.02963
	338.55	69.07	0.24324	0.01031	0.014122.048	324.90	0.00981	0.01195 1.930	442.13	0.40457	0.02341
	308.55	75.91	0.57219	0.00883	0.01744 2.710	413.78	0.00888	0.00872 2.175	2083.75	0.80629	0.03625
YC4-54	323.55	75.17	0.42705	0.00930	0.014622.573	387.73	0.00890	0.00813 2.103	1440.41	0.65297	0.02911
	338.55	83.57	0.33988	0.00829	0.01305 2.446	413.42	0.00852	0.00782 1.963	2940.23	0.54864	0.02352
YC4-61	308.55	72.79	0.56548	0.01009	0.02068 2.923	403.57	0.00891	0.01163 2.439	991.03	0.75887	0.04398

	323.55	68.82	0.45821	0.01100	0.01805 2.769	363.34	0.00882	0.01088 2.360	753.27	0.65262	0.03666
	338.55	69.50	0.37360	0.01112	0.015902.644	352.26	0.00859	0.01016 2.271	720.11	0.55974	0.03049
	308.55	68.51	0.38357	0.01177	0.01978 2.768	353.84	0.01020	0.01365 2.513	513.41	0.56909	0.04002
YC4-64	323.55	66.23	0.30191	0.01268	0.01864 2.597	322.96	0.01015	0.01478 2.448	422.37	0.47113	0.03432
	338.55	69.87	0.24863	0.01213	0.014192.475	329.40	0.00974	0.01138 2.323	448.97	0.40772	0.02625
	308.55	67.65	0.50397	0.01161	0.02185 2.946	366.43	0.00940	0.01401 2.552	659.14	0.69919	0.04488
YC4-65	323.55	71.99	0.39976	0.01104	0.018902.818	374.17	0.00907	0.01215 2.429	730.60	0.58937	0.03655
	338.55	73.55	0.32352	0.01088	0.01489 2.653	366.12	0.00884	0.00967 2.294	734.03	0.50524	0.02830
FC-47	393.15	65.91	0.25643	0.00740	0.01065 1.414	302.16	0.01034	0.01014 1.444	317.67	0.30919	0.01829
FC-66	393.15	73.60	0.24365	0.01062	0.018502.319	345.05	0.01006	0.01844 2.304	376.91	0.29928	0.03165
FC-72	393.15	74.88	0.26089	0.01357	0.014323.128	357.72	0.00981	0.01470 3.034	404.84	0.31616	0.03016
AY1	333.15	71.41	0.16695	0.00725	0.00499 1.279	293.48	0.01191	0.00733 1.418	294.49	0.26696	0.01284
BY1	333.15	68.51	0.22016	0.01088	0.02040 2.054	304.01	0.01076	0.02292 2.199	309.09	0.31536	0.03722
BY2	333.15	66.78	0.17871	0.00944	0.01700 1.555	274.32	0.01184	0.02057 1.763	270.67	0.27245	0.02795
BY3	333.15	77.01	0.11228	0.00620	0.00493 0.986	284.00	0.01354	0.00762 1.185	275.34	0.20068	0.00914
CY1	333.15	71.31	0.13022	0.00614	0.00602 0.951	266.39	0.01341	0.00370 1.108	263.21	0.22914	0.00347

CY2	333.15	69.39	0.19353	0.01046	0.01565 1.895	297.16	0.01127	0.01890 2.068	299.20	0.29172	0.03028
CY3	333.15	63.40	0.21762	0.01193	0.01235 2.008	271.05	0.01128	0.01543 2.190	272.76	0.31894	0.02775
CY4	333.15	67.11	0.20863	0.00889	0.01361 1.591	289.95	0.01114	0.01457 1.726	292.81	0.30722	0.02432
CY5	333.15	68.30	0.23308	0.01210	0.01721 2.333	307.47	0.01057	0.01949 2.457	316.48	0.33184	0.03708

^a nd: no data. During the fitting process, the global optimal solution that meets the physical meaning cannot be found.

Figure S3 The relationship between TOC with V_a obtained by different model

Figure S4 Relationship between d with micropore, surface area and TOC

Reference

1. Sing, K. S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). *Pure and applied chemistry* **1985**, 57, (4), 603-619.

2. Zhou, S.; Xue, H.; Ning, Y.; Guo, W.; Zhang, Q., Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. *Fuel* **2018**, 211, 140-148.

3. Tian, H.; Li, T.; Zhang, T.; Xiao, X., Characterization of methane adsorption on overmature Lower Silurian–Upper Ordovician shales in Sichuan Basin, southwest China: Experimental results and geological implications. *International Journal of Coal Geology* **2016**, 156, 36-49.

4. Gai, H.; Li, T.; Wang, X.; Tian, H.; Xiao, X.; Zhou, Q., Methane adsorption characteristics of overmature Lower Cambrian shales of deepwater shelf facies in Southwest China. *Marine and Petroleum Geology* **2020**, 120, 104565.

5. Lemmon, E.; Huber, M.; McLinden, M., NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 9.0. *Standard Reference Data Program* **2010**.