Supporting Information

Dendritic CuBi₂O₄ Array Photocathode Coated with Conformal TiO₂ Protection Layer for Efficient and Stable Photoelectrochemical Hydrogen Evolution Reaction

Qing Zhang, Bowen Zhai, Zheng Lin, Xinqing Zhao, Peng Diao*

School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R.China

* Peng Diao (*pdiao@buaa.edu.cn*); Tel. & Fax: 86-10-82339562

Chemical and Materials. Bismuth nitrate pentahydrate (Bi(NO₃)₂·5H₂O), potassium titanium oxalate (K₂TiO(C₂O₄)₂)) were purchased from Shanghai Macklin Biochemical Co., Ltd. Cupric (II) acetate monohydrate (Cu(OAc)₂·H₂O) was purchased from Xilong Scientific Co., Ltd. Ethylene glycol, pure ethanol and methanol were purchased from Beijing Chemical Reagents Company. P-benzoquinone was purchased from Sinopharm Chemical Reagent Co., Ltd. All of these chemicals were analytical reagents and used without further purification. Fluorine-doped tin oxide substrates (FTO) (F: SnO₂, 8.0 Ω ·sq⁻¹, transparency 80 %, 2.00 cm×3.00 cm) were purchased from Asahi Glass, Japan.

Figure S1. Typical SEM images of the (a) Bi, (b) Bi₂O₃, and (c) CuBi₂O₄ dendrites.

Figure S2. Typical cross-sectional SEM images of the Bi dendrites with the repeated electrodeposition cycle of (a) 16 and (b) 20 times.

Figure S3. SEM images and optical images (inset) of (a) the Bi film after drop-coating with Cu(OAc)₂ methanol solution and drying in air, and (b) the corresponding CuBi₂O₄ film after thermal solid state reaction.

The above SEM images clearly shows that, if the metal Bi dendrites were not converted into Bi_2O_3 and were directly drop-coated with $Cu(OAc)_2$ solution, the dendritic structure would no longer existed. In fact, the Bi dendritic structure was destroyed by the dissolution of Bi because Bi could be oxidized by Cu^{2+} due to the following reaction Bi + $Cu^{2+} \rightarrow Bi^{3+} + Cu$.¹ As the released Bi³⁺ ions were ready to form yellow BiOOH via hydrolysis, the yellow film obtained after drop-coating and drying (the inset of Figure S3a) confirms the above reactions.

Figure S4. XRD patterns of the CuBi₂O₄ dendrites prepared at different temperatures for 2 h: (a) 450 °C, (b) 550 °C, (c) 650 °C.

Figure S5. SEM images of the CuBi₂O₄ dendrites prepared at different thermal reaction temperatures for 2 h: (a) 450 °C, (b) 650 °C.

Figure S6. Linear sweep voltammetric curves of the dendritic $CuBi_2O_4$ photocathodes prepared at different repeated cycles during the electrodeposition of Bi dendritic template in 0.10 M Na₂SO₄ solution at a potential sweep rate of 10 mV s⁻¹ under chopped illumination (100.0 mW cm⁻²).

Figure S7. Linear sweep voltammetric curves of the planar and the dendritic $CuBi_2O_4$ photocathodes in 0.10 M NaOH solution at a potential sweep rate of 10 mV s⁻¹ under chopped illumination (100.0 mW cm⁻²).

Figure S8. Linear sweep voltammetric curves of the dendritic $CuBi_2O_4$ photocathode before and after PEC HER measurement in 0.10 M Na₂SO₄ at a potential sweep rate of 10 mV s⁻¹ under chopped illumination (100.0 mW cm⁻²). The PEC HER measurements were carried out in 0.10 M Na₂SO₄ at 0.200 V vs. RHE under 100.0 mW cm⁻² for 1000 s.

Figure S9. The current density-time response during the electrodeposition of TiO₂ overlayer.

Figure S10. TEM images of the CuBi₂O₄ dendrites coated with the TiO₂ protective layers with different thickness. The TiO₂ protective layers were prepared by electrodeposition with controlled deposition charges: (a) 0.10 C cm^{-2} , (b) 0.20 C cm^{-2} and (c) 0.30 C cm^{-2} . (d) Dependence of the average thickness of TiO₂ protection layer on the deposition charges.

Figure S11. The XRD pattern of the dendritic CuBi₂O₄/TiO₂ film prepared on FTO substrate.

Figure S12. UV-vis absorption spectra of the bare CuBi₂O₄ and the CuBi₂O₄/TiO₂ dendrites.

Figure S13. Effect of the different thicknesses of TiO₂ overlayer determined by passing charges on PEC photoactivity in 0.10 M Na₂SO₄ of its corresponding composite photocathode.

Figure S14. (a) at 0.400 V vs. RHE in 0.10 M Na₂SO₄ and (b) at 0.600 V vs. RHE in 0.10 M NaOH under chopped illumination (100.0 mW cm⁻²). The TiO₂ protective layer was prepared by electrodeposition with the deposition charge of 0.20 C cm⁻².

Figure S15. Typical top-view SEM images of (a) the bare $CuBi_2O_4$ and (b) the $CuBi_2O_4/TiO_2$ after stability measurements.

Photocathode Morphology Electrolyte pH J_{ph} [mA cm⁻²] at 0.2 V vs. RHE Ref. CuBi₂O₄ Dendrites 0.10 M Na₂SO₄ 6.8 0.83 This work CuBi₂O₄/TiO₂ Dendrites 0.10 M Na₂SO₄, 6.8 0.90 This work 2 Au/ CuBi₂O₄/Pt Polyhedral shape 0.1 M Na₂SO₄, 6.8 1.00 3 CuBi₂O₄/ZnS/TiO₂ Porous film 0.3 M K₂SO₄+0.2 M PBS 6.65 0.60 4 CuO/CuBi₂O₄ Flower shape 0.1 M Na₂SO₄, 6.8 0.60 5 CuBi₂O₄/Au/carbon nanosheet Porous film 0.1 M K₂SO₄+0.2 M PBS 6.68 0.52 6 CuBi₂O₄/Polythiophene Porous film 0.3 M K₂SO₄+0.2 M PBS 6.66 0.51 7 CuBi₂O₄/BiVO₄ Porous film 0.48 0.1 M Na₂SO₄ 6 8 CuBi₂O₄ Nanotextured film 0.1 M Na₂SO₄, 6.8 0.46 9 CuO/CuBi₂O₄ 6.8 0.30 Irregular shape 0.1 M Na₂SO₄, 10 CuBi₂O₄/rGO 0.5 M Na₂SO₄, 6.8 0.25 Irregular shape 11 CuO/CuBi₂O₄/Pt Irregular shape 0.3 M K₂SO₄+0.1 M PBS 6.8 0.24

Table S1. Photocurrent density (J_{ph}) at required potential of the CuBi₂O₄ based photocathodes for HER in neutral electrolyte reported in literature.

CuBi ₂ O ₄ /Ag,N co-doped graphene quantum dots	Submicron rods	0.5 M Na ₂ SO ₄	6.6	0.08	12

(1) PBS represents phosphate buffer solution.

Table S2. Photocurrent density (J_{ph}) at required potential of the CuBi₂O₄ based photocathodes for HER in neutral electrolyte with electron scavenger reportedin literature.

Photocathode	Morphology	Electrolyte	Electron scavenger	рН	J _{ph} [mA cm ⁻²] at 0.6 V vs. RHE	Ref.
CuBi ₂ O ₄	Dendrites	0.10 M Na ₂ SO ₄	H_2O_2	6.8	3.21	This work
Cu doped NiO/ CuBi ₂ O ₄	Planar film	0.3 M K ₂ SO ₄ +0.2 M PBS	H_2O_2	6.65	2.83	13
CuBi ₂ O ₄	Porous film	$0.3 \text{ M } \text{K}_2\text{SO}_4\text{+}0.2 \text{ M } \text{PBS}$	H_2O_2	6.65	2.66	14
Gradient CuBi ₂ O ₄ /CdS/TiO ₂ /Pt	Planar film	0.3 M K ₂ SO ₄ +0.2 M PBS	H_2O_2	6.65	2.50	15
CuBi ₂ O ₄	Planar film	$0.2 \text{ M } \text{K}_2\text{SO}_4\text{+}0.1 \text{ M } \text{PBS}$	H_2O_2	6.8	2.30	16
CuBi ₂ O ₄ (Bi:Cu=1.5)	Planar film	0.1 M KHCO ₃	$Na_2S_2O_8$	8.2	1.21	17
CuBi ₂ O ₄ /Cu _{1.5} TiO _z	Planar film	0.1 M KHCO ₃	$Na_2S_2O_8$	8.2	1.40	18

(1) PBS represents phosphate buffer solution.

REFERENCES

(1) Zhang, X.; Sun, X.; Guo, S.-X.; Bond, A. M.; Zhang, J., Formation of Lattice-Dislocated Bismuth Nanowires on Copper Foam for Enhanced Electrocatalytic CO₂ Reduction at Low Overpotential. *Energy Environ. Sci.* **2019**, *12*, 1334-1340.

(2) Cao, D.; Nasori, N.; Wang, Z.; Mi, Y.; Wen, L.; Yang, Y.; Qu, S.; Wang, Z.; Lei, Y., p-Type CuBi₂O₄: An Easily Accessible Photocathodic Material for High-Efficiency Water Splitting.
 J. Mater. Chem. A 2016, *4*, 8995-9001.

(3) Wei, S.; Xu, N.; Li, F.; Long, X.; Hu, Y.; Gao, L.; Wang, C.; Li, S.; Ma, J.; Jin, J., Rationally Designed Heterojunction on a CuBi₂O₄ Photocathode for Improved Activity and Stability During Photoelectrochemical Water Reduction. *ChemElectroChem* **2019**, *6*, 3367-3374.

(4) Patil, R.; Kelkar, S.; Naphade, R.; Ogale, S., Low Temperature Grown CuBi₂O₄ with Flower Morphology and Its Composite with CuO Nanosheets for Photoelectrochemical Water Splitting. *J. Mater. Chem. A* **2014**, *2*, 3661-3668.

(5) Xu, N.; Li, F.; Gao, L.; Hu, H.; Hu, Y.; Long, X.; Ma, J.; Jin, J., N,Cu-Codoped Carbon Nanosheet/Au/CuBi₂O₄ Photocathodes for Efficient Photoelectrochemical Water Splitting. *ACS Sustainable Chem. Eng.* **2018**, *6*, 7257-7264.

(6) Xu, N.; Li, F.; Gao, L.; Hu, H.; Hu, Y.; Long, X.; Ma, J.; Jin, J., Polythiophene Coated CuBi₂O₄ Networks: A Porous Inorganic–Organic Hybrid Heterostructure for Enhanced Photoelectrochemical Hydrogen Evolution. *Int. J. Hydrogen Energy* **2018**, *43*, 2064-2072.

(7) Liu, S.; Zhou, J.; Lu, Y.; Su, J., Pulsed Laser/Electrodeposited CuBi₂O₄/BiVO₄ Pn Heterojunction for Solar Water Splitting. *Sol. Energy Mater. Sol. Cells* **2018**, *180*, 123-129.

(8) Li, J.; Griep, M.; Choi, Y.; Chu, D., Photoelectrochemical Overall Water Splitting with Textured CuBi₂O₄ as a Photocathode. *Chem. Commun.* **2018**, *54*, 3331-3334.

(9) Hossain, M. K.; Samu, G. F.; Gandha, K.; Santhanagopalan, S.; Liu, J. P.; Janáky, C.; Rajeshwar, K., Solution Combustion Synthesis, Characterization, and Photocatalytic Activity of CuBi₂O₄ and Its Nanocomposites with CuO and α-Bi₂O₃. *J. Phys. Chem. C* **2017**, *121*, 8252-8261.

(10) Shah, A. K.; Sahu, T. K.; Banik, A.; Gogoi, D.; Peela, N. R.; Qureshi, M., Reduced Graphene Oxide Modified CuBi₂O₄ as an Efficient and Noble Metal Free Photocathode for Superior Photoelectrochemical Hydrogen Production. *Sustainable Energy Fuels* **2019**, *3*, 1554-1561.

(11) Park, H. S.; Lee, C.-Y.; Reisner, E., Photoelectrochemical Reduction of Aqueous Protons with a CuO|CuBi₂O₄ Heterojunction under Visible Light Irradiation. *Phys. Chem. Chem. Phys.*2014, *16*, 22462-22465.

(12) Ma, C.; Ma, D.-K.; Yu, W.; Chen, W.; Huang, S., Ag and N-Doped Graphene Quantum Dots Co-Modified CuBi₂O₄ Submicron Rod Photocathodes with Enhanced Photoelectrochemical Activity. *Appl. Surf. Sci.* **2019**, *481*, 661-668.

(13) Song, A.; Plate, P.; Chemseddine, A.; Wang, F.; Abdi, F. F.; Wollgarten, M.; van de Krol,R.; Berglund, S. P., Cu:NiO as a Hole-Selective Back Contact to Improve the

Photoelectrochemical Performance of CuBi₂O₄ Thin Film Photocathodes. *J. Mater. Chem. A* **2019**, 7, 9183-9194.

(14) Xu, Y.; Jian, J.; Li, F.; Liu, W.; Jia, L.; Wang, H., Porous CuBi₂O₄ Photocathodes with Rationally Engineered Morphology and Composition Towards High-Efficiency Photoelectrochemical Performance. *J. Mater. Chem. A* **2019**, *7*, 21997-22004.

(15) Wang, F.; Septina, W.; Chemseddine, A.; Abdi, F. F.; Friedrich, D.; Bogdanoff, P.; van de Krol, R.; Tilley, S. D.; Berglund, S. P., Gradient Self-Doped CuBi₂O₄ with Highly Improved Charge Separation Efficiency. *J. Am. Chem. Soc.* **2017**, *139*, 15094-15103.

(16) Oropeza, F. E.; Feleki, B. T.; Zhang, K. H.; Hensen, E. J.; Hofmann, J. P., Influence of Reduced Cu Surface States on the Photoelectrochemical Properties of CuBi₂O₄. ACS Appl. Energy Mater. 2019, 2, 6866-6874.

(17) Zhang, Z.; Lindley, S. A.; Dhall, R.; Bustillo, K.; Han, W.; Xie, E.; Cooper, J. K.,
 Beneficial CuO Phase Segregation in the Ternary P-Type Oxide Photocathode CuBi₂O₄. *ACS Appl. Energy Mater.* 2019, *2*, 4111-4117.

(18) Zhang, Z.; Lindley, S. A.; Guevarra, D.; Kan, K.; Shinde, A.; Gregoire, J. M.; Han, W.;
Xie, E.; Haber, J. A.; Cooper, J. K., Fermi Level Engineering of Passivation and Electron Transport
Materials for p-Type CuBi₂O₄ Employing a High-Throughput Methodology. *Adv. Funct. Mater.* **2020**, *30*, 2000948.