Cellular engineering and biocatalysis strategies toward sustainable cadaverine production: State of the art and perspectives

Jiali $Mi^{\dagger,\ddagger}$, Simin $Liu^{\dagger,\ddagger}$, Haishan $Qi^{*,\dagger,\ddagger}$, Jie Huang^{\dagger,\ddagger}, Xiang $Lan^{\dagger,\ddagger}$, Lei Zhang^{\dagger,\ddagger}

[†]Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, No.135, Yaguan Road, Tianjin 300072, P.R. China.

[‡] School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, No.135, Yaguan Road, Tianjin 300350, P. R. China.

*Corresponding author:

Haishan Qi, e-mail: hsqi@tju.edu.cn.

Property	Pure		
	PA 6	PA 66	PA 510
Bio-based content [%]	0	0	100
Viscosity number [mL g ⁻¹]	150	150	141
Melting point [°C]	220	260	215
Glass transition temperature [$^{\circ}$ C]	54	60	50
Density [g cm ⁻³]	1.14	1.14	1.07
Water absorption [%]	3	2.8	1.8
Haze	102	102	64
	30% glass fiber content (by 23 °C dry)		23 °C dry)
Tensile strength [MPa]	179	188	155
Elongation at break [%]	3.8	3.7	3.9
E-modulus [MPa]	9424	9586	8310
Impact strength, notched [kJ m ⁻²]	15	10	12
Impact strength, unnotched [kJ m ⁻²]	99	83	86

Table S1 Comparison of the mechanical properties of petrochemical PA 6, PA 66 andbio-based PA 510.

Data from previously published paper.²⁰

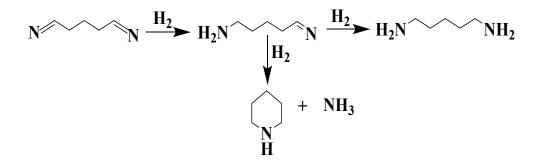


Figure S1. Cadaverine synthesis with glutaronitrile hydrogenation.

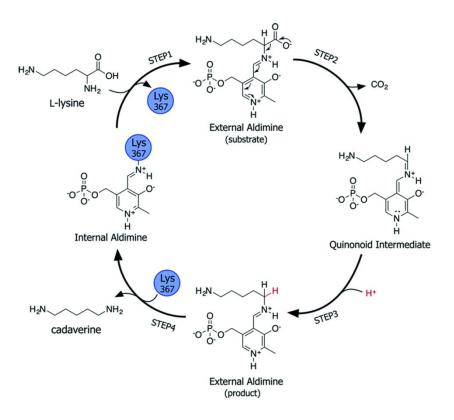


Figure S2. The suggested mechanism for lysine decarboxylase.