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SUPPORTING INFORMATION 

 

Guide for Calculations 

The ATNV algorithm can be calculated as follows: 

Step 1. Define a noise level for the data set. 

Step 2. Select, for a single bin/bucket area, all negative data points in the data set. 

Step 3. Find the lowest of the negative data points (minTMP) 

Step 4. Find the lowest of the positive data points (maxTMP) 

Step 5. If maxTMP is above the noise level, replace maxTMP by the noise level. 

Step 6. For each of the negative values, replace the value as follows: 

𝑣𝑎𝑙𝑢𝑒 =  
𝑣𝑎𝑙𝑢𝑒 + 𝑚𝑎𝑥𝑇𝑀𝑃 − 𝑚𝑖𝑛𝑇𝑀𝑃

(𝑚𝑎𝑥𝑇𝑀𝑃 − 𝑚𝑖𝑛𝑇𝑀𝑃) ∗ 𝑚𝑎𝑥𝑇𝑀𝑃 ∗ 0.99
+ 𝑚𝑎𝑥𝑇𝑀𝑃 ∗ 0.01 

  

Using the atnv Function as Part of the Mrbin Workflow 

The ATNV algorithm will be automatically called during running mrbin, if you select “Fix negative issues” 

when asked in mrbin. To start mrbin, follow these steps in R: 

 

library(mrbin) 

results<-mrbin() 

 

Using the atnv Function on Custom Data Sets 

The ATNV algorithm can be called as follows: 

 

library(mrbin) 

NMRdataFixed<-atnv(NMRdata = NMRdata, noiseLevels = noiseLevels) 

 



This assumes having a matrix called NMRdata in the R workspace, containing binned NMR data, and a 

vector named noiseLevels that contains the noise levels of all spectra. 

 

R Code for Performance Test 

library(mrbin) 

#Read and bin NMR data 

results<-mrbin(silent=TRUE,parameters=list(binwidth2D=0.03,binheight=2, 

 cropHSQC="Yes",reference2D=c(0.04,-0.04,-2,2),signal_to_noise2D=3, 

 noiseRange2d=c(3.3,2.3,90,110),croptopRight=c(0,-1.5),croptopLeft=c(0,3.5), 

 cropbottomRight=c(160,6),cropbottomLeft=c(160,10),dimension="2D", 

 binMethod="Rectangular bins",binRegion=c(9.5,0.5,10,156),specialBinList=NULL, 

 referenceScaling="Yes",removeSolvent="Yes",removeAreas="No",sumBins="No", 

 noiseRemoval="Yes",PQNScaling="No",PQNIgnoreSugarArea="Yes", 

 PQNsugarArea=c(5.4,3.35,72,100),fixNegatives="Yes",logTrafo="Yes", 

 defineGroups="No",PCA="Yes",solventRegion=c(5.1,4.5),noiseThreshold=0.75, 

 trimZeros="Yes",PQNminimumFeatures=40,PCAtitlelength=6,createBins="Yes", 

 useAsNames="Spectrum titles",saveFiles="Yes", 

 outputFileName="C:/Users/klein.663/Box Sync/OSU/Projects/mrbin/LatinSquare", 

 verbose=TRUE,removeAreaList=NULL,sumBinList=NULL,Factors=NULL, 

 NMRfolders=c( 

  "C:/Bruker/TopSpin3.6.1/data/guest/nmr/Latin_Square_1_2012_04_05/12/pdata/10", 

  "C:/Bruker/TopSpin3.6.1/data/guest/nmr/Latin_Square_2_2012_04_05/12/pdata/10", 

  "C:/Bruker/TopSpin3.6.1/data/guest/nmr/Latin_Square_3_2012_04_05/12/pdata/10", 

  "C:/Bruker/TopSpin3.6.1/data/guest/nmr/Latin_Square_4_2012_04_05/12/pdata/10", 

  "C:/Bruker/TopSpin3.6.1/data/guest/nmr/Latin_Square_5_2012_04_05/12/pdata/10", 

  "C:/Bruker/TopSpin3.6.1/data/guest/nmr/Latin_Square_6_2012_04_05/12/pdata/10", 

  "C:/Bruker/TopSpin3.6.1/data/guest/nmr/Latin_Square_7_2012_04_05/12/pdata/10", 

  "C:/Bruker/TopSpin3.6.1/data/guest/nmr/Latin_Square_8_2012_04_05/12/pdata/10" 

 ))) 

#Read bin data 

bins<-read.csv( 

 "C:/Users/klein.663/Box Sync/OSU/Projects/mrbin/LatinSquarebins.csv", 

 check.names = FALSE,row.names=1) 

#Create matrix for results 

corr <- as.data.frame(matrix(rep(NA,ncol(bins)*8*5),ncol=5)) 

colnames(corr) <-  c("Spiked","Identified","Chemical shift","R","p") 

#Create matrix with spike-in levels 

spike<-2^(7:0)*46.875 

spikeLevels<-cbind(spike,spike[c(8,1:7)],spike[c(7:8,1:6)],spike[c(6:8,1:5)], 

 spike[c(5:8,1:4)],spike[c(4:8,1:3)],spike[c(3:8,1:2)],spike[c(2:8,1)]) 

colnames(spikeLevels)<-c("Lactate","Alanine","Creatinine","3-Hydroxybutyrate", 

   "Histidine","Phosphocreatine","Betaine","Acetate") 

rownames(spikeLevels)<-1:8 

counter<-1 

#Calculate correlation for combinations of all bins, all spike-in levels 

for(j in colnames(spikeLevels)){ 

  for (i in 1:ncol(bins)){ 

      corrTMP<- cor.test(x=spikeLevels[,j],y=bins[,i],method = 'spearman') 

       corr[counter,"R"] <- corrTMP$estimate 

       corr[counter,"p"] <- corrTMP$p.value 

       corr[counter,"Chemical shift"] <-colnames(bins)[i] 

       corr[counter,"Spiked"] <-j 

       counter<-counter+1 

  } 

} 

corrFDR<-p.adjust(corr[,"p"], "BH") #Correction for multiple testing 

FDRthreshold<-.1 

resultTable<-corr[which(corrFDR<FDRthreshold),] 

resultTable #Display significant results 

 

 

  



Noise Removal 

Noise removal is a method to reduce the size of data set by removing spectral areas that do not contain 

actual signals. In univariate data analysis approaches, this reduced number of bins can improve the 

statistical power of the analysis. NMR noise removal is usually based on Signal-to-Noise (SNR) ratios. 

Noise is defined for each individual spectrum as the average noise level in a “noise region” that is 

expected to be free from actual NMR signals. Noise is usually calculated as the standard deviation (or a 

closely related measure) of all bins in the noise region. SNR is defined as a small number, where bins 

being below Noise x SNR are considered noise signals. Different tools differ in how the actual noise 

removal is performed. In some cases, all values below SNR are set to 0, in other cases all bins that are on 

average less than SNR are removed. mrbin offers more flexibility and control by allowing the user to 

define both SNR and an additional threshold ratio T. Bins will remain in the data set if the number of 

values above SNR exceeds T. T can be set differently depending on the aim of the study. Large T values 

such as 0.75 create a “conservative” data set with fewer bins that are present consistently across most 

samples. This conservative data set can provide more statistical power for experiments where small 

changes in metabolite abundances need to be detected. Low values of T, such as 0.2, create a more 

exploratory data set with a larger number of bins, including metabolites that are inconsistently present. 

This exploratory data set may come at the cost of reduced statistical power but can be advantageous in 

experiments where metabolites may be completely absent in some samples, such as analyses of 

bacterial metabolism. 

2D NMR Support 

A special focus of mrbin is on the analysis of 2D NMR data, such as 1H-13C HSQC spectra. As can be seen 

in Table 1, most available software tools (and all of the free tools) for untargeted analysis do not support 

the use of 2D data, despite the known advantages of such data.  

mrbin fully supports the use of 2D NMR data, including all steps such as binning, removal of solvents and 

noise, scaling, and normalization. Additionally, mrbin allows for removal of spectral areas that are 

known to contain no real signals. This process is referred to as spectral cropping. For HSQC spectra, 

spectral cropping applies to areas that are far away from a diagonal line that roughly runs from 0ppm, 

0ppm to 9ppm, 160ppm (1H and 13C shift values). mrbin allows for automatic or user defined removal of 

such sparse areas, which can significantly reduce the number of bins left after noise removal, increasing 

statistical power of subsequent data analysis. This 2D cropping step is a novel feature and has not been 

reported before.  

Normalization 

Normalization is a step of high importance in metabolomics data sets and mrbin implements a version of 

PQN scaling. For 2D HSQC spectra, mrbin can automatically exclude a large part of the region containing 

sugar signals for the PQN scaling step. This removal was implemented to avoid an overly strong 

influence of sugar signals on the scaling, as sugars usually have multiple signals across a large spectral 

area, but still only represent one or a few metabolites. This novel feature has not been reported 

previously.   

  



SUPPLEMENTAL FIGURES 

 

Figure S1. Flowchart of the mrbin data processing workflow. 

 

 

 

 

 


