Controlled Formation of All-Aqueous Janus Droplets by Liquid-Liquid Phase Separation of an Aqueous Three-Phase System

Qingchun Song, Youchuang Chao, Yage Zhang, and Ho Cheung Shum*

Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong,

Hong Kong (SAR), China

* To whom correspondence should be addressed:

Email:

ashum@hku.hk

The supporting information contains the following components:

- 1) A typical movie showing the evolution of an initial single-phase droplet into a Janus droplet after phase separation. The scale bar is 300 μm. (Movie S1)
- 2) The table containing the osmolality of aqueous drop phases with different solute concentrations. (**Table S1**)
- 3) The figure illustrating the diameter of the jets under different outer fluid flow rates in glass-capillary microfluidic devices. (**Figure S1**)
- 4) A typical movie showing the droplet generation with perturbation in glass-capillary microfluidics and the obtained Janus droplets. The scale bar is 200 μm. (Movie S2)
- 5) The table showing the density of each phase of phase-separated DEX, PEtOx and PEG with three different compositions.
- 6) The figure illustrating the partitioning behavior of 50 wt% DOPC-50 wt% DOPS liposomes in the Janus droplets.

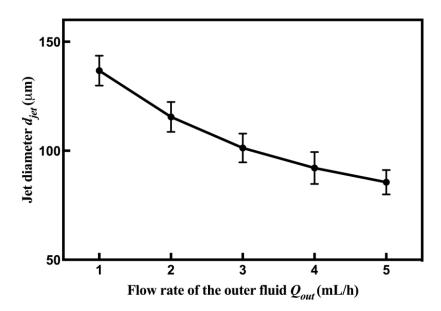

- 1) See the uploaded video content.
- 2) The table illustrating the osmolality of the drop phases with different compositions

Table S1. Osmolality of the aqueous solutions*

NO.	DEX T10	PEtOx	Osmolality
	(wt%)	(wt%)	(mOsm/kg)
1	8	2	54±1
2	3	6	57±2
3	5	5	73±1
NO.	DEX T500	PEtOx	Osmolality
	(wt%)	(wt%)	(mOsm/kg)
1	3	5	32±1
2	4	2	20±1

^{*} Average values and standard errors are obtained from 3 independent measurements.

3) The figure shows the diameter of the jets under different outer fluid flow rates in a glass-capillary microfluidic device at constant inner fluid flow rate Q_{in} without perturbation.

Figure S1. Plot of the diameter of the inner jets d_{jet} as a function of the outer fluid flow rates Q_{out} , ranging from 1.0 to 5.0 mL/h. $Q_{in} = 20 \mu \text{L/h}$.

4) See the uploaded video content.

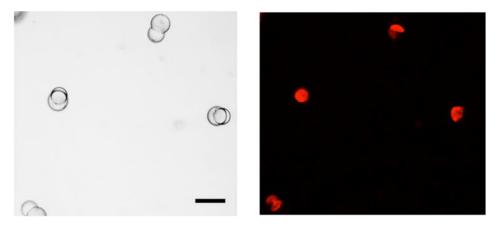

5) The table showing the density of each phase of the phase-separated DEX, PEtOx and PEG with three different compositions.

Table S2. Density of three phases from the phase-separated A3PSs with different compositions*

Composition of A3PSs	Phase	Density
		(g/cm³)
10 wt% DEX-10 wt% PEtOx-2 wt% PEG	PEG-rich phase	1.039
	PEtOx-rich phase	1.040
	DEX-rich phase	1.090
	PEG-rich phase	1.041
10 wt% DEX-15 wt% PEtOx-2 wt% PEG	PEtOx-rich phase	1.047
	DEX-rich phase	1.110
	PEG-rich phase	1.037
8 wt% DEX-12 wt% PEtOx-3 wt% PEG	PEtOx-rich phase	1.042
	DEX-rich phase	1.105

^{*} Average values are obtained from 3 independent measurements.

6) The figure illustrating the partitioning behavior of 50 wt% DOPC-50 wt% DOPS liposomes in the Janus droplets

Figure S2. The microscope and fluorescence microscope images showing the partitioning of 50 wt% DOPC-50 wt% DOPS Rhodamine-labelled (red) liposomes in the Janus droplets. The 50 wt% DOPC-50 wt% DOPS liposomes mainly partition into the DEX-rich phase of the Janus droplets. The scale bar is 200 μm.