Enhanced Electro-Fenton Performance in Wastewater Treatment 2 3 Jingjing Hu a,b, Sen Wang a, Jiaqi Yu a, Wenkai Nie a, Jie Sun a,*, 4 Shaobin Wang c,** 5 ^{a.} Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission 6 & Ministry of Education, Hubei Province, College of Resource and Environmental Science, 7 South-Central University for Nationalities, Wuhan 430074, PR China 8 b. National Demonstration Center for Experimental Ethnopharmacology Education (South-9 Central University for Nationalities), Wuhan, 430074, China 10 ^{c.} School of Chemical Engineering and Advanced Materials, The University of Adelaide, SA 11 12 5005, Australia *Corresponding authors. E-mail: jetsun@mail.scuec.edu.cn (J. Sun); 13 shaobin.wang@adelaide.edu.au (S. Wang) 14 The supporting information includes: 15 12 Pages 16 4 Texts 17 7 Tables 18

Duet Fe₃C and FeN_x Sites for H₂O₂ Generation and Activation toward

1

19

12 Figures

Text S1 Calculation of TOC removal rate and rate constant of 2-CP

The TOC removal rate was calculated by the following eq. S1:

$$TOC \ removal \ rate(\%) = \frac{TOC_0 - TOC_t}{TOC_0} \times 100\%$$
 (S1)

- where TOC_0 and TOC_t represent the TOC values at initial and reaction time (t), respectively.
- A graph of $ln([2-CP]_0/[2-CP]_t)$ versus time t would give a straight line with a slope as k_{app} (eq. S2),

$$\operatorname{Ln}\left(\frac{[2-CP]_0}{[2-CP]_t}\right) = k_{app} \times t \tag{S2}$$

where $[2-CP]_0$ and $[2-CP]_t$ are the respective concentrations of 2-CP at initial and reaction time (t).

27

28

29

30

31

32

33

34

20

Text S2 Linear sweep voltammetry (LSV) measurement of Fe-based catalysts.

About 5 mg sample was dispersed in 0.5 mL suspension including water, isopropanol and Nafion solution (5 wt%) (215:273.5:10.75). The mixture was immersed in an ultrasonic bath for 30 min to prepare a homogeneous ink. The working electrode was prepared by deposition of 10 μ l catalyst ink onto a Glassy carbon electrode (diameter: 3 mm). Hg/Hg₂Cl₂ and Pt wire were used as reference and counter electrodes respectively. LSV measurements were performed in the electrolyte of 0.05 M Na₂SO₄ at pH =7.0. The sweep speed equals 10 mV/s.

35

36

37

Text S3 Illustration of the calculation on the inhibition efficiency rate induced by quenching agents.

The inhibited efficiency rate was calculated according to the following equation (S3):

Inhibited efficiency rate(%) =
$$\frac{(k_{app} - k_{app,quenched})}{k_{app}} \times 100\%$$
 (S3)

where k_{app} and $k_{app,quenched}$ represent the original constant rate of the degradation and the value after

40 quenched by scavengers, respectively.

41

43

42 Text S4 DFT calculations of H₂O₂ adsorption on FeN and Fe₃C particles.

The density functional theory (DFT) calculations were further performed to understand the interactions

44	between H_2O_2 and $Fe-N_x$ sites and Fe_3C particles. The structure models of FeN and Fe_3C were obtained
45	based on the data of matched PDF card (JCPDS NO. 50-1087) and (JCPDS NO. 35-0772) as shown in Figure
46	S12 and the corresponding results of the adsorption parameters were listed in Table S6.
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	

Table S1 HPLC analytical methods of chlorophenols.

	Mol	pile phase	Flow rate	Wavelength/nm
Chemical name	Methanol/%	Water/%	/mL·min ⁻¹	
2-CP	70	30	1	225
3-CP	70	30	1	225
4-CP	70	30	1	225
2,4-DCP	70	30	1	225
2,4,6-TCP	70	30	0.8	296

Table S2 Textural parameters of the as-prepared catalysts.

Sample	$S_{BET}(m^2 \cdot g^{-1})$	Pore Volun	Pore Volume(cm ³ · g ⁻¹)	
		total	mesoporous volume	
NC	21.5	0.027	0.025	5.0
Fe ₃ C@C	278	0.196	0.122	2.8
FeNC@C	298	0.212	0.129	2.8

Table S3 ⁵⁷Fe Mössbauer fitted parameters of Fe-based catalysts.

		14010 00 1	· • 1.10000000000	P		or re buseu eu	July 5 tot	
Catalyst		IS	QS	Н	W	Phase	Spectral	Ref. No.
		$(mm \cdot s^{-1})$	$(mm \cdot s^{-1})$	(kOe)	$(mm \cdot s^{-1})$		contribution	
							(%)	
FeNC@C	D1	0.28	0.95	-	0.35	Fe ^{III} N	21.0	1
	S1	0.33	-0.02	488.4	0.31	A site in Fe ₃ O ₄	4.8	2
	S2	0.53	0.02	430.7	0.65	B site in Fe ₃ O ₄	3.3	2
	S3	-0.03	0.00	326.0	0.14	Fe^0	6.4	1
	S4	0.20	0.02	205.8	0.15	Fe ₃ C	35.7	3
	S5	0.18	-0.01	195.0	0.35	x-Fe ₅ C ₂ (III)	24.7	4
	S6	0.24	-0.17	118.1	0.19	x-Fe ₅ C ₂ (III)	4.1	4
Fe ₃ C@C	D2	0.29	0.92	-	0.45	Fe^{3+}	15.3	3
	S4	0.20	0.01	205.9	0.20	Fe ₃ C	84.7	3

 $Experimental \ uncertainties: isomer \ shift: \ IS\pm 0.01 \ mm + s^{-1}; \ quadrupole \ splitting: \ QS\pm 0.01 \ mm + s^{-1}; \ line \ width: \ W\pm 0.01 \ mm + s^{-1}; \ spectral \ contribution: \pm 0.5\%.$

Table S4 Relevant parameters of 2-CP degradation kinetics in the heterogeneous EF system under different conditions.

Catalysts	Initial pH	Quenched reagent	$k_{ m app}/{ m min^{-1}}$	R^2	
FeNC@C	3.0	none	0.0714	0.9913	
FeNC@C	7.0	none	0.0365	0.9754	
FeNC@C	3.0	TBA	0.0185	0.9332	
FeNC@C	7.0	TBA	0.0138	0.9054	
FeNC@C	3.0	DMSO	0.0357	0.9037	
FeNC@C	7.0	DMSO	0.0128	0.9300	
FeNC@C	3.0	TBA&DMSO	0.002	0.9632	
FeNC@C	7.0	TBA&DMSO	0.002	0.8903	
FeNC@C	3.0	Sodium citrate	0.0359	0.9946	
FeNC@C	7.0	Sodium citrate	0.0275	0.988	
FeNC@C	3.0	1,10-phenanthroline	0.0555	0.9096	
FeNC@C	7.0	1,10-phenanthroline	0.031	0.9450	
FeNC@C	3.0	SCN-	0.002	0.9760	
FeNC@C	7.0	SCN-	0.006	0.9231	
Fe ₃ C@C	3.0	none	0.0254	0.9521	
Fe ₃ C@C	7.0	none	0.0202	0.9040	

Table S5 Relevant parameters of 2-CP degradation in practical effluents.

				8		
Sample	[HCO ₃ -]10-3 mol/L	рН	TOC(mg/L	IC(mg/L)	Conductivity (us/cm)	Degradation Efficiency
Yangtze river	1.1	7.88	4.68	22.36	357	85.4%
Secondary sedimentation tank	1.1	8.10	19.60	24.60	820	90.1%

Table S6 DFT results of H_2O_2 adsorbed on the surface of $Fe_3C@C$ and FeN@C in the FeNC@C catalyst.

	O-O (Å)	O-H (Å)	O-Fe (Å)	$E_{\rm ads}({\rm H_2O_2})({\rm eV})$
H ₂ O ₂ single	1.47	0.98	-	-
H ₂ O ₂ adsorbed on FeN	1.98	0.98	1.84	-0.35
H ₂ O ₂ adsorbed on Fe ₃ C	1.51	0.99	2.13	-0.29

conditions in HEF system.

Sample	pH3.0/mM	pH7.0/mM
blank	0.46	0.25
Fe ₃ C@C	1.08	0.51
FeNC@C	0.40	0.22
NC	0.60	0.37
Fe ₃ C@C-SCN	1.28	0.64
FeNC@C-SCN	1.50	0.81
NC-SCN	0.74	0.45

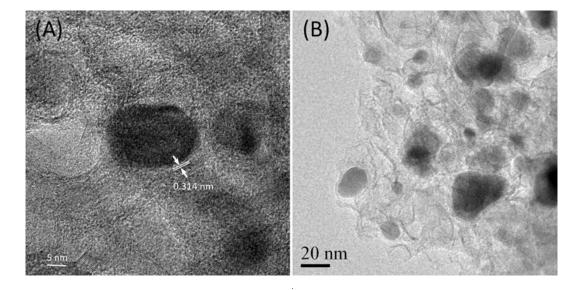


Figure S1 TEM images of pristine (A) and treated FeNC@C samples (B).

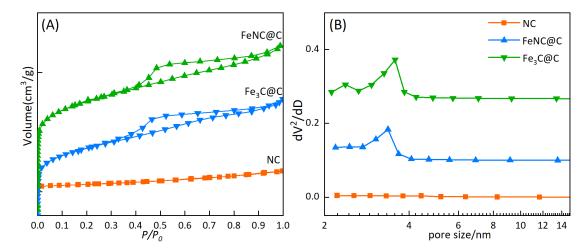


Figure S2 N₂ physical-adsorption isotherms (A) and BJH pore size distribution (B) of samples.

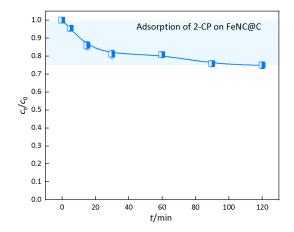


Figure S3 The adsorption kinetic curve of 2-CP on FeNC@C catalyst in solution at pH 3.0 (V=50.0 mL; c_{catalyst} =0.5 g/L; [Na₂SO₄]=0.05 M;[2-CP]=0.2 mM; T=298 K).

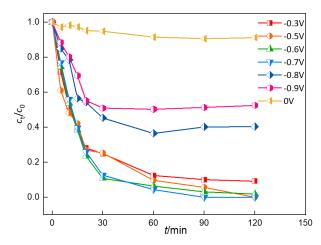


Figure S4 The degradation curves of 2-CP by FeNC@C in HEF system at pH 3.0 with various potentials. (V=50.0 mL; c_{catalyst} =0.5 g/L; [Na₂SO₄]=0.05 M;[2-CP]=0.2 mM; O₂ flow rate=0.3 L/min; T=298 K.)

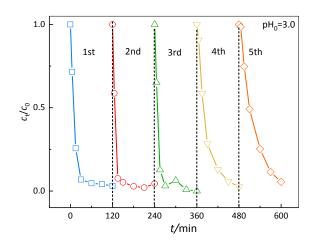


Figure S5 The reusability of FeNC@C in degrading 2-CP in HEF system at pH 3.0. (V=50.0 mL; c_{catalyst} =0.5 g/L; [Na₂SO₄]=0.05 M;[2-CP]=0.2 mM; O₂ flow rate=0.3 L/min; T=298 K)

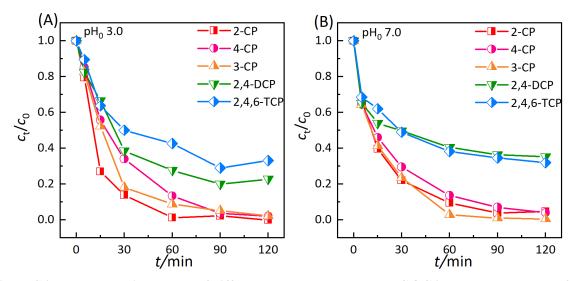


Figure S6 The degradation curves of different chlorophenols by FeNC@C in HEF system at pH 3.0 (A) and 7.0 (B). (V=50.0 mL; c_{catalyst} =0.5 g/L; [Na₂SO₄]=0.05 M; [chlorophenol]=0.2 mM; O₂ flow rate=0.3 L/min; T=298 K)

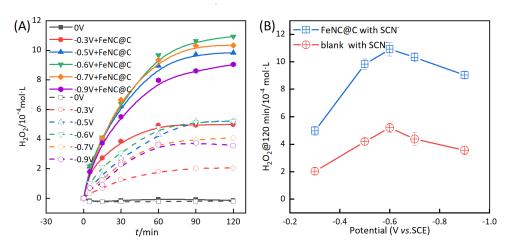


Figure S7 (A) The generation curves of H₂O₂ in FeNC@C heterogeneous EF system in pH 3.0 solution at different potential in the presence of SCN⁻. (B) The accumulated H₂O₂ concentration at 120 min in FeNC@C or blank EF system in the presence of SCN⁻. (V=50.0 mL; c_{catalyst}=0.5 g/L; [Na₂SO₄]=0.05 M;[SCN⁻]=0.2 mM; O₂ flow rate=0.3 L/min; T=298 K; pH₀=3.0)

Figure S8 LSV curves of Fe-based catalysts in O_2/N_2 saturated neutral solution. ([Na₂SO₄]=0.05 M; pH₀=7.0; T=298K.)

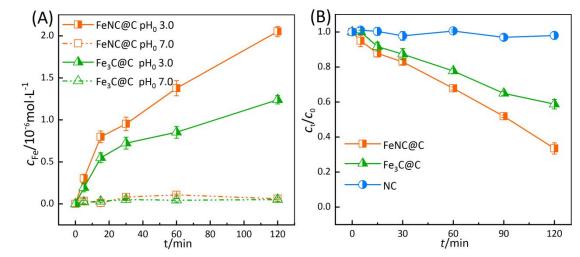


Figure S9 (A) Fe leaching to the aqueous solution under various pH conditions. (B) The decomposition curves of H_2O_2 by Fe-based catalysts in neutral solution. (V=50.0 mL; $c_{catalyst}$ =0.5 g/L; T=298 K; $[H_2O_2]$ =10 mM.)

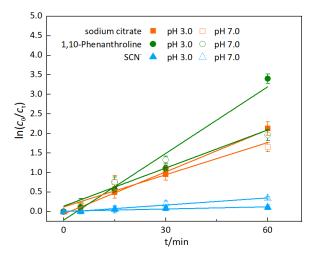


Figure S10 The kinetics fitting curves of 2-CP in Fe-based heterogeneous EF system with poisonous reagents for different Fe species.(V=50.0 mL; $c_{\rm catalyst}$ =0.5 g/L; [Na₂SO₄] =0.05 M;[2-CP]=0.2 mM; O₂ flow rate=0.3 L/min; T=298 K;[sodium citrate]=[SCN⁻]=[1,10-phenanthroline]=100 mM.)

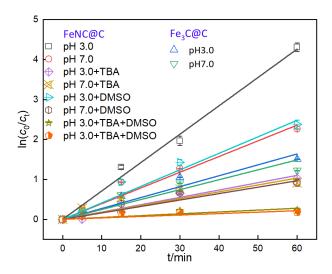


Figure S11 The kinetic curves of 2-CP in Fe-based heterogeneous EF system with different radical scavengers. (V=50.0 mL; c_{catalyst} =0.5 g/L; [Na₂SO₄] =0.05 M;[2-CP]=0.2 mM; O₂ flow rate=0.3 L/min; T=298 K; [DMSO]=[TBA]=100 mM.)

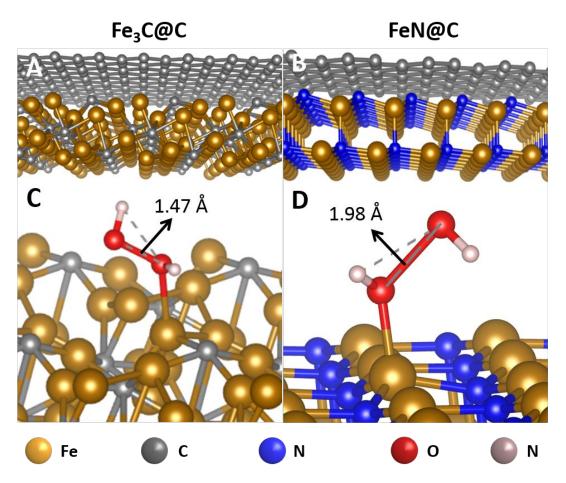


Figure S12 Optimized structures of FeNC@C catalyst. (A) Fe $_3$ C; (B) FeN; (C) H $_2$ O $_2$ adsorbed on Fe $_3$ C); (D) H $_2$ O $_2$ adsorbed on FeN.

157 References

158

- 1. Liu, W.; Zhang, L.; Liu, X.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T.
- Discriminating catalytically active fenx species of atomically dispersed Fe-N-C catalyst for
- selective oxidation of the C-H bond. J. Am. Chem. Soc. **2017**, 139 (31), 10790-10798.
- 2. Zeng, Q. Z.; Jiang, D. M.; Yang, S. Enhancement of magnetic properties in hard/soft
- 163 CoFe₂O₄/Fe₃O₄ nanocomposites. *RSC Adv.* **2016**, *6* (52), 46143-46148.
- Lyu, S.; Liu, C.; Wang, G.; Zhang, Y.; Li, J.; Wang, L. Structural evolution of carbon in
- an Fe@C catalyst during the Fischer–Tropsch synthesis reaction. Catal. Sci. Tech. 2019, 9 (4),
- 166 1013-1020.
- 4. Santos, V. P.; Wezendonk, T. A.; Jaen, J. J.; Dugulan, A. I.; Nasalevich, M. A.; Islam, H.
- U.; Chojecki, A.; Sartipi, S.; Sun, X.; Hakeem, A. A.; Koeken, A. C.; Ruitenbeek, M.; Davidian,
- T.; Meima, G. R.; Sankar, G.; Kapteijn, F.; Makkee, M.; Gascon, J. Metal organic framework-
- mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nat. Commun. 2015,
- *6*, 6451.