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Figure S1.  FT-IR spectra of the precursor (a) and CuMoO4-CoMoO4 (b). 
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Figure S2.  FT-IR spectra of CuMoO4-CoMoO4 samples obtained at different 

hydrothermal reaction time (a) and the enlargement zone ranging from 1000 – 400 cm-1 

(b). 
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Figure S3.  N2 absorption-desorption isotherms of the precursor (a) and CuMoO4-



CoMoO4 (b). 

Illustration S1 Calculation of TOF values

The TOF value can be calculated by the following equation: 

TOF = MH2 / (t·MCu+Co)

MH2 demotes the mole number of generated hydrogen (mole), t denotes the 

corresponding hydrolysis time (min) and MCu+Co denotes the total mole number of Cu 

and Co used in the catalytic testing (mole), respectively. Note that the values of MH2 

and t can only be taken from the linear part of the plots in Figure 8a. The ICP-MS result 

indicates that molar ratio of Co:Cu:Mo in CuMoO4-CoMoO4 is around 0.5:0.5:1. Thus, 

CuMoO4-CoMoO4 can also be expressed as Cu0.5Co0.5MoO4 with the average relative 

molecular mass of 221.2. When CuMoO4-CoMoO4 with dosage of 5.0 mg are used as 

catalysts, 2.366 mmol hydrogen can be produced at hydrolytic reaction time of 60 s. 

The TOF value is calculated by the following way:

TOF =
2.366 × 10 -3(mol)

60
60

(min ) ×
5 × 10 -3

221.2
(mol)

= 104.7molH2min -1 molcat
-1
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Figure S4. Low (a) and high (b) magnification SEM images of the CuMoO4-CoMoO4 

sample prepared without natrium salicylicum. 
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Figure S5. Catalytic activity of the CuMoO4-CoMoO4 samples prepared with and 

without natrium salicylicum in the synthesis.

Computational details

In this work, all the density functional theory (DFT) calculations were performed by 

using Vienna Ab-initio Simulation Package (VASP) [S1, S2]. The Projected 

Augmented Wave (PAW) method was adopted to describe the interaction between the 

ionic cores and valance electrons [S3]. The Perdew-Burke-Ernzerhof version of the 

generalized gradient approximation (GGA-PBE), including van der Waals corrections 

(DFT-D3 method), was used to describe the exchange and correlation effects [S4-S6]. 

For all the calculations, the cutoff energy was set to be 500 eV. To avoid the interaction 

between the neighboring periodic structures, we applied periodic boundary conditions 

with a vacuum slab of 15 Å. In addition, a 3×3×1 Monkhorst-Pack grids was carry out 

for all the calculations [S7]. During the structure optimizations, the bottom five layers 

were kept fixed while the top layers were allowed to be fully relaxed.  The 

convergence threshold for the geometry optimizations was set to be 10−5 eV in energy 

and 0.02 eV Å−1 in force. In order to reduce the calculation time, the convergence 

threshold for the transition state searching calculations was set to be 0.05 eV Å−1 in 

force. The climbing image nudged elastic band (CI-NEB) method was taken to search 

the minimum energy pathway (MEP) involved in the bond-cleaving and -forming 

processes [S8].
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Figure S6. The crucial species of CoMoO4 catalyzed AB hydrolysis.
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Figure S7. The crucial species of CuMoO4 catalyzed AB hydrolysis.
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Figure S8. The crucial species of CuMoO4-CoMoO4 catalyzed AB hydrolysis.
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Figure S9. (a) Effect of catalyst amount on hydrogen evolution; (b) logarithmic value 

of the hydrogen evolution rate vs. logarithmic value of catalyst amount; (c) effect of 

AB amount on hydrogen evolution; (d) logarithmic value of the hydrogen evolution 

rate constant vs. logarithmic value of AB amount; (e) effect of reaction temperature on 

hydrogen evolution; (f) logarithmic value of the hydrogen evolution rate constant vs. 

reciprocal of reaction temperature.


