## **Supporting Information**

## Pd Nanoparticles-Loaded Honeycomb-Structured Bionanocellulose as a Heterogeneous Catalyst for Heteroaryl Cross-Coupling Reaction

Anindita Dewan<sup>a</sup>\*, Manashi Sarmah<sup>a</sup>, Pankaj Bharali<sup>a</sup>, Ashim J. Thakur<sup>a</sup>, Purna K. Boruah<sup>b,c</sup>, Manash R. Das<sup>b,c</sup> and Utpal Bora<sup>a</sup>

<sup>a</sup>Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, India, Pin 784028

<sup>b</sup>Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India <sup>c</sup>Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, India \*E-mail: ani\_dewan@yahoo.co.in

No. of pages: 34

No. of figures: 60

## CONTENTS

| S. No. |                                                                               | Page       |
|--------|-------------------------------------------------------------------------------|------------|
|        |                                                                               | No.        |
| 1.     | General Information                                                           | S5         |
| 2.     | Effect of catalyst recycling on the yield in Suzuki-Miyaura reaction (Figure  | <b>S</b> 6 |
|        | S1)                                                                           |            |
| 3.     | Effect of catalyst recycling on the yield in Sonogashira reaction (Figure S2) | <b>S</b> 6 |
| 4.     | <sup>1</sup> H NMR spectrum of the cross-coupling product 3a (Figure S3)      | S7         |
| 5.     | <sup>13</sup> C NMR spectrum of the cross-coupling product 3a (Figure S4)     | S7         |
| 6.     | <sup>1</sup> H NMR spectrum of the cross-coupling product 3b (Figure S5)      | S8         |
| 7.     | <sup>13</sup> C NMR spectrum of the cross-coupling product 3b (Figure S6)     | S8         |
| 8.     | <sup>1</sup> H NMR spectrum of the cross-coupling product 3c (Figure S7)      | S9         |
| 9.     | <sup>13</sup> C NMR spectrum of the cross-coupling product 3c (Figure S8)     | S9         |
| 10.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 3d (Figure S9)      | S10        |
| 11.    | <sup>13</sup> C NMR spectrum of the cross-coupling product 3d (Figure S10)    | S10        |
| 12.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 3e (Figure S11)     | S11        |
| 13.    | <sup>13</sup> C NMR spectrum of the cross-coupling product 3e (Figure S12)    | S11        |
| 14.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 3f (Figure S13)     | S12        |
| 15.    | <sup>13</sup> C NMR spectrum of the cross-coupling product 3f (Figure S14)    | S12        |
| 16.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 3g (Figure S15)     | S13        |
| 17.    | <sup>13</sup> C NMR spectrum of the cross-coupling product 3g (Figure S16)    | S13        |
| 18.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 3h (Figure S17)     | S14        |
| 19.    | <sup>13</sup> C NMR spectrum of the cross-coupling product 3h (Figure S18)    | S14        |
| 20.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 3i (Figure S19)     | S15        |
| 21.    | <sup>13</sup> C NMR spectrum of the cross-coupling product 3i (Figure S20)    | S15        |
| 22.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 3j (Figure S21)     | S16        |
| 23.    | <sup>13</sup> C NMR spectrum of the cross-coupling product 3j (Figure S22)    | S16        |
| 24.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 3k (Figure S23)     | S17        |
| 25.    | <sup>13</sup> C NMR spectrum of the cross-coupling product 3k (Figure S24)    | S17        |
| 26.    | <sup>1</sup> H NMR spectrum of the cross-coupling product 31 (Figure S25)     | S18        |

| 27. | <sup>13</sup> C NMR spectrum of the cross-coupling product 31 (Figure S26) | S18 |
|-----|----------------------------------------------------------------------------|-----|
| 28. | <sup>1</sup> H NMR spectrum of the cross-coupling product 3m (Figure S27)  | S19 |
| 29. | <sup>13</sup> C NMR spectrum of the cross-coupling product 3m (Figure S28) | S19 |
| 30. | <sup>1</sup> H NMR spectrum of the cross-coupling product 3n (Figure S29)  | S20 |
| 31. | <sup>13</sup> C NMR spectrum of the cross-coupling product 3n (Figure S30) | S20 |
| 32. | <sup>1</sup> H NMR spectrum of the cross-coupling product 30 (Figure S31)  | S21 |
| 33. | <sup>13</sup> C NMR spectrum of the cross-coupling product 30 (Figure S32) | S21 |
| 34. | <sup>1</sup> H NMR spectrum of the cross-coupling product 6a (Figure S33)  | S22 |
| 35. | <sup>13</sup> C NMR spectrum of the cross-coupling product 6a (Figure S34) | S22 |
| 36. | <sup>1</sup> H NMR spectrum of the cross-coupling product 6b (Figure S35)  | S23 |
| 37. | <sup>13</sup> C NMR spectrum of the cross-coupling product 6b (Figure S36) | S23 |
| 38. | <sup>1</sup> H NMR spectrum of the cross-coupling product 6c (Figure S37)  | S24 |
| 39. | <sup>13</sup> C NMR spectrum of the cross-coupling product 6c (Figure S38) | S24 |
| 40. | <sup>1</sup> H NMR spectrum of the cross-coupling product 6d (Figure S39)  | S25 |
| 41. | <sup>13</sup> C NMR spectrum of the cross-coupling product 6d (Figure S40) | S25 |
| 42. | <sup>1</sup> H NMR spectrum of the cross-coupling product 6e (Figure S41)  | S26 |
| 43. | <sup>13</sup> C NMR spectrum of the cross-coupling product 6e (Figure S42) | S26 |
| 44. | <sup>1</sup> H NMR spectrum of the cross-coupling product 6f (Figure S43)  | S27 |
| 45. | <sup>13</sup> C NMR spectrum of the cross-coupling product 6f (Figure S44) | S27 |
| 46. | <sup>1</sup> H NMR spectrum of the cross-coupling product 6g (Figure S45)  | S28 |
| 47. | <sup>13</sup> C NMR spectrum of the cross-coupling product 6g (Figure S46) | S28 |
| 48. | <sup>1</sup> H NMR spectrum of the cross-coupling product 6h (Figure S47)  | S29 |
| 49. | $^{13}$ C NMR spectrum of the cross-coupling product 6h (Figure S48)       | S29 |
| 50. | <sup>1</sup> H NMR spectrum of the cross-coupling product 9a (Figure S49)  | S30 |
| 51. | <sup>13</sup> C NMR spectrum of the cross-coupling product 9a (Figure S50) | S30 |
| 52. | <sup>1</sup> H NMR spectrum of the cross-coupling product 9c (Figure S51)  | S31 |
| 53. | <sup>13</sup> C NMR spectrum of the cross-coupling product 9c (Figure S52) | S31 |
| 54. | <sup>1</sup> H NMR spectrum of the cross-coupling product 9d (Figure S53)  | S32 |
| 55. | <sup>13</sup> C NMR spectrum of the cross-coupling product 9d (Figure S54) | S32 |
| 56. | <sup>1</sup> H NMR spectrum of the cross-coupling product 9e (Figure S55)  | S33 |

| 57. | <sup>13</sup> C NMR spectrum of the cross-coupling product 9e (Figure S56) | S33 |
|-----|----------------------------------------------------------------------------|-----|
| 58. | <sup>1</sup> H NMR spectrum of the cross-coupling product 9f (Figure S57)  | S34 |
| 59. | <sup>13</sup> C NMR spectrum of the cross-coupling product 9f (Figure S58) | S34 |
| 60. | <sup>1</sup> H NMR spectrum of the cross-coupling product 9g (Figure S59)  | S35 |
| 61. | <sup>1</sup> H NMR spectrum of the cross-coupling product 9g (Figure S60)  | S35 |

## **1. GENERAL INFORMATION**

The chemicals used in all the experiments were procured commercially and used without further purification. The progress of the reaction was monitored through thin layer chromatography on Merck Kieselgel Silica gel 60 F<sub>254</sub> plates using short wave UV light ( $\lambda$ =254 nm). The products were purified by column chromatography using Silica gel 60-120 mesh. The identification of the purified products was carried out by NMR (<sup>1</sup>H and <sup>13</sup>C) spectroscopy. The NMR spectrum were recorded on a 400 MHz JEOL NMR spectrophotometer (400 MHz for <sup>1</sup>H and 100 MHz for <sup>13</sup>C NMR spectroscopy). Chemical shifts for both <sup>1</sup>H ( $\delta_H$ ) and <sup>13</sup>C ( $\delta_C$ ) NMR are assigned in parts per million (ppm) using TMS (0 ppm) as the internal reference and CDCl<sub>3</sub> and DMSO-*d*<sub>6</sub> as solvent (CDCl<sub>3</sub>:  $\delta_H$  = 7.25 ppm and  $\delta_C$  = 77.1 ppm; DMSO-*d*<sub>6</sub>:  $\delta_H$  = 2.5 ppm, DMSO-*d*<sub>6</sub> absorbed water = 3.3 ppm and  $\delta_C$  = 40.0 ppm).



**Figure S1**: Effect of catalyst recycling on the yield in Suzuki-Miyaura reaction. Reactions were carried out with 4-bromoanisole (0.5 mmol), phenylboronic (0.6 mmol), PdNPs@NCmw (10 wt%),  $K_2CO_3$  (1.5 mmol), EtOH:H<sub>2</sub>O (1:1) (4 mL), rt (25 °C), Yields were determined with GC using n-dodecane as internal standard.



**Figure S2:** Effect of catalyst recycling on the yield in Sonogashira reaction. Reactions were carried out with 4-iodotoluene (0.5 mmol), phenylacetylene (0.75 mmol), PdNPs@NCmw (10 wt%), H<sub>2</sub>O:EtOH (1:7, 4 mL) K<sub>2</sub>CO<sub>3</sub> (1.5 mmol), reactions were carried out at 70 °C, Yields were determined with GC using benzophenone as internal standard.



Copies of <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum of isolated products





Figure S4 (<sup>13</sup>C NMR of 3a)



Figure S5 (<sup>1</sup>H NMR of 3b)



Figure S6 (<sup>13</sup>C NMR of 3b)



Figure S7 (<sup>1</sup>H NMR of 3c)



Figure S8 (<sup>13</sup>C NMR of 3c)



Figure S9 (<sup>1</sup>H NMR of 3d)



Figure S10 (<sup>13</sup>C NMR of 3d)







Figure S12 (<sup>13</sup>C NMR of 3e)







Figure S14 (<sup>13</sup>C NMR of 3f)



Figure S15 (<sup>1</sup>H NMR of 3g)



Figure S16 (<sup>13</sup>C NMR of 3g)







Figure S18 (<sup>13</sup>CNMR of 3h)







Figure S20 (<sup>13</sup>C NMR of 3i)





-0.3 --0.2

-0.1 --0.0

90 80 Chemical Shift



Figure S23 (<sup>1</sup>H NMR of 3k)



Figure S24 (<sup>13</sup>C NMR of 3k)



Figure S26 (<sup>13</sup>C NMR of 3l)







Figure S28 (<sup>13</sup>C NMR of 3m)



Figure S29 (<sup>1</sup>H NMR of 3n)



Figure S30 (<sup>13</sup>C NMR of 3n)



Figure S32 (<sup>13</sup>C NMR of 30)



Figure S34 (<sup>13</sup>C NMR of 6a)



Figure S35 (<sup>1</sup>H NMR of 6b)



Figure S36 (<sup>13</sup>C NMR of 6b)



Figure S38 (<sup>13</sup>C NMR of 6c)







Figure S40 (<sup>13</sup>C NMR of 6d)







Figure S42 (<sup>13</sup>C NMR of 6e)







Figure S44 (<sup>13</sup>C NMR of 6f)



Figure S45 (<sup>1</sup>H NMR of 6g)



Figure S46 (<sup>13</sup>C NMR of 6g)



Figure S47 (<sup>1</sup>H NMR of 6h)



Figure S48 (<sup>13</sup>C NMR of 6h)



Figure S49 (<sup>1</sup>H NMR of 9a)



Figure S50 (<sup>13</sup>C NMR of 9a)



Figure S51 (<sup>1</sup>H NMR of 9c)



Figure S52 (<sup>13</sup>C NMR of 9c)



Figure S53 (<sup>1</sup>H NMR of 9d)



Figure S54 (<sup>13</sup>C NMR of 9d)



Figure S55 (<sup>1</sup>H NMR of 9e)



Figure S56 (<sup>13</sup>C NMR of 9e)



Figure S57 (<sup>1</sup>H NMR of 9f)



Figure S58 (<sup>13</sup>C NMR of 9f)







Figure S60 (<sup>13</sup>C NMR of 9g)