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S1. AFM nanoindentation 

Figure S1. (a) Force-indentation depth curve plotted in logarithmic coordinates, where a linear 
relationship can be observed in the first stage dominated by pre-tension and bending rigidity, while 
it gradually becomes a cubic relationship as the force increases with membrane characteristics. (b) 
Representative force-indentation depth curves for suspended VS2 nanosheets with different 
thicknesses. 

Figure S2. The fracture morphology of VS2 nanosheet after the nanoindentation test, where a 
localized crack can be observed.
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S2. Lattice parameter of VS2

Figure S3. (a) Schematic of atomic configuration of 1T VS2 used in DFT calculation, where the 
red atom is vanadium (V) and the yellow atom is sulfur (S). (b) The strain － Poisson’s ratio curve 
of VS2 in the direction of armchair and zigzag.

Table S1. Parameters for the atomic configuration of VS2.

Table S2. Atomic bond length and angle for different 2D transition metal dichalcogenides 
materials.

Materials Bond length (Å) Bond angle (°) Ref.
MoS2 2.31 81.49 [1, 2]
MoSe2 2.51 82.56 [1, 3]
MoTe2 2.70 81.00 [1, 2]
WS2 2.39 80.80 [1, 4]
VS2 2.36 84.43－85.06 [5, 6]

dV-V (Å) dV-s (Å) AngleV-S-V (°) a (Å) b (Å)

3.1609 2.35 84.4245 3.1609 5.47087
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S3. Geometry of VS2 buckles

Figure S4. (a) Buckle height and (b) width as a function of the distance from the tip (x). The 
experimental data are fitted by power functions with 2/3 and 1/3 exponents, respectively.

S4. Bulge test

Figure S5. (a) VS2 bubble height as a function of applied pressure at various thicknesses. (b) 
Normalized center deflection versus pressure difference for VS2 bubbles with various thicknesses.
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Figure S6. (a) AFM measurement of VS2 bubble profile after the interfacial delamination. (b)  
Adhesion energy of VS2 for different thicknesses.

During the bulging process, the bubble height can be expressed by7

                                                            (S1)𝐻 = 𝐶2
3 Δ𝑝𝑅4

𝐸𝑡

where  is a constant as a function of the Poisson’s ratio, which is 0.65 for VS2. Such an H-  𝐶2 Δ𝑝
relationship is further evidenced by our AFM results for VS2 bubbles with different thicknesses, 
suggesting the accuracy of measured Young’s modulus. Once the delamination occurs, the 
adhesion energy is derived by seeking minima in the system free energy to achieve an equilibrium 
configuration:8, 9

                                       (S2)𝛾 =
5
4𝐶1Δ𝑝𝐻 =

5
4𝐶1(

𝑝0𝑉0

𝑉0 + 𝑉𝑏
― 𝑝𝑒)𝐻

where  is a constant depending on the Poisson’s ratio,  is the bubble deflection at the  𝐶1 = 0.52 𝐻
center,  is the applied pressure,  is the volume of microcavity,  is the bubble volume and  𝑝0 𝑉0 𝑉𝑏 𝑝𝑒
is the atmosphere pressure. Based on the AFM measurement of bubble deflection and radius, the 
adhesion energy can be determined as ~0.11 J/m2 as shown in Fig. S6b. This agrees well with the 
recent works reporting the adhesion energy between MoS2 and Si/SiO2 substrate (0.082-0.170 
J/m2).10, 11

At the critical pressure, the highest strain for a bubble can be obtained by combing Eq. (5), Eq. 
(S1) and Eq. (S2):

                                                    (S3)𝜀𝑚𝑎𝑥 =  𝐴(𝜐) 
4𝛾𝐶3

2

5𝐶1𝐸𝑡
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S5. The function f(N) in two limiting cases

Two limiting cases are taken into account here to elucidate the interlayer shear effect on the 

bending rigidity. In the case of the perfect bonding between layers, the bending rigidity of 

multilayers is12

(S4)𝐷eff = 𝑁𝐷1 +
𝐸𝑡1

3

12(1 ― 𝜈2)(𝑁3 ―𝑁)

where =4.87 eV is the calculated bending rigidity of monolayer VS2. Based on Eq. (S2), we 𝐷1

have

 (S5)𝑓(𝑁) =
12𝐷𝑒𝑓𝑓(1 ― 𝜈2)

𝐸𝑡3
𝑡𝑜𝑡𝑎𝑙

= 1 ―
1

𝑁2 +
12(1 ― 𝜈2)𝐷1

𝐸𝑡1
3𝑁2

where  and  is the interlayer distance. For ultra-lubricated layers, the bending rigidity 𝑡total = 𝑁𝑡1 𝑡1

is simply expressed by

(S6)𝐷𝑒𝑓𝑓 = 𝑁𝐷1

and thus

(S7)𝑓(𝑁) =
12(1 ― 𝜈2)𝐷1

𝐸𝑡1
3𝑁2

The theoretical limits predicted by Eqs. (S5) and (S7) are plotted as solid lines in Fig. 4g. 
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