Supporting information

Insight into the effect of copper substitution on the catalytic

performance of LaCoO₃-based catalysts for direct epoxidation of

propylene with molecular oxygen

Jianyi Lei,^a Jiajun Dai,^a Kok Bing Tan,^a Jiale Huang, ^a* Guowu Zhan,^b* Qingbiao Li^{a,c}

^a Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and National Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, P. R. China

^b College of Chemical Engineering, Huaqiao University, Xiamen 361021, P. R. China

^c College of Food and Biology Engineering, Jimei University, Xiamen, Fujian 361021, P. R. China

*Corresponding authors *E-mail address:* cola@xmu.edu.cn (J. Huang), gwzhan@hqu.edu.cn (G. Zhan).

Number of pages: 16 Number of figures: 9 Number of tables: 3

Table of Contents Supporting Figures

Figure S2. The XRD patterns of different copper oxide loading on LaCoO₃......4 Figure S3. The XRD patterns of representative samples with and without NaCl modication......5 Figure S4. (a) Representative TEM image and (b-c) corresponding EDX elemental maps of LaCo_{0.8}Cu_{0.2}O_{3-δ}-NaCl sample (Only describing La, Co, Cu, and O since NaCl is hardly to be detected after ultrasonic process for $LaCo_{0.8}Cu_{0.2}O_{3-\delta}$ sample promoted with Figure S5. N₂ adsorption/desorption isotherms with insert of pore size distribution of Figure S6. Distribution of organic products over LaCo_xCu_{1-x}O_{3-δ} catalysts and corresponding propylene conversion (all samples were modified with NaCl solution with a concentration of Figure S7. Distribution of organic products over xCuO/LaCoO₃-vNaCl catalysts and corresponding propylene conversion (where x represents the nominal content (wt. %) of copper on the LaCoO₃, y represents the mass ratio of NaCl to xCuO/LaCoO₃ used in NaCl solution, corresponding to 0.0128-0.0384 M).....8 Figure S8. XPS spectrum of Cl 2p for LaCoO₃-based catalysts modified with NaCl, (1) fresh 5CuO/LaCoO₃-NaCl; (2) spent 5CuO/LaCoO₃-NaCl; (3) fresh LaCo_{0.8}Cu_{0.2}O_{3-δ}-NaCl; (4) fresh LaCo_{0.8}Cu_{0.2}O_{3-δ}-NaCl; The concentration of NaCl solution used is 0.0256 M......9 Figure S9. Distribution of organic products over different copper species supported on/LaCoO₃-NaCl catalysts and corresponding propylene conversion (The concentration of

Supporting Tables

Table S1. Textural properties of the samples synthesized in this study and previsouly relevant
reports for DEP reaction11
Table S2. Catalytic performance of the samples synthesized in this study and previous works
on DEP reaction with molecular oxygen12
Table S3. XPS data (chemical states) of all LaCoO ₃ -based catalysts calculated by XPS
spectra14

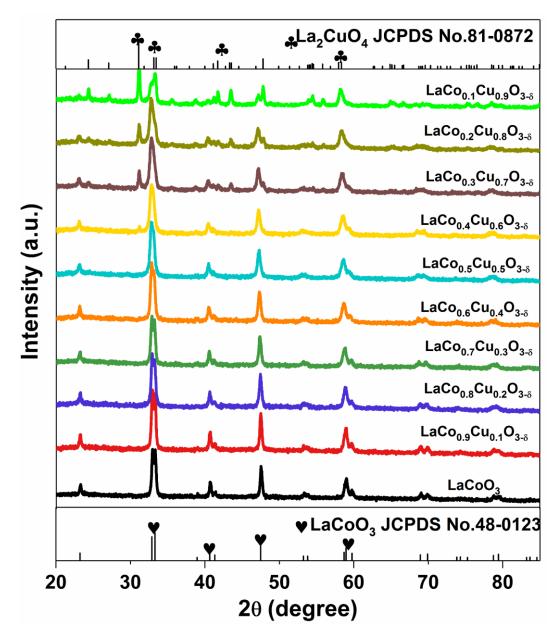


Figure S1. The XRD patterns of different copper doping on LaCoO3

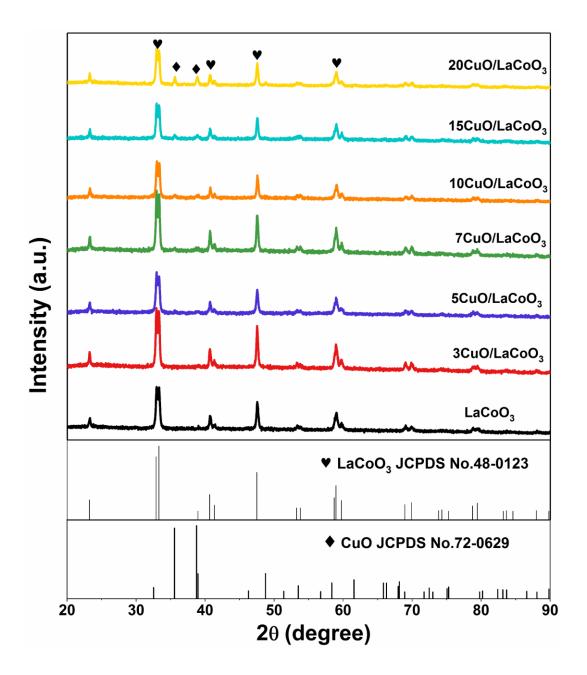


Figure S2. The XRD patterns of different copper oxide loading on LaCoO3

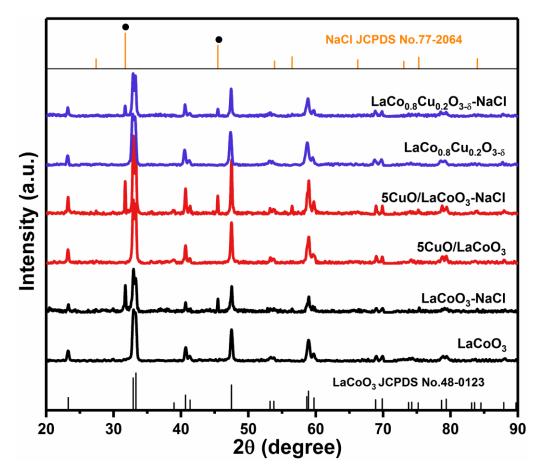


Figure S3. The XRD patterns of representative samples with and without NaCl modication. (The concentration of NaCl solution is 0.0256 M)

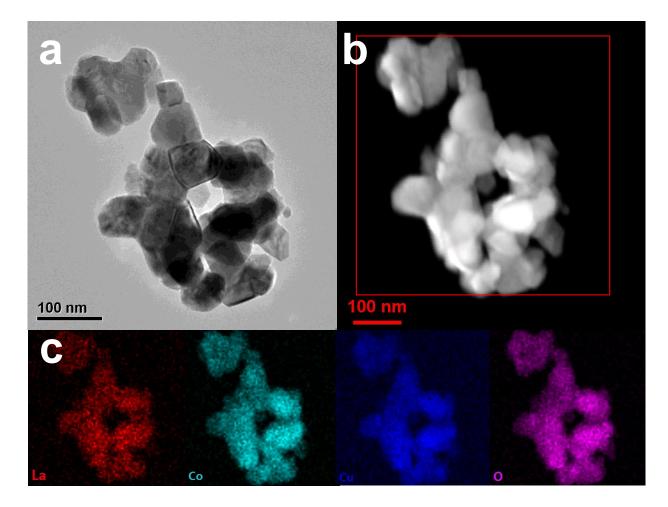


Figure S4. (a) Representative TEM image and (b-c) corresponding EDX elemental maps of LaCo_{0.8}Cu_{0.2}O_{3-δ}-NaCl sample (Only describing La, Co, Cu, and O since NaCl is hardly to be detected after ultrasonic process for LaCo_{0.8}Cu_{0.2}O_{3-δ} sample promoted with NaCl.

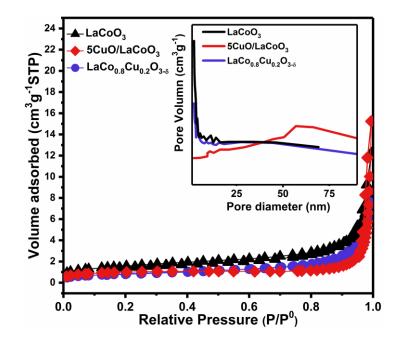


Figure S5. N₂ adsorption/desorption isotherms with insert of pore size distribution of representative samples;

Cu doping LaCoO₃ perovskites exhibit poor N₂-adsorption ability as compared to pure LaCoO₃, as well as the decrease of specific surface area (only $3.033 \text{ m}^2\text{g}^{-1}$). Since the surface area of LaCoO₃ synthesized by chemical sol-gel method is proven to be relatively low ($5.649 \text{ m}^2\text{g}^{-1}$ in this study), LaCo_{0.8}Cu_{0.2}O_{3-δ} perovskites remain physically inert, indicating its similar textural properties to LaCoO₃ perovskites prepared by conventional chemical method. This was also confirmed by pore diameter distribution curves inside. Even addition with CuO, the materials still show low surface area and weak adsorption but more average pore diameter distribution owing to formation of CuO aggregates. These results demonstrated that perovskites materials in this study are nonporous or microporous and corresponding mainly to type II of the IUPAC classification.¹ Furthermore, the curves of pore diameter distribution of LaCoO₃ and LaCo_{0.8}Cu_{0.2}O_{3-δ} are almost consistent which testify that both of these two samples possess a classical perovskite structure and hardly formation of CuO particles for the LaCo_{0.8}Cu_{0.2}O_{3-δ} sample, matching well with the results of XRD results.

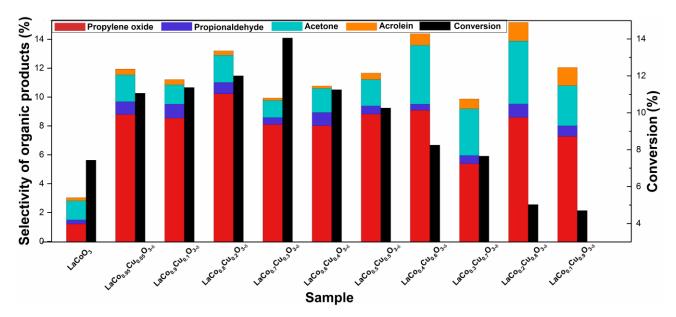


Figure S6. Distribution of organic products over $LaCo_xCu_{1-x}O_{3-\delta}$ catalysts and corresponding propylene conversion (all samples were modified with NaCl solution with a concentration of 0.0256 M).

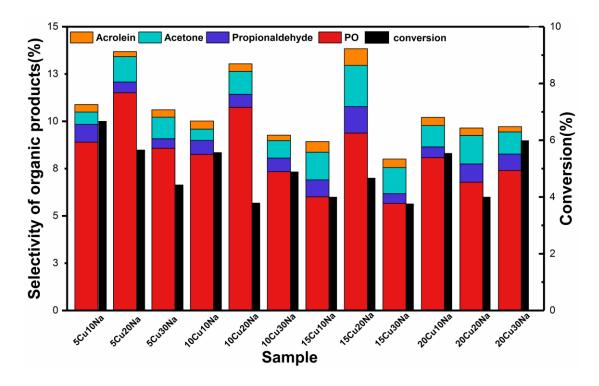


Figure S7. Distribution of organic products over xCuO/LaCoO₃-yNaCl catalysts and corresponding propylene conversion (where x represents the nominal content (wt. %) of copper on the LaCoO₃, y represents the mass ratio of NaCl to xCuO/LaCoO₃ used in NaCl solution, corresponding to 0.0128-0.0384 M).

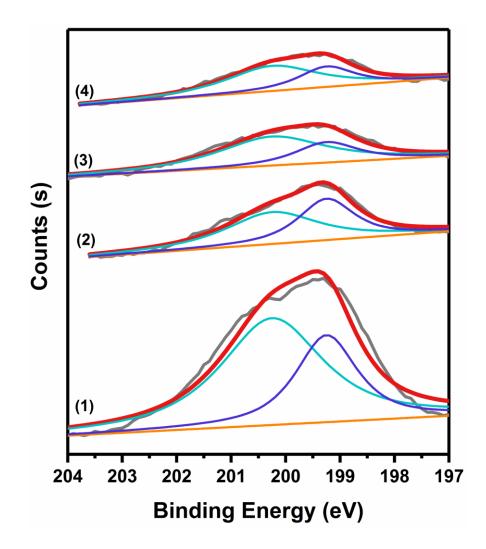


Figure S8. XPS spectrum of Cl 2p for LaCoO₃-based catalysts modified with NaCl, (1) fresh 5CuO/LaCoO₃-NaCl; (2) spent 5CuO/LaCoO₃-NaCl; (3) fresh LaCo_{0.8}Cu_{0.2}O_{3-δ}-NaCl; (4) fresh LaCo0.8Cu0.2O_{3-δ}-NaCl; The concentration of NaCl solution used is 0.0256 M.

XPS of Cl 2p of representative samples were further conducted to illustrate the difference of the Cl variation of $5CuO/LaCoO_3$ -NaCl and $LaCo_{0.8}Cu_{0.2}O_{3-\delta}$ -NaCl during the DEP process. But only the data of two kinds of samples (fresh and spent one) were recorded in this study. Cl variation were calculated by the ratio of deconvolution peaks. ^{2, 3} More information can be obtained in Table S3.

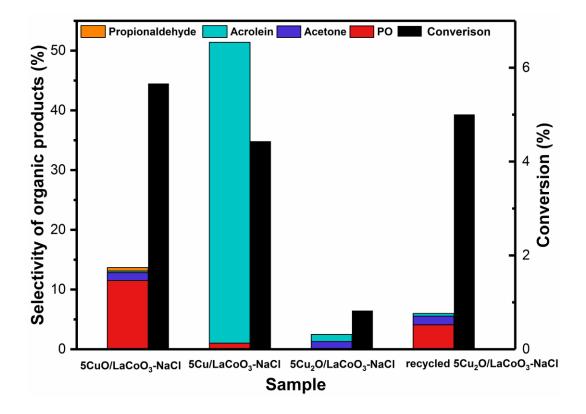


Figure S9. Distribution of organic products over different copper species supported on/LaCoO₃-NaCl catalysts and corresponding propylene conversion (The concentration of NaCl solution is 0.0256 M)

Cu/LaCoO₃ is prepared by the H₂ reduction of 5CuO/LaCoO₃, Cu₂O/LaCoO₃ is prepared by a method mentioned in another work,⁴ but LaCoO₃ is added in the precursor solution in advance. But the existence of Cu⁺, Cu⁰ in 5CuO/LaCoO₃-NaCl catalysts and the oxidation of Cu species in low valence in 5Cu/LaCoO₃-NaCl and 5Cu₂O/LaCoO₃-NaCl catalysts can not be ignored. The catalytic performance is evaluated under the same reaction conditions.

Samples	Surface area (m ² /g) ^a	Pore volumn (cm ³ /g) ^b	Average Pore size (nm) ^c	Ref.
LaCoO ₃	5.649	0.019	13.04	This work
CuO/LaCoO ₃ -NaCl	3.519	0.012	38.62	This work
LaCo _{0.8} Cu _{0.2} O ₃ -NaCl	3.033	0.014	17.60	This work
Ag/TiO2 rutile-NaCl	1.5	0.014	-	1
Ag/CaCO ₃ -NaCl	0.9	0.010	-	1
CuO _x /SiO ₂ -NaNO ₃	465	1.02	7.0	5
Cu-modified MoO ₃ – Bi ₂ SiO ₅ /SiO ₂	219	0.15	3.43	6
WO _x /Ce _{0.05} Zr _{0.95} O ₂	12.3	-	8.3	7

 Table S1. Textural properties of the samples synthesized in this study and previsouly relevant reports for DEP reaction.

^a Calculated by the BET (Brunauer–Emmett–Teller) equation

^b At P/Po =0.99

^c Obtained from BJH pore size distribution curves

No.	Catalyst	Conv.(%)	Sel.(%)	PO yield (%)	Temp. (°C)	Flow rate (mL/min)	Pressure (MPa)	Ref.
1	Cu/SiO ₂	1.3	3	0.039	275	50	0.1	8
2	NaCl-VCe _{0.8} Cu _{0.2}	0.19	43	0.082	250	/	0.1	9
3	CuO _x /SBA-15	1	10	0.1	275	60	0.1	10
4	K+–CuO _x /SBA- 15	0.48	30	0.15	275	60	0.1	10
5	Rhombic dodecahedra Cu ₂ O	0.8	13	0.10	250	50	0.1	11
6	Cubic Cu ₂ O	0.8	10	0.08	225	50	0.1	11
7	Octahedral Cu ₂ O	0.67	3	0.020	200	50	0.1	11
8	Ag-MoO ₃ /ZrO ₂	0.6	58	0.35	350	62.5	0.1	12
9	MoAg/LaSiO ₂ - NaCl	11.4	17.0	1.94	400	100	0.1	13
10	Ag-CaCO ₃	10	5	0.5	220	30	0.3	14
11	NaCl-Ag- CaCO ₃	3	45	1.35	260	30	0.3	15
12	Ag ₃ /Al ₂ O ₃	/	90	/	100	30	0.13	16

Table S2. Catalytic performance of the samples synthesized in this study and previousworks on DEP reaction with molecular oxygen.

13	Ag-CuCl ₂	1.6	31	0.50	350	60	0.1	17
14	Ni-Ag	1.7	11.8	0.20	150	30	0.3	18
15	CuO _x /SiO ₂ - NaNO ₃	4	13	0.52	350	30	0.1	5
16	Ni ₁ Ag _{0.4} /SBA- 15	/	70.7	/	220	20	0.1	19
17	K _{0.02} Fe _{0.005} SiO ₂	1.4	65	0.91	450	/	/	20
18	Ag-Cu- Cl/BaCO ₃	1.2	83.7	1.00	200	50	0.1	21
19	RuO ₂ –CuO– TeO ₂ /SiO ₂	0.35	47	0.16	269	33	0.1	22
20	Ag-Na/CaCO ₃	11.2	8.2	0.92	350	10	0.2	23
21	Ag-ZrO ₂ -NaCl	13	6.1	0.79	220	50	0.1	1
22	Ag-CuCl ₂ /BaCO ₃	1.3	71.2	0.93	200	50	0.1	24
23	Rhombic dodecahedra Cl- Cu ₂ O	1.0	63	0.63	200	50	0.1	2
24	Rhombic dodecahedra Cl- Cu ₂ O	0.05	>95	0.048	150	50	0.1	2
25	CuO/LaCoO3- NaCl	5.7	11.5	0.66	250	30	0.1	This work
26	$LaCo_{0.8}Cu_{0.2}O_{3-}\\ \delta\text{-NaCl}$	12	10.8	1.30	250	30	0.1	This work

Samples	$Cu^{2+}/(Cu^{+}+Cu^{0})^{a}$	Cu ⁰ /Cu ^{+ b}	Oele/Olatt ^a	Ratio of deconvolution peaks for Cl 2p ^a	Cl variation (%) ^a	
Fresh 5CuO/LaCoO3- NaCl	4.85	0.038	3.01	2.03	27.0	
Spent 5CuO/LaCoO3- NaCl	5.16	0.42	2.27	1.26	37.9	
Fresh LaCo _{0.8} Cu _{0.2} O _{3-ð} - NaCl	3.13	1.41	3.09	2.40	15 4	
Spent LaCo _{0.8} Cu _{0.2} O _{3-δ} - NaCl	3.15	3.53	2.34	2.03	15.4	

Table S3. XPS and AES data (chemical states) of all LaCoO₃-based catalysts modified with NaCl (the concentration of NaCl solution is 0.0256 M)

^a calculated by XPS spectrum

^b calculated by AES spectrum

The ratio of $Cu^{2+}/(Cu^++Cu^0)$ is based on the peak area of XPS spectrum of Cu 2p. The ratio of Cu^0/Cu^+ is based on the peak area of AES spectrum of Cu LMM.

REFERENCES

(1) Charisteidis, I. D.; Triantafyllidis, K. S., Propylene epoxidation by molecular oxygen using supported silver catalysts: Effect of support type, preparation method and promotion with alkali chloride and/or steam. *Catalysis Today* **2020**, *355*, 654-664.

(2) Zhan, C.; Wang, Q.; Zhou, L.; Han, X.; Wanyan, Y.; Chen, J.; Zheng, Y.; Wang, Y.; Fu, G.; Xie, Z.; Tian, Z. Q., Critical roles of doping Cl on Cu₂O nanocrystals for direct epoxidation of propylene by molecular oxygen. *Journal of the Amreican Chemical Society* **2020**, *142*, 14134-14141.

(3) Wang, Q.; Zhan, C.; Zhou, L.; Fu, G.; Xie, Z., Effects of Cl⁻ on Cu₂O nanocubes for direct epoxidation of propylene by molecular oxygen. *Catalysis Communications* **2020**, *135*, 1-14.

(4) Zhan, G., Synthetic architecture of integrated nanocatalysts with controlled spatial distribution of metal nanoparticles. *Chemical Engineering Journal* **2019**, *355*, 320-334.

(5) Teržan, J.; Djinović, P.; Zavašnik, J.; Arčon, I.; Žerjav, G.; Spreitzer, M.; Pintar, A., Alkali and earth alkali modified CuO_x/SiO₂ catalysts for propylene partial oxidation: What determines the selectivity? *Applied Catalysis B: Environmental* **2018**, *237*, 214-227.

(6) Wang, Z.; Gao, A.; Chen, P.; Hu, H.; Huang, Q.; Chen, X., The construction of $Mo_{6-\delta}O_{3-x}$ -supported catalyst for low-temperature propylene gas-phase epoxidation by Cu modification. *Journal of Catalysis* **2018**, *368*, 120-133.

(7) Lee, E. J.; Lee, J.; Lee, M.; Min, H.-K.; Park, S.; Heui Kim, D., Propylene epoxidation by oxygen over tungsten oxide supported on ceria-zirconia. *Molecular Catalysis* **2019**, *467*, 111-119.

(8) Vaughan, O.; Kyriakou, G.; Macleod, N.; Tikhov, M.; Lambert, R., Copper as a selective catalyst for the epoxidation of propene. *Journal of Catalysis* 2005, *236* (2), 401-404.
(9) Lu, J.; Luo, M.; Lei, H.; Bao, X.; Li, C., Epoxidation of propylene on NaCl-modified VCe_{1-x}Cu_x oxide catalysts with direct molecular oxygen as the oxidant. *Journal of Catalysis* 2002, *211* (2), 552-555.

(10) Zhu, W.; Zhang, Q.; Wang, Y., Cu(I)-catalyzed epoxidation of propylene by molecular oxygen. *Journal of Physical Chemistry C* **2008**, *112*, 7731-7734.

(11) Hua, Q.; Cao, T.; Gu, X. K.; Lu, J.; Jiang, Z.; Pan, X.; Luo, L.; Li, W. X.; Huang, W., Crystal-plane-controlled selectivity of Cu₂O catalysts in propylene oxidation with molecular oxygen. *Angewandte Chemie International Edition* **2014**, *53* (19), 4856-61.

(12) Jin, G.; Lu, G.; Guo, Y.; Guo, Y.; Wang, J.; Kong, W.; Liu, X., Effect of preparation condition on performance of Ag–MoO₃/ZrO₂ catalyst for direct epoxidation of propylene by molecular oxygen. *Journal of Molecular Catalysis A: Chemical* **2005**, *232* (1-2), 165-172.

(13) Abdel Dayem, H. M.; Al-Shihry, S. S.; Hassan, S. A., Can lanthanum doping enhance catalytic performance of silver in direct propylene epoxidation over NaMoAg/SiO₂? *Journal of Rare Earths* **2019**, *37* (5), 500-507.

(14) Lu, J.; Bravosuarez, J.; Takahashi, A.; Haruta, M.; Oyama, S., In situ UV–vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. *Journal of Catalysis* **2005**, *232* (1), 85-95.

(15) Lu, J.; Bravo-Suárez, J. J.; Haruta, M.; Oyama, S. T., Direct propylene epoxidation

over modified Ag/CaCO₃ catalysts. *Applied Catalysis A: General* **2006**, *302* (2), 283-295.

(16) Lei, Y.; Mehmood, F.; Lee, S., Increased silver activity for direct propylene epoxidation via subnanometer size effects. *Science* **2010**, *328*, 224-228.

(17) Luo, M.; Lu, J.; Li, C., Epoxidation of propylene over Ag-CuCl catalysts using air as the oxidant. *Catalysis Letters* **2003**, *86*, 43-49.

(18) Takahashi, A.; Hamakawa, N.; Nakamura, I.; Fujitani, T., Effects of added 3d transition-metals on Ag-based catalysts for direct epoxidation of propylene by oxygen. *Applied Catalysis A: General* **2005**, *294* (1), 34-39.

(19) Yu, B.; Ayvalı, T.; Raine, E.; Li, T.; Li, M. M.-J.; Zheng, J.; Wu, S.; Bagabas, A. A.; Tsang, S. C. E., Enhanced propylene oxide selectivity for gas phase direct propylene epoxidation by lattice expansion of silver atoms on nickel nanoparticles. *Applied Catalysis B: Environmental* **2019**, *243*, 304-312.

(20) García-Aguilar, J.; Cazorla-Amorós, D.; Berenguer-Murcia, Á., K⁻ and Ca⁻ promoted ferrosilicates for the gas-phase epoxidation of propylene with O₂. *Applied Catalysis A: General* **2017**, *538*, 139-147.

(21) Zhang, Q.; Guo, Y.; Zhan, W.; Guo, Y.; Wang, L.; Wang, Y.; Lu, G., Gas-phase epoxidation of propylene by molecular oxygen over Ag-Cu-Cl/BaCO₃ catalyst: Effects of Cu and Cl loadings. *Chinese Journal of Catalysis* **2017**, *38* (1), 65-72.

(22) Seubsai, A.; Uppala, C.; Tiencharoenwong, P.; Chukeaw, T.; Chareonpanich, M.; Zohour, B.; Noon, D.; Senkan, S., High stability of ruthenium–copper-based catalysts for epoxidation of propylene. *Catalysis Letters* **2017**, *148* (2), 586-600.

(23) Shigeru, S.; Yasuhiro, S.; Tomoyasu, O.; Naotaka, S.; Naohiro, S.; Masahiro, K.; Nobuhiro, K., Gas-phase epoxidation of propylene to propylene oxide on a supported catalyst modified with various dopants. *Catalysts* **2019**, *9* (8), 638-640.

(24) Zhang, Q.; Chai, G.; Guo, Y.; Zhan, W.; Guo, Y.; Wang, L.; Wang, Y.; Lu, G., Gas-phase epoxidation of propylene by molecular oxygen over Ag-CuCl₂/BaCO₃ catalyst with low CuCl₂ doping: Catalytic performance, deactivation and regeneration. *Journal of Molecular Catalysis A: Chemical* **2016**, *424*, 65-76.