Mechanism-Based Design of an Amide-Directed Ni-Catalyzed Arylboration of Cyclopentene Derivatives

Alison L. Lambright, Yanyao Liu, Isaac A. Joyner, Kaitlyn M. Logan, M. Kevin Brown* Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, IN 47405

Supporting Information

Contents

General Considerations S2
Reagents and Catalysts S3
Substrate Synthesis S4
Arylboration Reactions S12
Characterization Data S14
Further Functionalization S25
Mechanism Studies S28
X-ray Crystal Structures S30
References S33
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR Spectra S33

General Considerations: Infrared (IR) spectra were recorded on a Bruker Tensor II FTIR Spectrometer, $v_{\text {max }}$ in cm^{-1}. Bands are characterized as broad (br), strong (s), medium (m), and weak (w). ${ }^{1} \mathrm{H}$ NMR spectra were recorded at room temperature unless otherwise noted on a Varian I400 (400 MHz), Varian VXR400 (400 MHz), Varian I500 (500 MHz), or a Varian I600 (600 $\mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the residual solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.26 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian I400 (100 MHz), Varian VXR400 (100 MHz), Varian I500 (125 MHz), or a Varian I600 (150 $\mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta 77.16 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded on Varian VXR400 (375 MHz) spectrometer. High Resolution Mass Spectrometry (HRMS) analysis was obtained using Electron Impact Ionization (EI), Chemical Ionization (CI), Atmospheric Pressure Chemical Ionization (APCI) or Electrospray Ionization (ESI) and reported as m / z (relative intensity). ESI was acquired using a Waters/Micromass LCT Classic (ESI-TOF). The diastereomeric and regioisomeric ratios were determined using NMR or GC analysis of unpurified reaction mixtures. GC analyses were performed by means of Agilent 6850 Gas Chromatograph equipped with Agilent 19091Z-413E, $30 \mathrm{~m} \times 320 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$ column. Helium was used as the GC carrier gas and maintained at a constant flow rate of $25.0 \mathrm{~mL} / \mathrm{min}$. The capillary column was held for 1.0 minutes at the initial temperature $\left(60{ }^{\circ} \mathrm{C}\right)$ and subsequently ramped at a rate of $25^{\circ} \mathrm{C} / \mathrm{min}$ to a final temperature of $300^{\circ} \mathrm{C}$. Total run time was 9.60 min . Unless otherwise noted, all reactions have been carried out with distilled and degassed solvents under an atmosphere of dry N_{2} in oven- $\left(150{ }^{\circ} \mathrm{C}\right)$ or flame-dried glassware with standard vacuumline techniques. Dichloromethane (DCM), tetrahydrofuran (THF), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, dioxane and dimethylformamide (DMF) were purified under a positive pressure of dry argon by passage through two columns of activated alumina. Toluene (PhMe) was purified under a positive pressure of dry argon by passage through columns of activated alumina and Q5 (Grubbs apparatus). All work-up and purification procedures were carried out with reagent grade solvents (purchased from Sigma-Aldrich) in air. Standard column chromatography techniques using ZEOprep 60/40-63 $\mu \mathrm{m}$ silica gel or a CombiFlash Rf 150 with pre-packed silica cartridges were used for purification.

■ Reagents and Catalysts

Allylbromide was purchased from Sigma Aldrich and used as received.
Benzylamine was purchased from Fluka and used as received.
Bis(pinacolato)diboron was purchased from Oakwood Chemical and recrystallized in pentane prior to use.
Bromobenzene was purchased from Sigma Aldrich and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
a-(Bromomethyl)styrene was synthesized in accordance with literature procedure. ${ }^{1}$
4-Bromoanisol was purchased from Combi-Blocks and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
4-(4-bromobenzyl)morpholine was synthesized in accordance with literature procedure. ${ }^{2}$
1-Bromo-4-chlorobenzene was purchased from Sigma Aldrich and recrystallized in pentane prior to use.
4-Bromofluorobenzene was purchased from TCI Chemicals and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
3-bromofuran was purchased from Combi-Blocks and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
5-Bromo-2-methoxypyridine was purchased from Combi-Blocks and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
5-Bromo-1-methyl-1H-indole was synthesized in accordance with literature procedure. ${ }^{3}$
1-Bromo-2-methylprop-1-ene was purchased from Combi-Blocks and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
1-Bromonaphthalene was purchased from Oakwood Chemical and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
2-Bromoprop-1-ene was purchased from Oakwood Chemical and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
2-Bromotoluene was purchased from Oakwood Chemical and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
3-Chloro- \boldsymbol{N}-methylaniline was purchased from TCI Chemicals and was distilled on a Kugelröhr distillation apparatus before use.
Citric acid was purchased from Oakwood Chemical and used as received.
Cyclohex-3-ene-1-carboxylic acid was purchased from Oakwood Chemical and used as received. Cyclopent-3-ene-1-carboxylic acid was purchased from Combi-Blocks and used as received.
Dibromomethane was purchased from Alfa Aesar and purified via neat filtration through a 2 cm pad of dry silica in a 5.75 -inch pipet prior to use.
Diethyl allylmalonate was purchased from Alfa Aesar and used as received.
Diisobutylaluminium hydride (1.0 \mathbf{M} in hexanes) was purchased from Sigma Aldrich and used as received.
Diisopropylamine was purchased from Sigma Aldrich and distilled over calcium hydride immediately prior to use.
Dimethylamine hydrochloride solution ($\mathbf{2} \mathbf{M}$ in THF) was purchased from Sigma Aldrich and used as received.
4-Dimethylaminopyridine was purchased from Oakwood Chemical and used as received.
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide was purchased from AK Scientific and used as received.

Hydrogen peroxide solution ($\mathbf{3 0 \%}$ in water) was purchased from Macron Chemicals and used as received.
Indoline was purchased from Sigma Aldrich and used as received.
4-Methoxy- N-methylaniline was purchased from Combi-Blocks and was distilled on a Kugelröhr distillation apparatus before use.
1-Methylcyclopent-3-ene-1-carboxylic acid was synthesized in accordance with literature procedure. ${ }^{4}$
3-Methylcyclopent-3-ene-1-carboxylic acid was synthesized in accordance with literature procedure. ${ }^{4}$
\boldsymbol{n}-Butyllithium solution (2.5 M in hexanes) was purchased from Sigma Aldrich and titrated before use.
Nickel (II) chloride, dimethoxyethane adduct was purchased from Strem Chemicals and used as received.
N,2-Dimethylaniline was purchased from Combi-Blocks and was distilled on a Kugelröhr distillation apparatus before use.
N-Ethylaniline was purchased from Combi-Blocks and was distilled on a Kugelröhr distillation apparatus before use.
N-Methylaniline was purchased from Combi-Blocks and was distilled on a Kugelröhr distillation apparatus before use.
\mathbf{N}, \mathbf{N}-Dimethylacetamide (DMA) was purchased from Sigma Aldrich in a Sure-Seal ${ }^{\mathrm{TM}}$ bottle and used as received.
$\boldsymbol{N}, \boldsymbol{O}$-Dimethylhydroxylamine hydrochloride was purchased from Oakwood Chemical and used as received.
1-Phenylpyrrolidin-2-one was purchased from Combi-Blocks and used as received.
Potassium hydroxide was purchased from Macron Chemicals and used as received.
Potassium tert-butoxide was purchased from Strem Chemicals and used as received.
Sodium hydride ($60 \mathrm{wt} \%$ in mineral oil) was purchased from Sigma Aldrich and used as received. Sodium tert-butoxide was purchased from Strem Chemicals and used as received.
Sodium thiosulfate was purchased from Oakwood Chemical and used as received.
tert-Butyl (4-bromophenyl)(methyl)carbamate was synthesized in accordance with literature procedure. ${ }^{5}$
tert-Butyllithium ($\mathbf{2 . 5} \mathbf{M}$ in pentane) was purchased from Sigma Aldrich and titrated before use. 1,3,5-Trimethylbenzene was purchased from Sigma-Aldrich and purified via column chromatography (100% pentane) and stored over activated $4 \AA$ molecular sieves.
Zhan-1B catalyst was purchased from Strem Chemicals and used as received.

Substrate Synthesis

General Procedure A: Amidation

To a flame-dried round-bottom flask equipped with a stir bar was added 4-dimethylaminopyridine (0.1 equiv) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (1.2 equiv). The flask was evacuated/backfilled with $\mathrm{N}_{2}(3 \mathrm{x})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$, carboxylic acid (1.0 equiv), and amine (1.2 equiv) were added. After stirring at room temperature overnight, the reaction was quenched with citric acid $\left(0.08 \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The organic layers were collected and washed with citric acid (2 x , 0.08 M in $\mathrm{H}_{2} \mathrm{O}$), saturated NaHCO_{3}, and brine, then dried over MgSO_{4}, gravity filtered, and concentrated under reduced pressure.

N, N-dimethylcyclopent-3-ene-1-carboxamide (4b): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and dimethylamine hydrochloride solution (2 M in THF). Purification via silica gel column chromatography ($2: 1$ hexanes:diethyl ether) and Kugelröhr short path distillation yielded product as a colorless oil ($0.95 \mathrm{~g}, 57 \%$).
IR (neat): 3054 (w), 2925 (m), 2849 (m), 1632 (s), 1396 (m), 1140 (m), 728 (m) cm ${ }^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.62(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{tt}, J=9.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.72$ - 2.49 (m, 4H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C D C l 3}$): $\delta 175.5,128.8,39.3,37.2,36.6,35.7$; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NONa} 162.0889$; Found 162.0889.

N-benzylcyclopent-3-ene-1-carboxamide (4c): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and benzylamine. Purification via silica gel column chromatography ($4: 1$ hexanes:ethyl acetate) yielded product as a white solid ($0.69 \mathrm{~g}, 68 \%$). Spectral data was in accordance with that of the literature. ${ }^{4}$
IR (neat): 3271 (s), 3053 (m), 2898 (m), 1636 (s), 1544 (s$), 693$ (s$) \mathrm{cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , CDCl_{3}): $\delta 7.56-6.90(\mathrm{~m}, 5 \mathrm{H}), 5.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{td}, J$ $=8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.8,138.6,129.3$, 128.7, 127.8, 127.5, 43.6, 43.5, 37.0.

N-methoxy- N-methylcyclopent-3-ene-1-carboxamide (4d): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and N, O dimethylhydroxylamine hydrochloride. Purification via silica gel column chromatography (1:1 hexanes:diethyl ether) yielded product as a colorless oil ($1.3 \mathrm{~g}, 71 \%$). Spectral data was in accordance with that of the literature. ${ }^{6}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.65(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.55$ ($\mathrm{m}, 4 \mathrm{H}$).

N-methyl- N-phenylcyclopent-3-ene-1-carboxamide (4e): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and N-methylaniline. Purification via silica gel column chromatography ($3: 1$ hexanes:diethyl ether) and Kugelröhr short path distillation yielded product as a colorless oil ($4.3 \mathrm{~g}, 71 \%$).
IR (neat): 3054 (w), 2916 (w), 1737 (m), 1650 (s), 1593 (s), 729 (s$) \mathrm{cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R ~ (~} \mathbf{6 0 0} \mathbf{~ M H z , ~}$ CDCl 3): $\delta 7.40(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.55-5.52(\mathrm{~m}$, 2 H), 3.26 (d, $J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=14.9,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=$ $15.0,9.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.2,144.3,129.7,128.8,127.7,127.5,39.9$, 37.7, 27.1; LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO} 202.1$; Found 202.2.

cyclopent-3-en-1-yl(indolin-1-yl)methanone (4f): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and indoline. Purification via silica gel column chromatography (10:1 hexanes:diethyl ether) and recrystallization in hexanes:EtOAc yielded product as a purple solid ($0.48 \mathrm{~g}, 45 \%$).
IR (neat): 2938 (w), 2846 (w), 1646 (s), 1597 (m), 1459 (s), 765 (s) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathbf{M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 8.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 2 \mathrm{H})$, $4.15(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{td}, J=9.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{dt}, J=10.9$, $5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=15.0,9.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 174.1,143.4,131.2$, $128.8,127.6,124.5,123.5,117.3,48.1,41.9,36.5,30.9,28.1$; LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO} 214.1$; Found 214.2.

N-(3-chlorophenyl)- N-methylcyclopent-3-ene-1-carboxamide (SI-1): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and 3-chloro-Nmethylaniline. Purification via silica gel column chromatography (75:23:2 hexanes:diethyl ether:triethylamine) and Kugelröhr short path distillation yielded product as a colorless oil (1.9 g, 68\%).
IR (neat): 3057 (w), 2919 (w), 2850 (w), 1651 (s), 1589 (s), 726 (s) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right): \delta 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dt}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~s}$, $2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.0,145.5,135.1,130.7,128.8,128.1,127.9,125.9,77.2,40.1,37.7$; LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNO}$ 236.1; Found 236.0.

N-(4-methoxyphenyl)- N-methylcyclopent-3-ene-1-carboxamide (SI-2): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and 4-methoxy-N-methylaniline. Purification via silica gel column chromatography (75:23:2 hexanes:diethyl ether:triethylamine) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane $)$ yielded product as a colorless oil (2.2 g, 79\%).
IR (neat): 3052 (w), 2914 (w), 2840 (w), 1645 (s), 1508 (s), 1244 (s), 727 (s) cm ${ }^{-1}$; $\mathbf{1}^{\mathbf{H}}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H})$, $3.01(\mathrm{tt}, J=9.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 176.5,158.9,137.1,128.9,128.6,114.8,55.5,40.0,37.8,37.6 ;$ LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$ 232.1; Found 232.2.

N -methyl- N -(o-tolyl)cyclopent-3-ene-1-carboxamide (SI-3): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and N,2dimethylaniline. Purification via silica gel column chromatography (3:1 hexanes:diethyl ether) and Kugelröhr short path distillation yielded product as a white solid ($0.66 \mathrm{~g}, 61 \%$).
IR (neat): 3054 (w), 2918 (w), 2849 (w), 1737 (w), 1646 (s), 1384 (m), 1101 (m), 725 (s) cm^{-1}; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.34-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.51$ $(\mathrm{m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{tt}, J=9.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddp}, J=15.7,7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ (ddp, $J=15.6,7.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mix of rotomers): $\delta 176.5,142.8,135.6,131.4,129.2,128.5,128.3,128.3,127.3,40.1,38.0,37.0$, 36.2, 17.4; LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO} 216.1$; Found 216.2.

N-ethyl- N-phenylcyclopent-3-ene-1-carboxamide (SI-4): The title compound was synthesized via General Procedure A with cyclopent-3-ene-1-carboxylic acid and N-ethylaniline. Purification via silica gel column chromatography (75:23:2 hexanes:diethyl ether:triethylamine) and Kugelröhr short path distillation yielded product as a colorless oil ($2.2 \mathrm{~g}, 83 \%$).
IR (neat): 3055 (w), 2970 (w), 2931 (w), 1649 (s), 1594 (m), 1246 (s), 698 (s) cm ${ }^{-1}$; ${ }^{\mathbf{1} H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40$ (dd, $J=8.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36-7.28$ (m, 1H), $7.18-7.11$ (m, 2H), $5.52(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{tt}, J=9.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=14.4,7.3 \mathrm{~Hz}$, 2 H), 2.26 (dt, $J=14.1,6.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $175.5,142.5,129.5,128.8,128.7,127.8,44.2,40.3,37.6,13.0$; LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO} 216.1$; Found 216.2.

N-methyl- N-phenylcyclohex-3-ene-1-carboxamide (16): The title compound was synthesized via General Procedure A with cyclohex-3-ene-1-carboxylic acid and N-methylaniline. Purification via silica gel column chromatography ($3: 1$ hexanes:diethyl ether) and Kugelröhr short path distillation yielded product as a colorless oil ($1.3 \mathrm{~g}, 60 \%$).
IR (neat): 3023 (w), 2910 (w), 2838 (w), 1645 (s), 1594 (m), 1494 (m), 1386 (m), 1118 (m), 719 (s) cm^{-1}; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.39$ (dd, $J=8.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{~h}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{dq}, J=12.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ (ddq, $J=15.1,11.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 176.2,144.1,129.8,127.7,127.2,126.1,125.7,37.5,37.2,28.2,25.8,24.6 ;$ LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}$ 216.1; Found 216.2.

N,1-dimethyl- N-phenylcyclopent-3-ene-1-carboxamide (SI-5): The title compound was synthesized via General Procedure A with 1-methylcyclopent-3-ene-1-carboxylic acid ${ }^{4}$ and N methylaniline. Purification via silica gel column chromatography (4:1 hexanes:diethyl ether) and recrystallization (hexanes) yielded product as a white solid ($1.7 \mathrm{~g}, 57 \%$).
IR (neat): 3052 (w), 2930 (w), 1635 (s), 1592 (s), 1493 (m), 1354 (m), 701 (s), 574 (s) $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl 3): $\delta 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.50$ $(\mathrm{s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 177.6,144.6,129.1,128.7,128.0,127.6,50.3,45.2,40.4,27.9$; LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO} 216.1$; Found 216.2.

3-allyl-1-phenylpyrrolidin-2-one (SI-6): To a flame-dried round-bottom flask equipped with a stir bar was added diisopropylamine ($2.8 \mathrm{~mL}, 20 \mathrm{mmol}, 1.0$ equiv.) and THF (10 mL) and the contents were cooled to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath. n-Butyllithium solution (1.9 M in hexanes, $10.6 \mathrm{~mL}, 20 \mathrm{mmol}, 1.0$ equiv.) was added slowly and the reaction contents were stirred for 15 min
at $-78^{\circ} \mathrm{C}$. A second flame-dried round-bottom flask equipped with a stir bar was charged with $1-$ phenylpyrrolidin-2-one ($3.2 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ equiv.) then evacuated/backfilled with N_{2} (3 x). THF $(15 \mathrm{~mL})$ was added, and this solution was transferred via syringe to the lithium diisopropylamide solution slowly. After stirring for 10 min at $-78^{\circ} \mathrm{C}$, allylbromide ($1.7 \mathrm{~mL}, 20 \mathrm{mmol}, 1.0$ equiv.) was added and reaction stirs for an additional 30 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched with sat. ammonium chloride (20 mL) and product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 20 \mathrm{~mL})$. Combined organics were dried over MgSO_{4}, gravity filtered, and concentrated under reduced pressure. Purification via silica gel column chromatography (10:1 hexanes:diethyl ether) and recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ pentane $)$ yielded product as a white solid ($2.6 \mathrm{~g}, 64 \%$). Spectral data was in accordance with that of the literature. ${ }^{7}$
IR (neat): 3057 (w), 2967 (w), 1686 (s), 1596 (m), 1401 (s), 1318 (s), 906 (s), 760 (s) cm ${ }^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3): $\delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 1 \mathrm{H}), 5.82$ (ddt, $J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dq}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.70$ $(\mathrm{m}, 2 \mathrm{H}), 2.76-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{dq}, J=12.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 175.2,139.5,135.4,128.8,124.4,119.7,117.1,46.7,42.9,35.4,23.9$.

3,3-diallyl-1-phenylpyrrolidin-2-one (SI-7): To a flame-dried round-bottom flask equipped with a stir bar was added diisopropylamine ($0.85 \mathrm{~mL}, 6.1 \mathrm{mmol}, 1.0$ equiv.) and THF (5 mL) and the contents were cooled to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath. n-Butyllithium solution (1.9 M in hexanes, $3.2 \mathrm{~mL}, 6.1 \mathrm{mmol}, 1.0$ equiv.) was added slowly and the reaction contents are stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$. A second flame-dried round-bottom flask equipped with a stir bar was charged with 3-allyl-1-phenylpyrrolidin-2-one ($1.2 \mathrm{~g}, 6.1 \mathrm{mmol}, 1.0$ equiv.) then evacuated/backfilled with N_{2} (3x). THF (10 mL) was added, and this solution was transferred via syringe to the lithium diisopropylamide solution slowly. After stirring for 10 min at $-78^{\circ} \mathrm{C}$, allylbromide ($0.53 \mathrm{~mL}, 6.1$ $\mathrm{mmol}, 1.0$ equiv.) was added and reaction was stirred for an additional 30 min at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with sat. ammonium chloride (10 mL) solution and product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). Combined organics were dried over MgSO_{4}, gravity filtered, and concentrated under reduced pressure. Purification via silica gel column chromatography (20:1 hexanes:diethyl ether) yielded product as a colorless oil ($0.53 \mathrm{~g}, 22 \%$). Spectral data was in accordance with that of the literature. ${ }^{7}$
IR (neat): 3051 (w), 2897 (w), 1686 (s), 1638 (m), 1488 (s), 1392 (s), 1223 (m), 914 (s), 757 (s), 689 (s) cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (td, $J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dddd}, J=16.9,10.1,8.3,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.21-5.10(\mathrm{~m}, 4 \mathrm{H}), 3.77-3.70$ ($\mathrm{m}, 2 \mathrm{H}$), 2.48 (ddt, $J=13.6,6.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{dd}, J=13.7,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 176.8,139.5,133.7,128.8,124.5,120.0,118.8,49.0,45.7,41.7$, 26.4.

2-phenyl-2-azaspiro[4.4]non-7-en-1-one (SI-8): Procedure adapted from literature procedure. ${ }^{8}$ To a flame-dried round-bottom flask equipped with a stir bar was added Zhan-1B catalyst (29 mg , $0.040 \mathrm{mmol}, 0.050$ equiv.) in a N_{2} filled glovebox. The flask was capped with a septum and removed from the glovebox. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added to make a catalyst solution. A second flame-dried round-bottom flask equipped with a stir bar was charged with 3,3-diallyl-1-phenylpyrrolidin-2-one ($1.9 \mathrm{~g}, 7.9 \mathrm{mmol}, 1.0$ equiv.) then evacuated/backfilled with N_{2} (3 x). $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added, followed by transferring the catalyst solution via syringe. The reaction was heated in an oil bath to $35^{\circ} \mathrm{C}$ and stirred overnight. Solvent was concentrated under reduced
pressure. Purification via silica gel column chromatography (3:1 hexanes:diethyl ether) and recrystallization (hexanes/diethyl ether) yielded product as a white crystal ($791 \mathrm{mg}, 47 \%$).
IR (neat): 3094 (w), 2966 (w), 2871 (w), 1674 (s), 1596 (m), 1486 (), 1391 (s), 1224 (s), 756 (s), 688 (s), $672(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.12(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.87(\mathrm{~s}, 1 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta 178.4,139.8,128.8,128.3,124.2,119.5,51.4,45.5,43.6,35.0$, LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}$ 214.1; Found 214.2.

$\boldsymbol{N , 3 - d i m e t h y l}-\boldsymbol{N}$-phenylcyclopent-3-ene-1-carboxamide (SI-9): The title compound was synthesized via General Procedure A with 3-methylcyclopent-3-ene-1-carboxylic acid ${ }^{4}$ and N methylaniline. Purification via silica gel column chromatography ($4: 1$ hexanes:diethyl ether) and Kugelröhr short path distillation yielded product as a colorless oil ($1.2 \mathrm{~g}, 69 \%$).
IR (neat): 3040 (w), 2912 (w), 1737 (s$), 1594$ (m), 1494 (m), 1422 (m), 1120 (m), 773 (s$), 727$ (s$)$ cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.43(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ $-7.17(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{ddd}, J=16.8,9.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ $-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{td}, J=12.3,10.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6 ~ M H z}, \mathbf{C D C l}_{3}\right):$ $\delta 176.4,144.4,138.5,129.7,127.7,127.5,122.4,41.7,40.8,37.9,37.6,16.2 ;$ LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}$ 216.1; Found 216.2.

diethyl 2-allyl-2-(2-phenylallyl)malonate (SI-10): To a flame-dried round-bottom flask equipped with a stir bar was added sodium hydride ($60 \mathrm{wt} \%$ in mineral oil, $0.40 \mathrm{~g}, 10 \mathrm{mmol}, 1.2$ equiv.) then evacuated/backfilled with N_{2} (3 x). THF (60 mL) was added and the solution was
cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Diethyl allylmalonate ($1.6 \mathrm{~mL}, 8.5 \mathrm{mmol}, 1.0$ equiv.) was added dropwise and after gas evolution ceased, a-(bromomethyl)styrene ${ }^{9}(2.0 \mathrm{~g}, 10 \mathrm{mmol}, 1.2$ equiv.) was added dropwise. Reaction was allowed to slowly warm to rt over 1 h then was heated in an oil bath to $60^{\circ} \mathrm{C}$ overnight. After cooling to rt, the reaction is quenched with sat. ammonium chloride $(60 \mathrm{~mL})$. Product was extracted with diethyl ether (3 x 50 mL) and combined organics were washed with brine, dried over MgSO_{4}, gravity filtered, and concentrated under reduced pressure. Purification via silica gel column chromatography (20:1 hexanes:diethyl ether) yielded product as a colorless oil ($2.3 \mathrm{~g}, 84 \%$). Spectral data was in accordance with that of the literature. ${ }^{10}$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l} 3$): $\delta 7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{ddt}, J=17.4$, $10.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{ddt}, J=10.3,2.1,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98(\mathrm{dq}, J=17.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{dq}, J=10.7,7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{dt}, J=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}),-1.95(\mathrm{~s}$, $1 \mathrm{H})$.
diethyl 3-phenylcyclopent-3-ene-1,1-dicarboxylate (SI-11): To a flame-dried round-bottom flask equipped with a stir bar was added Zhan-1B catalyst ($26 \mathrm{mg}, 0.36 \mathrm{mmol}, 0.050$ equiv.) in a N_{2} filled glovebox. The flask was capped with a septum and removed from the glovebox. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ was added to make a catalyst solution. A second flame-dried round-bottom flask equipped with a stir bar was charged with diethyl 2-allyl-2-(2-phenylallyl)malonate ($2.3 \mathrm{~g}, 7.2 \mathrm{mmol}, 1.0$ equiv.) then evacuated/backfilled with $\mathrm{N}_{2}(3 \mathrm{x}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added, followed by transferring the catalyst solution via syringe. The reaction was heated to $35^{\circ} \mathrm{C}$ in an oil bath and stirred overnight. Solvent was concentrated under reduced pressure. Purification via silica gel column chromatography ($3: 1$ hexanes:diethyl ether) yielded product as a colorless oil ($2.0 \mathrm{~g}, 95 \%$). Spectral data was in accordance with that of the literature. ${ }^{10}$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 6.01(\mathrm{p}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.41(\mathrm{q}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{q}, J=$ $2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

3-phenylcyclopent-3-ene-1-carboxylic acid (SI-12): Procedure adapted from literature procedure. Error! Bookmark not defined. To a round-bottom flask equipped with a stir bar was added diethyl 3-phenylcyclopent-3-ene-1,1-dicarboxylate ($2.0 \mathrm{~g}, 6.8 \mathrm{mmol}, 1.0$ equiv.), ethanol (16 mL), water (4 mL), and potassium hydroxide ($1.3 \mathrm{~g}, 22 \mathrm{mmol}, 3.2$ equiv.). Reaction contents were heated to $45^{\circ} \mathrm{C}$ in an oil bath and stirred overnight then concentrated under reduced pressure. Diethyl ether (10 mL), hexanes (5 mL), and water (15 mL) were added to the resulting oil. The mixture was acidified with conc. sulfuric acid until pH is 1 . The mixture was extracted with ethyl acetate (3 x 15 mL) and combined organics were dried over MgSO_{4}, gravity filtered, and concentrated under reduced pressure. The resulting solid was heated to $180^{\circ} \mathrm{C}$ for 1 h and then returned to rt. Purification via silica gel column chromatography ($3: 1$ hexanes:acetone) yielded product as an orange oil $(0.73 \mathrm{~g}, 57 \%)$. Spectral data was in accordance with that of the literature. ${ }^{11}$ ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.49-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 6.08(\mathrm{p}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{tt}, J=9.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{dq}, J=$ $9.2,2.2 \mathrm{~Hz}, 2 \mathrm{H})$.
N-methyl- N,3-diphenylcyclopent-3-ene-1-carboxamide (SI-13): The title compound was synthesized via General Procedure A with 3-phenylcyclopent-3-ene-1-carboxylic acid and N -
methylaniline. Purification via silica gel column chromatography (4:1 hexanes:diethyl ether) and recrystallization (ethyl acetate) yielded product as a white crystal ($0.17 \mathrm{~g}, 16 \%$).
IR (neat): $3020(\mathrm{~m}), 2970(\mathrm{~m}), 1738$ (s$), 1652$ (s$), 1594(\mathrm{~s}), 1380(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z ,}$ $\left.\mathbf{C D C l}_{3}\right): \delta 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.15(\mathrm{~m}$, $3 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.13$ (ddd, $J=26.2,13.9,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.64$ (dd, $J=15.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=17.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $)^{2}$: $\delta 175.8$, 144.2, 140.6, 136.1, 129.8, 128.2, 127.8, 127.5, 127.0, 125.5, 123.8, 40.6, 38.2, 37.7, 27.1; LRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}$ 278.2; Found 278.2.

■ Arylboration Reactions

General Procedure B: Ni-Catalyzed Arylboration of Alkenes Optimization With Varied Directing Groups (Used in Scheme 2)

In an N_{2}-filled glovebox, to an oven-dried $16 \times 100 \mathrm{~mm}$ screw-capped vial was added bis(pinacolato)diboron ($254 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv.), 1 -bromo- 4 -chlorobenzene (144 mg , $0.750 \mathrm{mmol}, 1.50$ equiv.), and $\mathrm{NaO} t-\mathrm{Bu}(72 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv.). Note: if the alkene (0.5 mmol, 1.0 equiv) is a solid, it was added to the vial in the glovebox. A separate oven-dried 2-dram vial was charged with $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}\left(8.2 \mathrm{mg}, 0.038 \mathrm{mmol}, 0.075\right.$ equiv.) in an N_{2}-filled glovebox. Both vials were sealed with a septum and removed from the glovebox. THF (4.5 mL) was added to the reaction vial followed by alkene ($0.5 \mathrm{mmol}, 1.0$ equiv) and the contents were cooled to $0^{\circ} \mathrm{C}$ in an ice bath. DMA (0.75 mL) was added to the vial containing $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$ to prepare the catalyst solution. The catalyst solution ($0.50 \mathrm{~mL}, 0.050$ equiv of $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$) was transferred to the reaction vial via syringe. The septum was then quickly replaced by a Teflon-lined screw cap and the reaction was stirred at $4{ }^{\circ} \mathrm{C}$ for 18 h in a temperature controlled refrigerator. The reaction was quenched upon the addition of $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$), dried over MgSO_{4}, gravity filtered, and concentrated. 1,3,5-Trimethylbenzene or 1,3,5trimethoxybenzene was added as an internal standard and a small aliquot was analyzed via ${ }^{1} \mathrm{H}$ NMR.

General Procedure C: Ni-Catalyzed Arylboration of Alkenes Optimization with Variation on Methylaniline Directing Group (Used in Scheme 3)

In an N_{2}-filled glovebox, to an oven-dried $16 \times 100 \mathrm{~mm}$ screw-capped vial was added $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$ ($11 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv.), bis(pinacolato)diboron ($508 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00$ equiv.), $1-$ bromo-4-chlorobenzene ($192 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv.), and NaOt - Bu ($144 \mathrm{mg}, 1.50 \mathrm{mmol}$, 3.00 equiv.). Note: if the alkene ($0.5 \mathrm{mmol}, 1$ equiv.) is a solid, it was added to the vial in the glovebox. The vial was sealed with a septum and removed from the glovebox. Toluene (5.0 mL) was added to the reaction vial immediately followed by alkene ($0.5 \mathrm{mmol}, 1.0$ equiv.). The septum was then quickly replaced by a Teflon-lined screw cap and the reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 18 h in a temperature-controlled aluminum block. The reaction was quenched upon the addition of 1 M HCl (5 mL), and the mixture was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$), washed with 1 M KOH (3 x 5 mL), dried over MgSO_{4}, gravity filtered, and concentrated. 1,3,5-Trimethylbenzene or 1,3,5trimethoxybenzene was added as an internal standard and a small aliquot was analyzed via ${ }^{1} \mathrm{H}$ NMR.

General Procedure D: Ni-Catalyzed Arylboration of Alkenes

In an N_{2}-filled glovebox, to an oven-dried $16 \times 100 \mathrm{~mm}$ screw-capped vial was added $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$ ($11 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv.), bis(pinacolato)diboron ($508 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00$ equiv.), and KOt - Bu ($168 \mathrm{mg}, 1.50 \mathrm{mmol}, 3.00$ equiv.). Note: if the alkene ($0.5 \mathrm{mmol}, 1$ equiv.) or aryl bromide ($1.0 \mathrm{mmol}, 2.0$ equiv.) is a solid, it was added to the vial in the glovebox. The vial was sealed with a septum and removed from the glovebox. Toluene (5.0 mL) was added to the reaction vial, followed by alkene ($0.5 \mathrm{mmol}, 1$ equiv.) and arylbromide ($1.0 \mathrm{mmol}, 2.0$ equiv.). The septum was then quickly replaced by a Teflon-lined screw cap and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 18 h in a temperature-controlled aluminum block. The reaction was quenched upon the addition of 1 M $\mathrm{HCl}(5 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$), washed with $1 \mathrm{M} \mathrm{KOH}(3 \times 5$ mL), dried over MgSO_{4}, gravity filtered, and concentrated. 1,3,5-Trimethylbenzene or 1,3,5trimethoxybenzene was added as an internal standard and a small aliquot was analyzed via ${ }^{1} \mathrm{H}$ NMR.

General Procedure E: Oxidation of Alkyl Boronic Esters

Alkyl boronic ester was dissolved in THF (3 mL) and cooled to $0^{\circ} \mathrm{C}$ before NaOH (2 M aq., 3 mL) and hydrogen peroxide (30% aq., 3 mL) were added. The reaction was allowed to stir at $0^{\circ} \mathrm{C}$ for 4 h . before being carefully quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$) and the combined organic extracts were dried over MgSO_{4},
gravity filtered, and the solvent removed under reduced pressure. The crude material was then purified via silica gel chromatography.
In cases where separation from pinacol is problematic: The crude mixture was dissolved in acetone $/ \mathrm{H}_{2} \mathrm{O}(1: 1,5 \mathrm{~mL})$ before $\mathrm{NaIO}_{4}\left(545 \mathrm{mg}, 2.50 \mathrm{mmol}, 5.00\right.$ equiv.) and $\mathrm{NH}_{4} \mathrm{OAc}(197 \mathrm{mg}$, $2.60 \mathrm{mmol}, 5.20$ equiv.) were added. The mixture was stirred for 2 h . before being quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and gravity filtered. The solvent was then removed under reduced pressure, and the crude material was then purified via silica gel chromatography.

■ Characterization Data

In ${ }^{13} \mathrm{C}$ NMR spectra, signals of carbons directly bonded to boron were not detected because of quadrupolar relaxation.

3-(4-chlorophenyl)- N -methyl- N -phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentane-1-carboxamide (5): The title compound was prepared according to General Procedure D. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: toluene to 20:1 toluene: acetone) yielded 5 as a white solid. Crystals suitable for X-ray analysis were prepared by slow diffusion of pentane into a concentrated solution of $\mathbf{5}$ in dichloromethane.
Average over 2 runs: $151 \mathrm{mg}, 68 \%$ isolated yield
IR (neat): 3065 (w), 2976 (w), 2949 (w), 1647 (s), 1595 (m), 1493 (m), 1413 (s), 1323 (s), 1142 (s) cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.28-$ $2.10(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{dq}, J=13.0,6.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{td}, J=11.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 12 \mathrm{H}$) ${ }^{\mathbf{1 3}}{ }^{\mathbf{C}}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.3,145.0,144.3,131.4,129.9,129.8,127.9,127.8$, $127.5,82.9,45.7,44.2,38.8,37.7,33.7,24.6,24.6$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BClNO}_{3} 440.2158$; Found 440.2157.

3-(4-chlorophenyl)- N-methyl- N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2$\mathbf{y l})$ cyclopentane-1-carboxamide (27): The title compound was prepared according to a modified
version of General Procedure D with DMA as the solvent. NMR yield of the unpurified reaction mixture was determined using 1,3,5-trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: toluene to 20:1 toluene: acetone) yielded $\mathbf{3 3}$ as a white solid ($48 \mathrm{mg}, 22 \%$, low isolated yield because of difficult separation).
IR (neat): 2976 (m), 2931 (m), 2870 (m), 1650 (s$), 1594$ (s$), 1494$ (s$), 1371$ (s$), 1141$ (s$) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl 3): $\delta 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (dd, $J=7.4$, $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}$, $3 \mathrm{H}), 3.06(\mathrm{td}, J=9.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=13.5,8.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.91$ $-1.79(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.9,144.4,143.8$, 131.2, 129.6, 129.0, 127.8, 127.6, 127.6, 82.8, 46.8, 41.1, 37.6, 37.2, 33.4, 24.6, 24.5; HRMS (+EI) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BClNO}_{3} 439.2085$; Found 439.2088.

3-(4-chlorophenyl)- N, N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
$\mathbf{y l}) \mathbf{c y c l o p e n t a n e}$-1-carboxamide (SI-14): The title compound was prepared according to General Procedure B. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: hexane to 10:1 hexanes: acetone) yielded product as a white solid ($81 \mathrm{mg}, 43 \%$).
IR (neat): 2929 (m), 1738 (m), 1646 (s$), 1377$ (s), 1322 (m), 1139 (s$) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CDCl 3): $\delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{dt}, J=9.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H})$, 3.02 (ddd, $J=18.2,10.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (s, 3H), 2.32 (dt, $J=13.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.09$ (m, $2 \mathrm{H}), 2.02(\mathrm{dt}, J=13.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=11.7,10.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 12H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 174.6,144.8,131.5,129.8,127.9,82.9,45.6,43.5,37.7$, 37.1, 35.7, 32.6, 24.6, 24.6; HRMS (APCI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{BClNO}_{3} 378.2005$; Found 378.2012.

(3-(4-chlorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentyl)(indolin-1-
yl)methanone (SI-15): The title compound was prepared according to General Procedure B. NMR yield of the unpurified reaction mixture was determined using 1,3,5-trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: hexanes to 50:1 hexanes: acetone) yielded product as a white solid ($79 \mathrm{mg}, 35 \%$).
IR (neat): 2971 (w), 1738 (m), 1650 (s), 1486 (m), 1408 (s), 1319 (s), 1141 (s), 752 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl $)^{2}: \delta 8.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dt}, J=13.5,6.8 \mathrm{~Hz}, 6 \mathrm{H}), 7.03(\mathrm{td}, J$
$=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{td}, J=8.9,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{p}, J=7.7 \mathrm{~Hz}$, 1 H), 3.22 (t, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.53 (ddd, $J=13.0,7.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.21$ (m, 2H), 2.18 (ddd, $J=13.0,8.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 174.7,143.7,143.4,131.5,131.2,129.2,128.0,127.6,124.5,123.5,117.2,83.0$, 48.1, 46.7, 43.4, 36.6, 31.9, 28.1, 24.7, 24.6; HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{BClNO}_{3} \mathrm{Na} 474.1978$; Found 474.1977.

N-(3-chlorophenyl)-3-(4-chlorophenyl)- N-methyl-4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)cyclopentane-1-carboxamide (SI-16): The title compound was prepared according to General Procedure C. NMR yield of the unpurified reaction mixture was determined using 1,3,5-trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: hexanes to 10:1 hexanes: acetone) yielded product as a white solid ($104 \mathrm{mg}, 44 \%$).
IR (neat): 2971 (w), 1714 (m), 1654 (s), 1589 (m), 1371 (s$), 1323$ (m), 1141 (m) $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25$ (d, $\left.J=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23-$ $7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dt}, J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.93-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 175.1,145.5,144.9,135.1,131.5,130.7,129.9,128.1,127.9,127.8,125.8,82.9$, 45.7, 44.2, 38.8, 37.7, 33.7, 24.6; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{BCl}_{2} \mathrm{NO}_{3}$ 474.1773; Found 474.1778.

3-(4-chlorophenyl)- N -(4-methoxyphenyl)- N -methyl-4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)cyclopentane-1-carboxamide (SI-17): The title compound was prepared according to General Procedure C. NMR yield of the unpurified reaction mixture was determined using 1,3,5-trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: hexanes to 10:1 hexanes: acetone) yielded product as a white solid ($134 \mathrm{mg}, 57 \%$).
IR (neat): 2971 (m), 1738 (s), 1650 (s), 1509 (s), 1377 (s), 1247 (s), 837 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl3): $\delta 7.29$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23-7.16$ (m, 2H), $7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.89$ $(\mathrm{m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 4 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{dt}, J=$ $13.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=12.0,10.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 175.5,158.9,145.1,137.1,131.4,129.9,128.5,127.9,114.8,82.9,55.5$,
45.7, 44.0, 38.7, 37.8, 33.7, 24.6, 24.6; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BClNO}_{4}$ 470.2269; Found 470.2274.

3-(4-chlorophenyl)- N -methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)- N -(o -tolyl)cyclopentane-1-carboxamide (SI-18): The title compound was prepared according to General Procedure C. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: hexanes to $10: 1$ hexanes: acetone) yielded product as a white solid ($117 \mathrm{mg}, 51 \%$).
IR (neat): 2970 (w), 1738 (s), 1650 (s), 1372 (s), 1321 (m), 1216 (s), 1143 (m) cm ${ }^{-1}$; ${ }^{1}$ H NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.18$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.12 (ddd, $J=23.4,7.4$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 4 \mathrm{H}), 2.12$ (dqd, $J=17.0,12.2,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{ddt}, J=24.2,13.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.57$ (dtd, $J=11.9,9.5$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.94-0.81(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$, mix of rotomers): $\delta 175.5,175.5$, $145.1,145.0,142.8,142.8,135.6,135.6,131.4,131.4,129.9,129.9,128.3,128.2,127.9,127.4$, 127.3, 82.9, 82.8, 45.8, 45.7, 44.2, 44.0, 39.2, 38.4, 36.2, 36.1, 34.0, 33.2, 24.6, 24.6, 17.5; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BClNO}_{3} 454.2319$; Found 454.2326.

3-(4-chlorophenyl)- N-ethyl- N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2$\mathbf{y l}$)cyclopentane-1-carboxamide (SI-19): The title compound was prepared according to General Procedure C. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: hexanes to 20:1 hexanes: acetone) yielded product as a white solid ($97 \mathrm{mg}, 43 \%$).
IR (neat): 2975 (w), 1647 (s), 1594 (m), 1493 (s), 1372 (s), 1258 (s), 1142 (s), 728 (s), 700 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{qq}, J=13.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{dt}, J=10.2,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.60(\mathrm{tt}, J=10.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.82(\mathrm{dt}, J=13.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{ddd}, J=$ $12.1,10.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 174.6,145.1,142.6,131.4,129.9,129.6,128.5,127.9,127.8,82.9,45.7,44.5,44.3$, 38.8, 33.8, 24.6, 24.6, 13.1; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BClNO}_{3} 454.2319$; Found 454.2326.

3-(4-chlorophenyl)- N,1-dimethyl- N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
$\mathbf{y l}$)cyclopentane-1-carboxamide (6): The title compound was prepared according to General Procedure D. Purification by silica gel column chromatography (Gradient: toluene to 20:1 toluene: acetone) yielded $\mathbf{6}$ as a white solid.
Average over 2 runs: $156 \mathrm{mg}, 69 \%$ isolated yield
IR (neat): 2970 (w), 1738 (w), 1628 (s), 1594 (m), 1492 (s), 1356 (s), 1318 (s), 1141 (s) $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl $): \delta 7.40(\mathrm{dd}, J=8.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J$ $=13.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{td}, J=11.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{dd}, J=13.1,7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 177.8,144.8$, $144.3,131.4,129.6,129.2,128.9,127.9,127.7,82.8,52.3,45.7,44.0,40.8,40.6,25.4,24.8,24.4$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BClNO}_{3} 454.2315$; Found 454.2317.

7-(4-chlorophenyl)-2-phenyl-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-
azaspiro[4.4]nonan-1-one (7): The title compound was prepared according to General Procedure D. Purification by silica gel column chromatography (Gradient: toluene to $50: 1$ toluene: acetone) yielded 7 as a white solid.
Average over 2 runs: $53 \mathrm{mg}, 58 \%$ isolated yield
IR (neat): 2972 (w), 2869 (w), 1688 (s), 1490 (m), 1370 (s), 1323 (s), 1141 (s) cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=6.4,5.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.4,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.92(\mathrm{td}, J=11.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (dd, $J=$ $13.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3): δ 177.6, 144.4, $139.8,131.7,129.9,128.8,128.0,124.3,119.6,83.0,54.1,45.5,45.2,44.4,38.3,32.8,24.6,24.6$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{BClNO}_{3} 452.2158$; Found 452.2159.

3-(4-chlorophenyl)-4-hydroxy- N,3-dimethyl- N-phenylcyclopentane-1-carboxamide (8): The title compound was prepared according to General Procedure D followed by General Procedure E. Purification by silica gel column chromatography (Gradient: toluene to 20:1 toluene: acetone) yielded $\mathbf{8}$ as a white solid.
Average over 2 runs: $91 \mathrm{mg}, 53 \%$ isolated yield (two steps)
IR (neat): 3388 (br), 2969 (w), 1738 (s), 1620 (s), 1591 (s), 1493 (s), 1372 (s), 720 (s) $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3): $\delta 7.47$ (dd, $J=8.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.17$ (m, $6 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{br}), 4.15(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.08-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=12.7$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{ddd}, J=14.6,10.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.90(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathbf{C D C l} 3$): $\delta 178.8,145.3,143.9,131.4,130.0,128.5,128.3,128.2,127.2,79.4,54.2$, 40.3, 38.6, 38.0, 37.0, 28.8; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClNO}_{2} 344.1412$; Found 344.1414.

3-(4-chlorophenyl)- N-methyl- $N, 3$-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentane-1-carboxamide (9): The title compound was prepared according to General Procedure D (0.10 mmol scale). Purification by silica gel column chromatography (Gradient: toluene to 50:1 toluene: acetone) yielded 9 as a white solid.
Average over 2 runs: $7.6 \mathrm{mg}, 15 \%$ isolated yield
IR (neat): 2973 (w), 1738 (m), 1651 (s), 1594 (m), 1493 (s), 1363 (s), 1142 (s), 698 (s) $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl ${ }^{2}$): $\delta 7.24-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{dt}, J=18.4,6.6 \mathrm{~Hz}$, $7 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.47$ (s, 2H), $0.91(\mathrm{~s}, 6 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13}$ C NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.0,149.1,147.6,143.9$, $131.3,129.6,129.5,127.8,127.6,127.5,127.2,126.7,125.5,83.0,57.4,43.8,41.1,37.5,31.2$, 24.5, 24.4; HRMS (APCI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{BClNO}_{3}$ 516.2477; Found 516.2482.

N-methyl- $N, 3$-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentane-1carboxamide (10): The title compound was prepared according to General Procedure D. Purification by silica gel column chromatography (Gradient: toluene to 20:1 toluene: acetone) yielded $\mathbf{1 0}$ as a white solid.
Average over 2 runs: $120 \mathrm{mg}, 59 \%$ isolated yield
IR (neat): 2976 (w), 2872 (w), 1737 (m), 1650 (s), 1593 (m), 1492 (m), 1413 (s), 1379 (s), 1144 (s), $696(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.41(\mathrm{dd}, J=8.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}$,
$3 H), 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 4 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.16(\mathrm{~m}$, 2 H), 2.11 (dt, $J=13.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.80(\mathrm{dt}, J=13.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{dd}, J=19.4,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 0.84(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.3,146.3,144.3,129.7,127.9$, 127.7, 127.6, 127.5, 125.7, 82.7, 46.3, 44.3, 38.8, 37.6, 33.7, 24.6, 24.6; HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BNO}_{3} \mathrm{Na} 428.2367$; Found 428.2370.

3-(4-methoxyphenyl)- N-methyl- N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)cyclopentane-1-carboxamide (11): The title compound was prepared according to General Procedure D. Purification by silica gel column chromatography (Gradient: toluene to 20:1 toluene: acetone) yielded $\mathbf{1 1}$ as a white solid.
Average over 2 runs: $113 \mathrm{mg}, 52 \%$ isolated yield
IR (neat): 2971 (m), 2951 (m), 1738 (m), 1649 (s), 1511 (m), 1378 (s$), 1248$ (s$) \mathrm{cm}^{\mathbf{- 1}}{ }^{\mathbf{1}}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{dd}, J=8.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.11(\mathrm{~m}, 4 \mathrm{H})$, $6.79-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=12.8,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.31-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{dt}, J=13.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dt}, J=13.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54$ (td, $J=10.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.4,157.8$, 144.4, 138.7, 129.7, 129.4, 127.7, 127.5, 113.3, 82.7, 55.3, 45.5, 44.3, 38.9, 37.6, 33.6, 27.1, 24.6, 24.6; HRMS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BNO}_{4} \mathrm{Na} 458.2473$; Found 458.2475.

N-methyl- N-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(o-tolyl)cyclopentane-1-carboxamide (12): The title compound was prepared according to General Procedure D Purification by silica gel column chromatography (Gradient: toluene to $20: 1$ toluene: acetone) yielded 12 as a white solid.
Average over 2 runs: $83 \mathrm{mg}, 40 \%$ isolated yield
IR (neat): 2971 (w), 1738 (m), 1650 (s), 1591 (m), 1374 (s$), 1140$ (s$), 669$ (s$) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400
$\left.\mathbf{M H z}, \mathrm{CDCl}_{3}\right): \delta 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27$ $-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 2.42-$ $2.29(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=$ $12.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{q}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H}), 0.77(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 175.2,144.4,143.6,136.4,129.7,129.6,127.7,127.5,127.4,125.8,125.6,82.7,44.3$, 41.9, 38.1, 37.7, 33.6, 24.7, 24.4, 20.2; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{BNO}_{3}$ 420.2705; Found 420.2703.

3-(4-fluorophenyl)- N -methyl- N -phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)cyclopentane-1-carboxamide (13): The title compound was prepared according to General Procedure D. Purification by silica gel column chromatography (Gradient: toluene to 20:1 toluene: acetone) yielded $\mathbf{1 3}$ as a white solid.
Average over 2 runs: $124 \mathrm{mg}, 59 \%$ isolated yield
IR (neat): 2948 (w), 1646 (s), 1594 (m), 1508 (m), 1372 (s), 1221 (s), 841 (s), 776 (s) cm ${ }^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.40(\mathrm{dd}, J=8.3,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.14$ (m, $2 \mathrm{H}), 6.93-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{p}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-$ $2.05(\mathrm{~m}, 3 \mathrm{H}), 1.78(\mathrm{dt}, J=13.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{ddd}, J=12.2,9.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 12 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.3,161.3\left(\mathrm{C}-\mathrm{F},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=242 \mathrm{~Hz}\right), 144.3,142.2$, $129.85\left(\mathrm{C}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 129.7,127.7,127.4,114.4\left(\mathrm{C}-\mathrm{F},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=20.9 \mathrm{~Hz}\right), 82.8,45.5,44.1$, $39.0,37.6,33.6,24.6$; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-118.23$ (td, $J=8.9,4.4 \mathrm{~Hz}$); HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BFNO}_{3} 424.2458$; Found 424.2464 .

N-methyl-3-(naphthalen-1-yl)- N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)cyclopentane-1-carboxamide (14): The title compound was prepared according to General Procedure D. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (10:1 hexanes: acetone) yielded $\mathbf{1 4}$ as a white solid.
Average over 2 runs: $116 \mathrm{mg}, 51 \%$ isolated yield
IR (neat): 3050 (s), 2974 (s), 1647 (s), 1370 (s), 1140 (s), 779 (s$), 669$ (s$) \mathrm{cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, CDCl 3): $\delta 8.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.24(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.31(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{p}, J=6.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}), 1.90(\mathrm{~h}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.67(\mathrm{~s}, 6 \mathrm{H}), 0.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 5 1 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $175.2,144.3,140.9,133.7,132.3,129.8,128.4,127.8,127.5,126.3,125.4,125.4,125.0,124.4$, 124.3, 82.5, 44.0, 41.4, 37.8, 37.7, 33.7, 24.3, 24.2; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BNO}_{3} 456.2705$; Found 456.2704.

N-methyl-3-(4-(morpholinomethyl)phenyl)- N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)cyclopentane-1-carboxamide (15): The title compound was prepared according to General Procedure D. NMR yield of the unpurified reaction mixture was determined using 1,3,5-trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (Gradient: 2:1 to 1.5:1 DCM: acetone) yielded 15 as a white solid.
Average over 2 runs: $161 \mathrm{mg}, 64 \%$ isolated yield
IR (neat): 2972 (m), 2762 (s), 1651 (s), 1372 (s$), 1115$ (s$), 700$ (s$) \mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (600 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.18$ $(\mathrm{m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{q}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dq}, J=10.5,7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{q}, J=8.2,4.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.27-2.17$ (m, $2 \mathrm{H}), 2.10(\mathrm{dt}, J=13.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dt}, J=13.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{td}, J=11.1,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 0.85 (d, $J=14.7 \mathrm{~Hz}, 12 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.3,145.3,144.4,134.8,129.7$, $128.9,128.4,127.7,127.5,82.7,66.9,63.1,53.4,46.0,44.3,38.8,37.7,33.7,24.6,24.6$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{BN}_{2} \mathrm{O}_{4}$ 505.3232; Found 505.3227.

N -methyl-3-(1-methyl-1H-indol-5-yl)- N -phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentane-1-carboxamide (17): The title compound was prepared according to General Procedure D. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (6:1 hexanes: acetone) yielded $\mathbf{1 7}$ as a white solid.
Average over 2 runs: $167 \mathrm{mg}, 73 \%$ isolated yield
IR (neat): 2973 (s), 1650 (s), 1372 (s), 1142 (s), 701 (s) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R ~ (~} 600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ $7.53(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=10.4,7.8$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.15$ (dt, $J=$ $14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dt}, J=13.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.78(\mathrm{~s}, 6 \mathrm{H}), 0.71(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.4,144.4,137.0,135.6,129.7,128.5,128.4,127.6,127.5$, $122.6,120.0,108.4,100.7,82.5,46.4,44.5,39.5,37.7,33.8,32.8,24.6,24.5$; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{BN}_{2} \mathrm{O}_{3}$ 459.2813; Found 459.2821.

tert-butyl
methyl(4-(4-(methyl(phenyl)carbamoyl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentyl)phenyl)carbamate (18): The title compound was prepared according to General Procedure D. NMR yield of the unpurified reaction mixture was determined using 1,3,5-trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (6:1 hexanes: acetone) yielded 18 as a white solid.
Average over 2 runs: $171 \mathrm{mg}, 64 \%$ isolated yield
 $\left.\mathbf{C D C l}_{3}\right): \delta 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{td}, J=$ $10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{qd}, J=11.9,10.3,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{dt}, J=13.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dt}, J$ $=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{td}, J=11.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathrm{C}$ NMR (151 MHz, CDCl3): $\delta 218.0,175.3,154.7,144.3,143.4,141.6,129.7,128.5,127.4,124.8$, 82.7, 79.9, 45.7, 44.2, 38.7, 37.6, 37.4, 33.6, 28.3, 28.3, 24.6; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{BN}_{2} \mathrm{O}_{5} 535.3338$; Found 535.3339.

3-(6-methoxypyridin-3-yl)- N-methyl- N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentane-1-carboxamide (19): The title compound was prepared according to General Procedure D. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (6:1 hexanes: acetone) yielded 19 as a white solid.
Average over 2 runs: $188 \mathrm{mg}, 68 \%$ isolated yield
IR (neat): 2975 (s), 1650 (s), 1493 (s), 1142 (s), 699 (s) $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, CDCl3): δ $7.95(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{dt}, J=13.3,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.52(\mathrm{td}, J=10.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l} 3): \delta 175.3$, $162.6,146.1,144.2,138.9,134.5,129.7,127.7,127.3,110.0,82.9,53.3,44.0,42.8,38.5,37.6$, 33.6, 24.6, 24.5; HRMS (ESI+) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{BN}_{2} \mathrm{O}_{4} 437.2606$; Found 437.2612.

3-(furan-3-yl)- N -methyl- N -phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)cyclopentane-1-carboxamide (20): The title compound was prepared according to General Procedure D. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (6:1 hexanes: acetone) yielded $\mathbf{2 0}$ as a clear oil.
Average over 2 runs: $158 \mathrm{mg}, 80 \%$ isolated yield
 $7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=7.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}$, $2 \mathrm{H}), 6.48(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{q}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dq}, J=9.0,4.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{dt}, J=13.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.37$ $(\mathrm{m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.5,144.3,141.8,139.0$, 129.7, 129.3, 127.7, 127.4, 111.5, 82.8, 77.3, 77.1, 76.9, 43.7, 38.4, 37.6, 36.6, 33.2, 24.7, 24.6; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BNO}_{4} 396.2341$; Found 396.2345.

N-methyl-3-(2-methylprop-1-en-1-yl)- N -phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentane-1-carboxamide (21): The title compound was prepared according to General Procedure D. NMR yield of the unpurified reaction mixture was determined using 1,3,5trimethylbenzene as an NMR standard. Purification by silica gel column chromatography (8:1 hexanes: acetone) yielded 21 as a clear oil.
Average over 2 runs: $157 \mathrm{mg}, 82 \%$ isolated yield
IR (neat): 2976 (s), 1647 (s), 1373 (s), 1142 (s), 750 (s) cm ${ }^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathbf{~ M H z , ~ C D C l 3) : ~} \delta$ $7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{dd}, J=10.4,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{p}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{p}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{q}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80(\mathrm{dt}, J=15.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddt}, J=20.6,13.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$, $1.32-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 12 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.8,144.4$, 129.6, 129.5, 129.2, 127.6, 127.5, 82.9, 44.0, 39.6, 38.6, 37.7, 33.2, 25.8, 24.9, 24.8, 18.0; HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{BNO}_{3} 384.2705$; Found 384.2705.

Further Functionalization:

3-(4-chlorophenyl)-4-hydroxy- N-methyl- N-phenylcyclopentane-1-carboxamide (22): A 25 mL round-bottom flask was charged with $\mathbf{5}(220 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.), THF (5.0 mL) and NaOH ($2.5 \mathrm{~mL}, 2.0 \mathrm{M}$ aqueous solution, 5.0 mmol , 10 equiv.). The reaction flask was placed in an ice bath and cooled to $0{ }^{\circ} \mathrm{C}$, then, $\mathrm{H}_{2} \mathrm{O}_{2}(0.150 \mathrm{~mL}, 30 \%$ aqueous solution, $1.35 \mathrm{mmol}, 3.00$ equiv.) was added via syringe. The ice bath was removed and the solution was stirred at room temperature for 10 hours then quenched upon the addition of water $(5 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous MgSO_{4}, gravity filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography ($2: 1$ hexanes:EtOAc) yielded a clear oil. To remove the small amount of pinacol mixed in the product, the mixture was reacted with $\mathrm{NaIO}_{4}(107 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{NH}_{4} \mathrm{OAc}$ ($39 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1.0 equiv.) in acetone (2 mL) and water (2 mL) at room temperature for 15 min . The resulting mixture was washed with water (2 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), the combined organic layers were dried over anhydrous MgSO_{4}, gravity filtered, concentrated under reduced pressure to yield 22 as a white solid ($148 \mathrm{mg}, 90 \%$ yield).
IR (neat): 3256 (br), 2931 (s), 1622 (s), 1493 (s), 670 (s) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathbf{~ M H z , ~ C D C l 3) : ~} \delta$ $7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.15(\mathrm{~m}, 6 \mathrm{H}), 4.67-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.02-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=12.0,8.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.02$ (m, 3H), 1.92 (ddd, $J=14.2,10.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C D C l 3}$): $\delta 178.9$, 143.8, $138.4,132.0,130.0,130.0,128.2,128.1,127.2,75.6,52.1,39.2,39.0,37.9,34.9$; HRMS (APCI+) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{NCl} 330.1255$; Found 330.1254.

3-(4-chlorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentane-1-
carboxylic acid (23): To a $16 \times 100 \mathrm{~mm}$ screw-capped vial was added $\mathbf{5}(130 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ equiv.) and HCl ($2.0 \mathrm{~mL}, 6 \mathrm{M}$ aqueous solution) The vial was capped and stirred vigorously in a preheated oil bath at $100{ }^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was then allowed to cool to room temperature, diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic fractions were washed with brine (10 mL), dried over MgSO_{4} and concentrated under reduced pressure. To the resulting oil was added pinacol ($71 \mathrm{mg}, 0.60 \mathrm{mmol}, 2.00$ equiv.) and toluene (3.0 mL). The mixture was stirred at room temperature for 3 h . Volatile components were
removed under reduced pressure and purified via silica gel column chromatography (10:3 hexanes: acetone) to provide 23 as a white solid ($73 \mathrm{mg}, 69 \%$). Crystals suitable for X-ray analysis were prepared by slow diffusion of pentane into a concentrated solution of $\mathbf{2 3}$ in dichloromethane.
IR (neat): 3052 (br), 2978 (s), 1702 (s), 1379 (s), 1142 (s), 737 (s) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right): \delta 7.23-7.20(\mathrm{~m}, 4 \mathrm{H}), 3.41(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{p}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dt}, J=$ $11.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{q}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3): $\delta 180.9,143.6,131.8,129.5,128.1,83.2,46.0,45.0,36.8,32.2,24.6$, 24.5; HRMS (APCI+) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{BCl} 351.1529$; Found 351.1534.

3-(4-chlorophenyl)- N -methyl- N -phenyl-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)cyclopentane-1-carboxamide (24): To an oven-dried $13 \times 100 \mathrm{~mm}$ screw-cap vial was added boronic ester 5 ($88 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.). The vial was evacuated/backfilled with N_{2} (3 x) and sealed with a septum. THF (2 mL) and $\mathrm{CH}_{2} \mathrm{Br}_{2}(35 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5$ equiv.) were then added via syringe. The solution was cooled to $-78^{\circ} \mathrm{C}$ before the addition of ${ }^{n} \mathrm{BuLi}$ in hexane (1.91 $\mathrm{M}, 0.23 \mathrm{~mL}, 0.44 \mathrm{mmol}, 2.2$ equiv.) dropwise over 10 min . The reaction was stirred for 5 min . at $-78^{\circ} \mathrm{C}$ before warming to room temperature. The reaction was allowed to stir for 18 h at room temperature before being quenched upon the addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. The aqueous layer was then extracted with EtOAc ($3 \times 2 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was purified via silica gel chromatography ($6: 1$ hexanes: acetone) to yield 24 as a white solid ($63 \mathrm{mg}, 69 \%$).
IR (neat): 2974 (s), 2925 (s), 1650 (s), 1371 (s), 1143 (s), 700 (s$) \mathrm{cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 6 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{q}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{p}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{tdd}, J=12.8,10.8,9.3,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{dt}, J=$ $13.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 12 \mathrm{H}), 0.45-0.16(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.7,144.3$, 142.4, 131.5, 130.4, 129.7, 127.9, 127.8, 127.5, 82.8, 48.1, 41.6, 40.1, 38.4, 37.7, 36.6, 25.0, 24.6; HRMS (APCI+) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{NBCl}$ 454.2315; Found 454.2322.

N-((3-(4-chlorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclopentyl)methyl)-N-methylaniline (25): To an oven-dried 25 mL round bottom flask was added boronic ester 5 ($220 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The flask was evacuated/backfilled with $\mathrm{N}_{2}(3 \mathrm{x})$ and sealed with a septum. THF (5 mL) was added and the resulting solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath.

DIBAL-H ($2.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 4.0 equiv.) was added dropwise over 5 min . The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction was quenched upon adding Rochelle's salt solution (sat. solution in $\mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~mL}$). The resulting mixture was stirred at room temperature for 1 hour and NaOH ($5 \mathrm{~mL}, 2 \mathrm{M}$ aqueous solution) was added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL), and the combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was purified via silica gel column chromatography ($20: 1$ hexanes: EtOAc) to yield 25 as a white solid ($134 \mathrm{mg}, 63 \%$).
IR (neat): 2974 (s), 2976 (s), 2862 (s), 1598 (s), 1378 (s), 1141 (s), 746 (s) cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 7.28-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{td}, J=10.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dt}, J=13.3$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dt}, J=12.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dt}, J=10.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.53(\mathrm{~m}, 2 \mathrm{H})$,
 128.0, 115.8, 112.0, 82.9, 57.6, 46.0, 40.0, 39.0, 38.9, 33.5, 24.8, 24.5; HRMS (ESI+) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{NBCl} 426.2366$; Found 426.2365.

3-(4-chlorophenyl)- N-methyl- N-phenyl-4-(prop-1-en-2-yl)cyclopentane-1-carboxamide
(26): A flame-dried 25 mL round bottom flask under N_{2} was charged with 2-bromoprop-1-ene (71 $\mu \mathrm{L}, 0.80 \mathrm{mmol}, 4.0$ equiv.). THF (4.0 mL) was added and the solution cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice/acetone bath. ${ }^{t} \mathrm{BuLi}(0.60 \mathrm{~mL}, 2.6 \mathrm{M}$ in pentane, $1.6 \mathrm{mmol}, 8.0$ equiv.) was added dropwise and the solution stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour. A solution of $5(88 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) in THF (0.8 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 3 h . A solution of I_{2} ($200 \mathrm{mg}, 0.80 \mathrm{mmol}, 4.0$ equiv.) in $\mathrm{MeOH}(0.8 \mathrm{~mL})$ was added dropwise down the side of the flask and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes then allowed to warm to room temperature and stirred for 1 h . The reaction was quenched upon the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (sat. solution in $\mathrm{H}_{2} \mathrm{O}, 10.0 \mathrm{~mL}$) and stirred for another 1 h . The organic layer was separated and the aqueous phase extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine ($1 \times 10 \mathrm{~mL}$), dried over MgSO_{4}, gravity filtered, and concentrated under reduced pressure. Crude material was purified by silica gel column chromatography ($12: 1$ hexanes: acetone) to yield 26 as a colorless oil ($53 \mathrm{mg}, 75 \%$ yield).
 $7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 6 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H})$, $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{td}, J=10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ $2.12(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{dt}, J=13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 175.4$, 145.1, 144.1, 142.3, 131.5, 130.1, 129.8, 127.9, 127.8, 127.4, 111.8, 51.6, 47.0, 41.3, 37.7, 37.6, 34.9, 22.6; HRMS (ESI+) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ONCl} 354.1619$; Found 354.1620.

■ Gram Scale Reaction Procedure

In an N_{2}-filled glovebox, to a flame-dried $100-\mathrm{mL}$ round-bottomed flask equipped with a stir bar was added $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$ ($110 \mathrm{mg}, 0.50 \mathrm{mmol}, 0.10$ equiv.), bis(pinacolato)diboron ($5.08 \mathrm{~g}, 20.0$ mmol, 4.00 equiv.), 1-bromo-4-chlorobenzene ($1.92 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.00$ equiv.), and $\mathrm{NaO} t-\mathrm{Bu}$ $(1.44 \mathrm{~g}, 15.0 \mathrm{mmol}, 3.00$ equiv.). The flask was sealed with a septum and removed from the glovebox. Toluene (50 mL) was added to the reaction vial immediately followed by N -methyl- N -phenylcyclopent-3-ene-1-carboxamide ($4 \mathbf{e}$) ($0.95 \mathrm{~mL}, 1.0 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.). The reaction was stirred at $50^{\circ} \mathrm{C}$ for 18 h in an oil bath, then quenched upon the addition of $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), washed with $1 \mathrm{M} \mathrm{KOH}(3 \times 50 \mathrm{~mL})$, dried over MgSO_{4}, gravity filtered, and concentrated. 1,3,5-Trimethylbenzene was added as an internal standard and a small aliquot was analyzed via ${ }^{1} \mathrm{H}$ NMR. Purification by silica gel column chromatography (Gradient: toluene to $20: 1$ toluene: acetone) yielded product 5 as a white solid (1.6 g, 71\%).

■ Mechanism Studies:

Counterion Studies (Scheme 6A):

In an N_{2}-filled glovebox, to an oven-dried $16 \times 100 \mathrm{~mm}$ screw-capped vial was added $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$ ($11 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv.), bis(pinacolato)diboron ($508 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00$ equiv.), $1-$ bromo-4-chlorobenzene ($192 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv.), and base ($1.50 \mathrm{mmol}, 3.00$ equiv.). The vial was sealed with a septum and removed from the glovebox. The toluene ($5.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added to the reaction vial, followed by alkene $\mathbf{4 e}(95 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The septum was then quickly replaced by a Teflon-lined screw cap and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 18 h in a temperature-controlled aluminum block. The reaction was quenched upon the addition of 1 M $\mathrm{HCl}(5 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$), washed with $1 \mathrm{M} \mathrm{KOH}(3 \times 5$ mL), dried over MgSO_{4}, gravity filtered, and concentrated. 1,3,5-Trimethylbenzene ($28 \mu \mathrm{~L}, 0.2$ mmol) was added as an internal standard and a small aliquot was analyzed via ${ }^{1} \mathrm{H}$ NMR.

Table S1: Counterion effect on diastereoselectivity

Entry	Base	\% syn (5)	\% anti (27)	dr (syn:anti)
$\mathbf{1}$	$\mathrm{KO}^{t} \mathrm{Bu}$	80	3	$23: 1$
$\mathbf{2}$	$\mathrm{NaO}^{t} \mathrm{Bu}$	79	6	$12: 1$
$\mathbf{3}$	$\mathrm{LiO}^{t} \mathrm{Bu}$	39	6	$7: 1$

Counterion Studies with Corresponding Crown Ether (Scheme 6A):

In an N_{2}-filled glovebox, to an oven-dried $16 \times 100 \mathrm{~mm}$ screw-capped vial was added $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$ ($11 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv.), bis(pinacolato)diboron ($508 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00$ equiv.), 1 -bromo-4-chlorobenzene ($192 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv.), base ($1.50 \mathrm{mmol}, 3.00$ equiv.), and $18-$ crown-6 ($396 \mathrm{mg}, 1.50 \mathrm{mmol}, 3.0$ equiv.) when applicable. The vial was sealed with a septum and removed from the glovebox. The toluene $(5.0 \mathrm{~mL}, 0.1 \mathrm{M})$ was added to the reaction vial, followed
by alkene $4 \mathbf{e}(95 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and $15-\mathrm{crown}-5$ ($297 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 3.00$ equiv.) or 12-crown-4 ($243 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 3.00$ equiv.) when applicable. The septum was then quickly replaced by a Teflon-lined screw cap and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 18 h in a temperaturecontrolled aluminum block. The reaction was quenched upon the addition of $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$, and the mixture was extracted with EtOAc ($3 \times 3 \mathrm{~mL}$), washed with $1 \mathrm{M} \mathrm{KOH}(3 \times 5 \mathrm{~mL}$), dried over MgSO_{4}, gravity filtered, and concentrated. 1,3,5-Trimethylbenzene ($28 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) was added as an internal standard and a small aliquot was analyzed via ${ }^{1} \mathrm{H}$ NMR.

Table S2: Crown Ether effect on diastereoselectivity

Entry	Base	Crown Ether	\% syn (5)	\% anti (27)	dr (syn:anti)
$\mathbf{1}$	$\mathrm{KO}^{t} \mathrm{Bu}$	18 -crown-6	25	<1	$>30: 1$
$\mathbf{2}$	$\mathrm{NaO}^{t} \mathrm{Bu}$	15 -crown-5	81	<1	$>30: 1$
$\mathbf{3}$	$\mathrm{LiO}^{t} \mathrm{Bu}$	12 -crown-4	86	<1	$>30: 1$

Solvent Ratios Studies (Scheme 6B):

In an N_{2}-filled glovebox, to an oven-dried $16 \times 100 \mathrm{~mm}$ screw-capped vial was added $\mathrm{Ni}(\mathrm{DME}) \mathrm{Cl}_{2}$ ($11 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.10$ equiv.), bis(pinacolato)diboron ($508 \mathrm{mg}, 2.00 \mathrm{mmol}, 4.00$ equiv.), 1 -bromo-4-chlorobenzene ($192 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.00$ equiv.), and $\mathrm{KO} t-\mathrm{Bu}(168 \mathrm{mg}, 1.50 \mathrm{mmol}, 3.00$ equiv.). The vial was sealed with a septum and removed from the glovebox. The toluene:DMA solvent ($5.0 \mathrm{~mL}, 0.1 \mathrm{M}$) was added to the reaction vial, followed by alkene $\mathbf{4 e}(95 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$, 1.0 equiv.). The septum was then quickly replaced by a Teflon-lined screw cap and the reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 18 h in a temperature-controlled aluminum block. The reaction was quenched upon the addition of $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{EtOAc}(3 \times 3$ mL), washed with $1 \mathrm{M} \mathrm{KOH}(3 \times 5 \mathrm{~mL})$, dried over MgSO_{4}, gravity filtered, and concentrated. 1,3,5-Trimethylbenzene ($28 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) was added as an internal standard and a small aliquot was analyzed via ${ }^{1} \mathrm{H}$ NMR.

Table S3: Relating solvent ratio to diastereoselectivity

Entry	toluene:DMA	\% syn (5)	\% anti (27)	dr (syn:anti)
$\mathbf{1}$	$1: 0$	75	3	$23: 1$
$\mathbf{2}$	$9: 1$	77	3	$26: 1$
$\mathbf{3}$	$4: 1$	78	5	$16: 1$
$\mathbf{4}$	$2: 1$	70	11	$6.1: 1$
$\mathbf{5}$	$1: 1$	54	24	$2.2: 1$
$\mathbf{6}$	$1: 2$	39	49	$1: 1.3$
$\mathbf{7}$	$1: 4$	35	56	$1: 1.6$
$\mathbf{8}$	$1: 9$	25	61	$1: 2.4$
$\mathbf{9}$	$0: 1$	23	66	$1: 3.0$

■ X-ray Crystal Structures:

The ellipsoid contour percent probability level is 50% for the image of the structure.
Table S4. Crystal data and structure refinement for 5.

Empirical formula
Formula weight
Crystal color, shape, size
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)

Data collection

Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed Reflections
Completeness to theta $=25.242^{\circ}$

Solution and Refinement

Absorption correction
Max. and min. transmission
Solution
Refinement method

C25 H31 B Cl N O3
439.77
colourless plate, $0.25 \times 0.1 \times 0.02 \mathrm{~mm}^{3}$
100.0 K
0.71073 A

Monoclinic, P 1 21/c 1

$$
\begin{array}{ll}
a=7.2807(4) \AA & \alpha=90^{\circ} . \\
b=37.463(3) \AA & \beta=112.541(2)^{\circ} . \\
c=9.2992(6) \AA & \gamma=90^{\circ} .
\end{array}
$$

4
$1.247 \mathrm{~g} / \mathrm{cm}^{3}$
$0.189 \mathrm{~mm}^{-1}$
936

Bruker Venture D8, Photon III 2.174 to 26.372°.
$-9<=\mathrm{h}<=9,-46<=\mathrm{k}<=46,-11<=1<=11$
29834
4786 [Rint $=0.1008$]
2805
99.8 \%

Semi-empirical from equivalents
0.7454 and 0.5317

Intrinsic methods
Full-matrix least-squares on F^{2}

Weighting scheme

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{w}=\left[\mathrm{\sigma}^{2} \mathrm{Fo}^{2}+\mathrm{AP}^{2}+\mathrm{BP}\right]^{-1}$, with $\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=, \mathrm{B}=$ 4786 / 359 / 308
1.088
$\mathrm{R} 1=0.0762, \mathrm{wR} 2=0.1916$
$\mathrm{R} 1=0.1182, \mathrm{wR} 2=0.2204$
n/a
0.273 and $-0.412 \mathrm{e} . \AA^{-3}$

The ellipsoid contour percent probability level is 50% for the image of the structure.
Table S5. Crystal data and structure refinement for 23.

Empirical formula
Formula weight
Crystal color, shape, size
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)

Data collection

Diffractometer
Source
Detector

C18 H24 B Cl O4
350.63
colorless needle, $0.21 \times 0.05 \times 0.05 \mathrm{~mm}^{3}$
253(2) K
0.71073 A

Triclinic, P-1

$$
\begin{array}{ll}
a=6.6223(5) \AA & \alpha=108.954(3)^{\circ} . \\
b=10.8658(10) \AA & \beta=101.208(3)^{\circ} . \\
c=13.8513(13) \AA & \gamma=91.627(3)^{\circ} .
\end{array}
$$

$$
920.16(14) \AA^{3}
$$

2
$1.266 \mathrm{Mg} / \mathrm{m}^{3}$
$0.225 \mathrm{~mm}^{-1}$
372

Venture D8, Bruker
I $\mu \mathrm{S}$ 3.0, Incoatec
Photon III

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed Reflections
Completeness to theta $=25.242^{\circ}$

Solution and Refinement

Absorption correction
Max. and min. transmission
Solution
Refinement method
Weighting scheme

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
1.991 to 25.715°.
$-8<=\mathrm{h}<=8,-13<=\mathrm{k}<=13,-16<=1<=16$
44351
3479 [Rint $=0.1211$]
2180
99.6 \%

Semi-empirical from equivalents
0.7453 and 0.6822

Intrinsic methods
Full-matrix least-squares on F^{2}
$\mathrm{w}=\left[\sigma^{2} \mathrm{Fo}^{2}+\mathrm{AP}^{2}+\mathrm{BP}\right]^{-1}$, with
$\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=0.0783, \mathrm{~B}=0.7349$
3479 / 212 / 254
1.067
$R 1=0.0627, w R 2=0.1508$
$\mathrm{R} 1=0.1055, \mathrm{wR} 2=0.2058$
0.345 and -0.375 e. \AA^{-3}

- References:

${ }^{1}$ Shin, K.; Joung, S.; Kim, Y.; Chang, S. Adv. Synth. Catal. 2017, 359, 3428-3436.
${ }^{2}$ Su, W.-G.; Deng, W. Substituted Pyridopyrazines as Syk Inhibitors. International Patent WO 2014/086316 A1, June 12, 2014.
${ }^{3}$ Matrinez, A. A.; Espinosa, B. A.; Adamek, R. N.; Thomas, B. A.; Chau, J.; Gonzalex, E.;
Keppetipola, N.; Salzamdeda, N. T. Eur. J. Med. Chem. 2018, 157, 1202-1213.
${ }^{4}$ Hoang, G. L.; Yang, Z.-D.; Smith, S. M.; Pal, R.; Miska, J. L.; Perez, D. E.; Pelter, L. S.; Zeng, X. C.; Takacs, J. M. Org. Lett. 2015, 17, 940-943.
${ }^{5}$ Chen, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. J. Org. Chem. 2015, 80, 1258-1263.
${ }^{6}$ Wu, H.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2018, 57, 2721-2725.
${ }^{7}$ Li, L.; Wei, E.; Lin, S.; Liu, B.; Liang, F. SynLett 2014, 25, 2271-2274.
${ }^{8}$ Huang, S.; Bilel, H.; Zagrouba, F.; Hamdi, N.; Bruneau, C.; Fischmeister, C. Catal. Commun. 2015, 63, 31-34.
${ }^{9}$ Shin, K.; Joung, S.; Kim, Y.; Chang, S. Adv. Synth. Catal. 2017, 359, 3428-3436.
${ }^{10}$ Kirkland, T. A.; Grubbs, R. H. J. Org. Chem. 1997, 62, 7310-7318.
${ }^{11}$ Wu, J. W. T.; Thornton, E. R. J. Org. Chem. 1975, 40, 1041-1046.

$\square^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR Spectra:

CDCl3, 400 MHz

4b

$\mathrm{CDCl} 3,600 \mathrm{MHz}$

4d

$\underbrace{\circ}_{i} \stackrel{0}{\infty} \stackrel{\circ}{\infty}$

$\stackrel{\rightharpoonup}{0}_{\infty}^{\infty}$

$\mathrm{CDCl} 3,600 \mathrm{MHz}$

$\underset{\sim}{n} \underset{\sim}{\infty} \underset{\sim}{n} \underset{\sim}{n} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{n} \underset{\sim}{n} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$
$\mathrm{CDCl} 3,500 \mathrm{MHz}$

SI-1

SI-2

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	10
												f1 (ppm													

$\stackrel{\circ}{\stackrel{\circ}{n}}$
$\stackrel{ \pm}{\sim}$
う
CDCl3, 500 MHz

SI-6

SI-6
.

1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												(pp												

CDCl3, 500 MHz

SI-7

SI－7

保

CDCl3, 400 MHz

∞	人 $\sim \sim \sim$
¢	$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$
\|	$1 / 1$

SI-8

SI-10

SI-11

$0<\angle \varepsilon \searrow$
$028 \varepsilon \nearrow$
0907

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	$\stackrel{1}{10}$	30	20	10	0		10
												$1_{(p p m}$													

$\begin{array}{ll}0 & 0 \\ \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ \end{array}$

27

82.80
$\left[\begin{array}{r}77.35 \mathrm{cdcl} 3 \\ 77.09 \mathrm{cdcl} 3 \\ 76.84 \mathrm{cdcl} 3\end{array}\right.$

∞	¢ ¢ ¢
J	miN
I	\11

N-

SI-15

82.94
77.30 cdcl 3
77.04 cdcl 3
77.04 cdcl 3
76.79 cdcl 3

09 ャг一

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												f1 (pp												

SI-17

$\stackrel{\stackrel{\circ}{i}}{\stackrel{\circ}{1}}$

6

[^0]

 \square

11

12

12

 \rightarrow
CDCl3, 600 MHz

15

17

$\stackrel{\stackrel{\circ}{\stackrel{ }{2}}}{\stackrel{\text { I }}{\sim}}$

都

m	$\stackrel{\infty}{\sim}$	ゴ合多さささ
$\stackrel{\sim}{\sim}$	¢	¢ ¢ ¢
｜	｜	1／
ll		

19

1	1	1		19	18	170	1	1	140	1	12	11	10	O	1	1	0	1		1				10
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	－10
												（ppm												

20


```
230
```


21

-

22

1	1	1	1	1		170		1		1		110	1	1	1	I	1	5	1	1	1			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												pp												

N

25

[^1]

[^0]:

[^1]:

