1	Supporting information
2	
3	Authors: Ernesto Saiz, Fotis Sgouridis, Falko P. Drijfhout, Matthias Peichl, Mats B. Nilsson,
4	and Sami Ullah.
5	
6	Title: Chronic atmospheric reactive nitrogen deposition suppresses biological nitrogen fixation
7	in peatlands.
8	
9	Number of pages: 11
10	Number of figures: 1
11	Number of tables: 5
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26

27 Material and methods supplementary information

28 Checks on ¹⁵N₂ gas for contamination. The ¹⁵N₂ gas used for the incubations can be 29 contaminated with readily available forms of ¹⁵N such as ¹⁵NH₃ or ¹⁵NO_x (nitrate/nitrite),²⁹ 30 which will result in erroneous figures of BNF rates. To avoid this problem, we tested the ¹⁵N₂ 31 gas (98 atom% Cambridge Isotope Laboratories Inc., USA) and we found some contamination 32 that consisted of a difference in average results of enriched and non-enriched samples of δ ¹⁵N 33 ‰ of 0.03. Thus, this figure was used as a threshold below which no BNF was reported.

34

Elemental analyses in *Sphagnum* tissue and peat. A set of subsamples of pulverized *Sphagnum* tissue and peat from each of the species of each site were analysed for total C and N content. They were sent to the laboratory of the School of Geographical Sciences at the University of Bristol. They were analysed using a Thermo Scientific Flash EA 1112 Nitrogen and Carbon analyser. The instrument had a limit of detection (LOD) for both C and N of 0.01%, and the precision was determined by repeated analysis of a soil reference standard (0.21% N and 2.39% C) and the relative standard deviation (RSD) was below 5%.

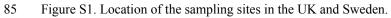
Of the ground samples 0.2 grams were digested in 9 ml of HNO₃ (>68%) trace metal grade and 42 1 ml of H₂O₂ (30%) ACS grade using a microwave Mars 6 CEM (Mathews, NC, USA). The 43 digests were diluted using deionised water and analysed for total P and metals (Mg, K, Ca, V, 44 Mn, Co, Ni, Cu, Mo) using inductively coupled plasma – mass spectrometry (ICP-MS, Perkin 45 Elmer NexION 300D, Waltham, MA, USA). An 8-point calibration generated through dilution 46 of a certified ARISTAR multi-element standard solution for ICP (VWR, UK) was used to 47 determine the values. Additionally, every 9 samples a blank and an external standard sample 48 were included. The results were blank corrected. On average, the RSD was below 4% for all 49 the elements while the LOD was 0.3 μ g/g for Mg, K, Ca, Ni, Mo, and P; and 0.1 μ g/g for V, 50

51 Mn, Co, and Cu.

52

Ancillary measurements in the field. After each incubation in the field we recorded mean air 53 temperature (°C) for the sites on that date from stations nearby and measured the temperature 54 in the moss and peat (5-10 cm depth) at the exact location where the samples were taken and 55 incubated using a stem thermometer probe (Premier Farnell Ltd, UK). Additionally, at the exact 56 same spots we measured dissolved oxygen (DO, mg/l) in surface porewater using a portable 57 DO meter (HACH HQ40d with LDO probe, Loveland, CO, USA). pH using a pH meter (HI-58 59 98100 Hanna Instruments, Leighton Buzzard, UK). Electrical conductivity (EC, µS/cm) using an EC meter (HI-98300 Hanna Instruments, Leighton Buzzard, UK). And soil moisture (% vol) 60 focused on capturing the moisture of the moss carpet (5-10 cm upper part) and peat layer (5-61 10 cm depth from the beginning of peat in hollows and hummocks) using a moisture meter 62 type HH2 (Delta-T Devices, Burwell, UK). 63


Pore water samples were also taken from the incubation locations at each site. The samples 64 were transported to the laboratory immediately after collection in a cool box with ice packs. 65 Then they were filtered through a Restek 0.45µm PTFE syringe filter, 25mm diameter. The 66 filtrates were analysed for nitrate (NO₃⁻), phosphate (PO₄³⁻), and sulphate (SO₄²⁻) concentration 67 using an ion chromatograph (DIONEX ICS-1000, Sunnyvale, CA, USA). The limits of 68 detection were 0.1 mg L⁻¹ for NO₃⁻, <0.001 mg L⁻¹ for PO₄⁻, and 0.2 mg L⁻¹ for SO₄⁻. The 69 70 results were blank corrected and the precision as RSD was <5%. Also, the samples were analysed for ammonium (NH₄⁺) using a flow injector analyser (Lachat QuikChem 8500, Hach, 71 Loveland, CO, USA). The limit of detection for NH₄⁺₃ was 0.07 mg N L⁻¹, the results were 72 blank corrected, and the RSD was <5%. 73


Peat samples from hollows and hummocks (10 g) were extracted with 50 ml of deionised water

for the determination of nitrate (NO₃⁻), phosphate (PO₄³⁻), and sulphate (SO₄²⁻); and with 50 ml

of 2 M KCl for the determination of ammonium (NH₄⁺). The peat slurries were shaken in an automatic shaker for 1 hour at 200 rpm, and subsequently centrifuged at 4000 rpm for 30 minutes followed by a double filtration in which every three samples a blank (deionised water) was included, first through a number 42 Whatman filter paper, and second through a 0.45 μ m PTFE Restek 25 mm diameter syringe filter. The analysis was performed as indicated above for the pore water.

- 82
- 83

86

84

88

- 89
- 90
- 91

9	2					
9	3					
9	4					
9	5					
9	6					

Table S1. Description of the treatments of the experimental plots at Degerö Stormyr.

Plot	Treatment	Description				
0	None	Control of the experiment, no sampling (undisturbed).				
1	n s	Low N and S: 15 and 10 kg ha ⁻¹ y ⁻¹ respectively.				
2	N S t	High N and S: 30 and 20 kg ha ⁻¹ y ⁻¹ respectively, plus greenhouse.				
3	S	High S: 20 kg ha ⁻¹ y ⁻¹ .				
4	t	Greenhouse.				
5	S t	High S: 20 kg ha ⁻¹ y ⁻¹ , plus greenhouse.				
6	n s	Low N and S: 15 and 10 kg ha ⁻¹ y ⁻¹ respectively.				
7	S	High S: 20 kg ha ⁻¹ y ⁻¹ .				
8	N S	High N and S: 30 and 20 kg ha ⁻¹ y ⁻¹ respectively.				
9	N t	High N: 30 kg ha ⁻¹ y ⁻¹ , plus greenhouse.				
10	S t	High S: 20 kg ha ⁻¹ y ⁻¹ , plus greenhouse.				
11	Control	No treatment, just mire water added.				
12	Ν	High N: 30 kg ha ⁻¹ y ⁻¹ .				
13	N S t	High N and S: 30 and 20 kg ha ⁻¹ y ⁻¹ respectively, plus greenhouse.				
14	N S	High N and S: 30 and 20 kg ha ⁻¹ y ⁻¹ respectively.				
15	n s	Low N and S: 15 and 10 kg ha ⁻¹ y ⁻¹ respectively.				
16	t	Greenhouse.				

17	N t	High N: 30 kg ha ⁻¹ y ⁻¹ , plus greenhouse.
18	Ν	High N: 30 kg ha ⁻¹ y ⁻¹ .
19	Control	No treatment, just mire water added.
20	n s	Low N and S: 15 and 10 kg ha ⁻¹ y ⁻¹ respectively.

99

100

Table S2. Total reactive nitrogen deposition (Nr; Kg N ha⁻¹ yr⁻¹).* Nitrogen deposition by its two major forms: NHx as reduced and NOy as oxidized (in kilo-equivalents per hectare per year: Keq ha⁻¹ yr⁻¹ - 1 keq N ha⁻¹ yr⁻¹ is equal to 14 kg N ha⁻¹ yr⁻¹). Ratio between the two types of Nr forms. Percentage of each form that comprises the total Nr deposition. Median δ^{15} N values of all studied species for each of the sites.

	Kg N ha ⁻¹ yr ⁻¹	Keq ha ⁻¹ yr ⁻¹		Ratio	%	%	‰	
	Total Nr _{dep}	Total	NHx	NOy	NHx:NOy	NHx	NOy	$\delta^{15}N$
Fenn's&Whixall	27	1.9	1.66	0.24	6.9	87	13	-5.73
Migneint	17	1.2	0.77	0.41	1.9	65	35	-3.14
Forsinard	6	0.4	0.23	0.17	1.4	58	43	-1.49
Degerö	2	0.1	0.07	0.07	1.1	52	48	-2.26

*Note that the Nrdep data for the British sites is for the period 2013-2015 and the data for Degerö (Sweden) is for 2014-2016.

106

107

108

109

110

		Fenn's & Whixall	Migneint	Forsinard	Degerö
Abiotic factors	Units	Median (±MAD)	Median (±MAD)	Median (±MAD)	Median (±MAD
Moss/peat Temperature	°C	12.4 (±0.9) a	12.9 (±1.1) b	10.2 (±0.2) c	17.1 (±2.4) d
Dissolved Oxygen	mg/L	4.1 (±2.3) a	5.7 (±1.0) a	7.0 (±0.4) b	ND
pH		3.8 (±0.2) a	4.6 (±0.1) b	5.0 (±0.2) c	3.8 (±0.1) a
Electrical Conductivity	µS/cm	94.5 (±10.0) a	30.0 (±9.0) b	38.0 (±1.5) c	45.0 (±11.0) b
<i>Sphagnum</i> moisture volumetric	% vol	65.0 (±25.6) a	46.9 (±34.4) a	76.9 (±16.1) a	64.8 (±33.7) a
Sphagnum moisture gravimetric	g/g	20.7 (±8.7) a	17.4 (±4.8) a	17.4 (±6.82) a	16.0 (±7.9) a
Pore Water NO ₃ -	mg/L	0.256 (±0.002) a	0.101 (±0.008) b	0.167 (±0.011) a	0.112 (±0.008)
Pore Water NH ₄ ⁺	mg/L	0.114 (±0.024) ac	0.092 (±0.021) a	0.059 (±0.005) c	0.123 (±0.038)
Pore Water PO ₄	mg/L	0.279 (±0.050) a	0.333 (±0.102) a	0.328 (±0.004) a	0.242 (±0.013)
Pore Water SO ₄	mg/L	0.151 (±0.030) a	0.453 (±0.081) b	0.537 (±0.084) b	0.135 (±0.058)
Peat NO ₃ -	µg/g	1.200 (±NA) a	1.013 (±0.389) a	1.003 (±0.01) a	1.280 (±0.051)

116 Table S3. Environmental variables for pore water and peat measured during the sampling campaigns (UK sites in June, Swedish site in July).

Peat NH ₄ ⁺	µg/g	3.865 (±1.748) a	6.133 (±5.851) a	0.090 (±0.044) b	2.310 (±1.820) a
Peat PO ₄	µg/g	1.735 (±0.632) a	10.366 (±0.639) b	5.002 (±0.513) bc	3.119 (±0.907) ac
Peat SO ₄	µg/g	4.881 (±3.831) ab	3.876 (±1.463) a	2.268 (±0.471) b	1.669 (±1.039) b

117 Data shown is median (±MAD) per site for years 2016 and 2017 (except Forsinard: only 2017) (n=36 except for peat data n=12. Forsinard half

these values). Sites with different letters have significantly different values.

	Fenn's&Whixall	Migneint	Forsinard	Degerö
Elements	$\mu g/g \ (\pm MAD)$	$\mu g/g$ (±MAD)	μ g/g (±MAD)	µg/g (±MAD)
Mg	512.86 (±136.23) a	1111.68 (±143.27) b	1238.57 (±101.75) b	383.20 (±103.09) a
K	4283.18 (±1243.21) a	2497.15 (±920.92) b	2344.12 (±771.34) b	3071.33 (±522.60) ab
Ca	305.29 (±90.02) a	428.71 (±387.29) a	428.09 (±132.73) a	251.39 (±161.13) a
V	79.37 (±0.79) a	78.41 (±1.26) b	73.90 (±4.17) b	74.27 (±0.48) b
Mn	83.25 (±18.08) a	79.80 (±30.94) a	31.83 (±4.32) a	41.47 (±41.47) a
Co	19.42 (±0.31) a	19.61 (±0.70) ab	16.46 (±1.83) bc	13.17 (±0.11) c
Ni	296.10 (±1.67) a	293.27 (±4.15) b	246.73 (±1.46) bc	244.84 (±1.21) c
Cu	55.88 (±0.52) a	55.68 (±0.97) a	48.08 (±0.98) a	<lod< td=""></lod<>
Мо	331.39 (±1.96) a	331.34 (±8.08) ab	287.07 (±4.33) b	286.34 (±1.49) b
	mg/g (±MAD)	mg/g (±MAD)	mg/g (±MAD)	mg/g (±MAD)
С	441.32 (±4.16) a	435.90 (±4.46) b	442.13 (±5.62) ab	441.03 (±2.52) a
N	5.57 (±0.68) a	5.48 (±0.55) a	6.88 (±1.64) a	5.20 (±0.60) a
Р	0.41 (±0.03) a	0.34 (±0.05) b	0.34 (±0.12) b	0.29 (±0.02) c
Ratios				
C:N	79.68 (±11.46) a	79.91 (±9.06) a	65.24 (±14.05) a	85.79 (±9.63) a
C:P	1046.29 (±74.30) a	1333.27 (±188.40) bc	1265.01 (±646.57) b	1537.57 (±85.49) c
N:P	11.99 (±0.73) a	16.39 (±1.43) a	20.75 (±3.83) a	17.00 (±1.69) a

119 Table S4. Elements in *Sphagnum* mosses.

Data shown is median (±MAD) per site (n=12). Sites with different letters are significantly

121 different.

122

123

	Fenn's&Whixall	Migneint	Forsinard	Degero
Elements	$\mu g/g \ (\pm MAD)$	µg/g (±MAD)	$\mu g/g (\pm MAD)$	$\mu g/g \ (\pm MAD)$
Mg	480.21 (±33.05) a	335.31 (±26.44) b	1044.35 (±35.43) a	314.41 (±85.16) b
K	<lod< td=""><td>33.91 (±12.45) a</td><td>61.14 (±9.67) ab</td><td>165.98 (±21.48) b</td></lod<>	33.91 (±12.45) a	61.14 (±9.67) ab	165.98 (±21.48) b
Ca	922.40 (±42.29) a	139.53 (±63.14) b	197.76 (±57.11) bc	413.19 (±149.03) ac
V	114.90 (±1.88) a	79.58 (±1.01) b	69.63 (±0.94) b	74.59 (±0.81) b
Mn	<lod< th=""><th><lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""><th><lod< th=""></lod<></th></lod<></th></lod<>	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>
Co	27.53 (±0.80) a	21.75 (±0.39) a	17.84 (±0.14) ab	13.05 (±0.17) b
Ni	417.10 (±5.99) a	291.85 (±4.95) ab	244.18 (±0.10) ab	239.46 (±5.51) b
Cu	289.80 (±75.85) a	172.95 (±28.40) b	113.25 (±29.20) b	16.69 (±10.94) b
Мо	465.02 (±6.79) a	326.94 (±4.02) ab	283.11 (±8.33) ab	281.37 (±4.17) b
	mg/g (±MAD)	mg/g (±MAD)	mg/g (±MAD)	mg/g (±MAD)
С	512.26 (±1.38) ac	465.36 (±0.77) b	533.33 (±1.23) c	481.21 (±1.82) ab
Ν	12.23 (±0.02) ab	17.00 (±0.07) c	15.79 (±0.02) bc	10.76 (±1.77) a
Р	0.29 (±0.01) a	0.77 (±0.02) b	0.29 (±0.00) a	0.54 (±0.13) ab
Ratios				
C:N	41.80 (±0.03) a	27.37 (±0.16) b	33.83 (±0.14) ab	45.44 (±7.62) a
C:P	1745.04 (±18.31) ab	607.77 (±9.18) c	1852.65 (±16.86) a	951.04 (±240.10) bc
N:P	40.30 (±0.33) ab	22.20 (±0.46) b	54.93 (±0.07) a	21.96 (±8.72) b

125 Table S5. Elements in peat.

Data shown is median (±MAD) per site (n=6). Sites with different letters are significantly

127 different.

128

129