Supporting Information

The Effectiveness and Mechanism of Ene(amido) Group in Activating Iron for Catalytic Asymmetric Transfer Hydrogenation of Ketones

Qingquan Xue ${ }^{\perp}$ Rongliang Wu ${ }^{\perp}$, Di Wang, Meifang Zhu*, Weiwei Zuo*
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.
*E-mail: zhumf@dhu.edu.cn, zuoweiwei@dhu.edu.cn

1. Scheme for the syntheses of the new tridentate $(R, R)-P-N H-N_{2}$ ligand

Figure S1 Scheme of synthesis of N^{I}-[[2-(diphenylphosphino)phenyl]methyl]-1,2-diphenyl-(1R,2R)-1,2-ethanediamine
2. The setup for the synthesis of 1-(diphenylphosphino)-propanone.

Figure S2 The setup for the synthesis of 1-(diphenylphosphino)-propanone.

3. The FTIR spectra of 1 b and 2 a

Figure S3 The FTIR spectrum of $\mathbf{1 b}$.

Figure S4 The FTIR spectrum of $\mathbf{2 a}$.
4. The ${ }^{1} \mathrm{H}$ NMR chemical shifts of 1 a

Figure S5 ${ }^{1} \mathrm{H}$ NMR chemical shifts of 1a
5. Qualitative molecular orbital diagrams of 1b

Figure S6 Qualitative molecular orbital diagrams of 1b

Table S1. Crystal data and Structure refinement for complexes $\mathbf{1}$ and $\mathbf{3}$

Compound reference	1	3
Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{BClF}_{4} \mathrm{FeN}_{2} \mathrm{OP}_{2}$	$\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{BClF}_{5} \mathrm{FeN}_{2} \mathrm{OP}_{2}$
Formula weight	854.84	857.80
Temperature/K	296 (2)	173 (2)
Crystal system	monoclinic	Orthorhombic
Space group	P 21	P 21212
a/Å	14.0962(9)	19.6543(3)
b/Å	10.1694(6)	23.2544(7)
c/Å	14.1863(8)	18.1244(5)
$\alpha /{ }^{\circ}$	90	90
$\beta /{ }^{\circ}$	93.626(2)	90
$\gamma /{ }^{\circ}$	90	90
Volume/A ${ }^{3}$	2029.5(2)	8283.7(4)
Z	2	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.399	1.376
μ / mm^{-1}	0.572	0.564
F (000)	884	3528
Crystal size/mm ${ }^{3}$	$0.16 \times 0.13 \times 0.1$	$0.170 \times 0.140 \times 0.060$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	2.466 to 25.998	1.424 to 25.497
Index ranges	$\begin{aligned} & -17 \leq \mathrm{h} \leq 17,-12 \leq \mathrm{k} \leq 12,- \\ & 17 \leq 1 \leq 17 \end{aligned}$	$\begin{aligned} & -23 \leq \mathrm{h} \leq 18,-28 \leq \mathrm{k} \leq 28,- \\ & 21 \leq 1 \leq 21 \end{aligned}$
Reflections collected	38726	40369
Independent reflections	$7986\left[\mathrm{R}_{\text {int }}=0.0437\right]$	15154 [$\left.\mathrm{R}_{\mathrm{int}}=0.0559\right]$
Data/restraints/parameters	7986/1/511	15154/81/1021
Goodness-of-fit on F^{2}	1.050	1.021
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.038, \mathrm{wR}_{2}=0.0918$	$\mathrm{R}_{1}=0.0602, \mathrm{wR}_{2}=0.1534$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0433, \mathrm{wR}_{2}=0.0966$	$\mathrm{R}_{1}=0.0739, \mathrm{wR}_{2}=0.1649$
Largest diff. peak/hole / e \AA^{-3}	0.387/-0.294	0.795/-0.507

6. General procedure for ATH:

The quantity of the precatalyst was measured via a stock solution method. A concentrated stock solution was made by dissolving the precatalysts $\left(1.97 \times 10^{-2} \mathrm{mmol}\right)$ in 6.08 g cold dichloromethane. After all the solid was dissolved, the solution was immediately sucked into a syringe. The solution was then divided into equal portions into several 20 mL vials such that each portion has 0.2 g of the stock solution, and then dichloromethane was removed under vacuum. These operations led to a precatalyst quantity of $6.48 \times 10^{-4} \mathrm{mmol}$ in each vial. The base was prepared by dissolving $\mathrm{KO}^{\mathrm{t}}{ }^{\mathrm{Bu}}$ ($10 \mathrm{mg}, 0.089 \mathrm{mmol}$) in ${ }^{i} \mathrm{PrOH}(1.02 \mathrm{~g}, 1.30 \mathrm{~mL}) .{ }^{i} \mathrm{PrOH}(6.63 \mathrm{~g}, 8.44 \mathrm{~mL})$, substrate (3.95 mmol) and a clean stirring bar were added to the vial that contains the precatalyst and the solution was stirred for 5 minutes, or until it was dissolved. 0.015 g of the base stock solution was added into a vial that contains 0.546 g of ${ }^{i} \mathrm{PrOH}$ and the mixed solution was then added into the catalyst solution to start the catalytic reaction. 0.1 mL samples were taken via syringe and injected into Teflon-sealed GC vials prepared with wet, aerated ${ }^{i} \mathrm{PrOH}$ to quench catalysis.

Figure S7 Reaction profile and ee of catalytic reduction of acetophenone using complex 1. Reaction conditions: $[1]=6.73 \times 10^{-5} \mathrm{M},\left[\mathrm{KO}^{t} \mathrm{Bu}\right]=5.45 \times 10^{-4} \mathrm{M},[$ substrate $]=0.412 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}$, $28^{\circ} \mathrm{C}$.

Figure S8 Reaction profile and ee of catalytic reduction of acetophenone using complex 2. Reaction conditions: $[2]=6.73 \times 10^{-5} \mathrm{M},\left[\mathrm{KO}^{t} \mathrm{Bu}\right]=5.45 \times 10^{-4} \mathrm{M}$, [substrate $]=0.412 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}$, $28^{\circ} \mathrm{C}$.

Figure S9 Reaction profile and ee of catalytic reduction of acetophenone using complex 4. Reaction conditions: $[4]=6.73 \times 10^{-5} \mathrm{M},\left[\mathrm{KO}^{t} \mathrm{Bu}\right]=5.45 \times 10^{-4} \mathrm{M},[$ substrate $]=0.412 \mathrm{M},\left[{ }^{i} \operatorname{PrOH}\right]=12.4 \mathrm{M}$, $28^{\circ} \mathrm{C}$.

Figure S10 Gas chromatographs. Reaction conditions: [Cat] $=6.73 \times 10^{-5} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.45 \times$ $10^{-4} \mathrm{M}$, [substrate] $=0.412 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(130{ }^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=7.2 \mathrm{~min}$, product major isomer $(S)=7.5 \mathrm{~min}$, starting material $=4.7 \mathrm{~min}$.

Figure S10.1 1 minute 4.7 \% conversion 86% ee
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.655	1147946	275023			95.289
2	7.197	4002	599			0.332
3	7.500	52753	6839			4.379
Total		1204702	282461			100.000

Figure S10.2 60 minutes 58.3 \% conversion 86% ee
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.665	279760	69712			41.694
2	7.198	27163	4061			4.048
3	7.474	364068	45079			54.258
Total		670991	118852			100.000

Figure S10.3 420 minutes 68.3 \% conversion 86\% ee
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.660	459701	109098			31.681
2	7.173	68314	10698			4.708
3	7.432	922996	107537			63.611
Total		1451010	227332			100.000

Figure S11 Gas chromatographs. Reaction conditions: [Cat] $=6.73 \times 10^{-5} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.45 \times$ $10^{-4} \mathrm{M}$, [substrate] $=0.412 \mathrm{M},[\mathrm{PrOH}]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=7.2 \mathrm{~min}$, product major isomer $(S)=7.5 \mathrm{~min}$, starting material $=4.7 \mathrm{~min}$.

Figure S11.1 1 minute 5.4\% conversion 75\% ee
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.664	237960	55895			94.605
2	7.198	1618	229			0.643
3	7.503	11952	1558			4.752
Total		251530	57682			100.000

Figure S11.2 30 minutes 74.4 \% conversion 74\% ee
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.670	186078	42247			25.583
2	7.196	66819	9973			9.187
3	7.473	474462	56072			65.231
Total		727359	108291			100.000

Figure S11.3 180 minutes 89.3 \% conversion 73\% ee
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.667	188444	44880			10.733
2	7.168	205651	32380			11.714
3	7.414	1361579	147716			77.553
Total		1755674	224976			100.000

Figure S12 Gas chromatographs. Reaction conditions: [Cat] $=6.73 \times 10^{-5} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.45 \times$ $10^{-4} \mathrm{M}$, [substrate] $=0.412 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product isomer $(R)=7.2 \mathrm{~min}$, product isomer $(S)=7.5 \mathrm{~min}$, starting material $=4.7 \mathrm{~min}$.

Figure S12.1 10 seconds 13.9 \% conversion
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.666	10119	2318			86.077
2	7.196	776	122			6.599
3	7.507	861	140			7.323
Total		11756	2580			100.000

Figure S12.2 2 minutes 65.3 \% conversion
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.663	199851	46694			34.702
2	7.177	165279	23608			28.699
3	7.485	210769	24954			36.598
Total		575898	95256			100.000

Figure S12.3 60 minutes $\mathbf{8 9 . 8}$ \% conversion
The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.668	113189	27022			10.170
2	7.163	438963	62373			39.442
3	7.467	560778	63280			50.388
Total		1112930	152675			100.000

Figure S13 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(130{ }^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=7.1 \mathrm{~min}$, product major isomer $(S)=7.3 \mathrm{~min}$, starting material $=4.6 \mathrm{~min}, 88 \%$ conversion 80% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.622	184191	43188			12.194
2	7.075	130988	19670			8.672
3	7.319	1195269	140916			79.133
Total		1510447	203774			100.000

Figure S14 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C}$. GC analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=12.9 \mathrm{~min}$, product major isomer $(S)=14.6 \mathrm{~min}$, starting material $=5.6 \mathrm{~min}, 75 \%$ conversion 98% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	5.597	445293	91362			25.298
2	12.930	10175	853			0.578
3	14.613	1304717	73510			74.124
Total		1760185	165724			100.000

Figure S15 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(110^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=30.1 \mathrm{~min}$, product major isomer $(S)=31.9 \mathrm{~min}$, starting material $=14.7 \mathrm{~min}, 81 \%$ conversion 87% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	14.746	289717	21844			19.258
2	30.087	78522	2651			5.220
3	31.891	1136148	27548			75.522
Total		1504387	52043			100.000

Figure S16 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C}$. GC analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=10.4 \mathrm{~min}$, product major isomer $(S)=11.3 \mathrm{~min}$, starting material $=7.9 \mathrm{~min}, 70 \%$ conversion 78% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	7.874	581484	82171			30.323
2	10.434	145063	13337			7.565
3	11.253	1191063	90481			62.112
Total		1917610	185988			100.000

Figure S17 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product major isomer $(S)=20.0 \mathrm{~min}$, product minor isomer $=20.6 \mathrm{~min}$, starting material $=13.6 \mathrm{~min}, 30 \%$ conversion 44% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	13.574	999002	84546			69.930
2	19.974	308499	15855			21.595
3	20.572	121076	5280			8.475
Total		1428577	105681			100.000

Figure S18 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C}$. GC analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=27.4 \mathrm{~min}$, product major isomer $(S)=29.3 \mathrm{~min}$, starting material $=14.8 \mathrm{~min}, 89 \%$ conversion 80% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	14.835	175304	13360			10.741
2	27.362	143936	5321			8.819
3	29.263	1312852	35993			80.440
Total		1632092	54675			100.000

Figure S19 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C}$. GC analysis conditions: Oven temperature $\left(150{ }^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=8.6 \mathrm{~min}$, product major isomer $(S)=9.2 \mathrm{~min}$, starting material $=4.6 \mathrm{~min}, 99 \%$ conversion 87% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	4.603	13557	3344			0.802
2	8.594	106824	12548			6.318
3	9.177	1570314	152784			92.880
Total		1690695	168677			100.000

Figure S20 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(120^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=41.7 \mathrm{~min}$, product major isomer $(S)=45.8 \mathrm{~min}$, starting material $=15.0 \mathrm{~min}, 96 \%$ conversion 84% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	14.979	57867	4020			3.674
2	41.693	122112	3025			7.753
3	45.788	1395049	21298			88.573
Total		1575027	28343			100.000

Figure S21 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=25.7 \mathrm{~min}$, product major isomer $(S)=28.6 \mathrm{~min}$, starting material $=11.9 \mathrm{~min}, 93 \%$ conversion 72% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	11.921	95840	8621			7.205
2	25.682	174046	6525			13.085
3	28.582	1060273	27949			79.710
Total		1330159	43095			100.000

Figure S22 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=42.0 \mathrm{~min}$, product major isomer $(S)=44.8 \mathrm{~min}$, starting material $=4.6 \mathrm{~min}, 93 \%$ conversion 72% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	16.603	52866	3434			2.765
2	41.974	134902	3114			7.057
3	44.804	1723882	26775			90.178
Total		1911650	33323			100.000

Figure S23 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C}$. GC analysis conditions: Oven temperature $\left(130^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=55.1 \mathrm{~min}$, product major isomer $(S)=57.4 \mathrm{~min}$, starting material $=39.6 \mathrm{~min}, 73 \%$ conversion 90% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	39.557	441429	12422			26.882
2	55.118	57853	1147			3.523
3	57.354	1142816	17291			69.595
Total		1642098	30859			100.000

Figure S24 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(110^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=36.1 \mathrm{~min}$, product major isomer $(S)=37.3 \mathrm{~min}$, starting material $=2.6 \mathrm{~min}, 26 \%$ conversion 64% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	2.563	822132	302954			74.088
2	36.122	52200	1822			4.704
3	37.250	235339	6460			21.208
Total		1109671	311236			100.000

Figure S25 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(170{ }^{\circ} \mathrm{C}\right)$. Retention time: product major isomer $(S)=21.9 \mathrm{~min}$, starting material $=13.0 \mathrm{~min}, 96 \%$ conversion 99% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	13.021	94011	8434			3.868
2	21.907	2336496	95106			96.12
Total		2430507	103540			100.000

Figure S26 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C} . \mathrm{GC}$ analysis conditions: Oven temperature $\left(170{ }^{\circ} \mathrm{C}\right)$. Retention time: product minor isomer $=39.7 \mathrm{~min}$, product major isomer $(S)=40.7 \mathrm{~min}$, starting material $=29.1 \mathrm{~min}, 85 \%$ conversion 80% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	29.062	161110	8436			15.492
2	39.725	89071	3316			8.560
3	40.729	789805	23267			75.948
Total		1039932	35019			100.000

Figure S27 Gas chromatograph. Reaction conditions: [Cat] $=6.48 \times 10^{-4} \mathrm{M},\left[\mathrm{KO}{ }^{t} \mathrm{Bu}\right]=5.24 \times$ $10^{-3} \mathrm{M}$, [substrate] $=0.397 \mathrm{M},\left[{ }^{i} \mathrm{PrOH}\right]=12.4 \mathrm{M}, 28^{\circ} \mathrm{C}$. GC analysis conditions: Oven temperature $\left(110^{\circ} \mathrm{C}\right)$. Retention time: product major isomer $(S)=14.2 \mathrm{~min}$, product minor isomer $=15.2 \mathrm{~min}$, starting material $=3.5 \mathrm{~min}, 98 \%$ conversion 89% ee.

The analysis result is as follow:

Peaks number	Retention time	Area	Height of peaks	Mark	Name of compounds	Area percentage
1	3.478	42455	11289			15.492
2	14.181	2339845	152818			8.560
3	15.157	135030	6977			75.948
Total		2517330	35019			100.000

7. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR and ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra

$$
\stackrel{\text { ָ̂ }}{\substack{1 \\ \hline}}
$$

Figure S28 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of borane adduct of 1-(diphenylphosphino)propanone

Figure $\mathbf{S 2 9}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of borane adduct of 1 -(diphenylphosphino)propanone

Figure S30 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of borane adduct of 1-(diphenylphosphino)propanone

Figure S31 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of 1-(diphenylphosphino)-propanone

Figure S32 ${ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ）spectrum of 1－（diphenylphosphino）－propanone

\circ
$\stackrel{\circ}{i}$
1
i
$\stackrel{\infty}{\infty}$

Figure $\mathbf{S 3 3}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（151 MHz， $\mathrm{C}_{6} \mathrm{D}_{6}$ ）spectrum of 1－（diphenylphosphino）－propanone

Figure $\mathbf{S 3 4} \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(243 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ spectrum of $N^{I}-[[2-$ (diphenylphosphino)phenyl]methyl]-1,2-diphenyl-(1R,2R)-1,2-ethanediamine

Figure $\mathbf{S 3 5}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of N^{l}-[[2-(diphenylphosphino)phenyl]methyl]-1,2-diphenyl-(1R,2R)-1,2-ethanediamine

$\begin{array}{llllllllllllllllllllllllllllllllllll}20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -2\end{array}$
Figure $\quad \mathbf{S 3 6} \quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(151 \quad \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right)$ spectrum of $\quad N^{I}-[[2-$ (diphenylphosphino)phenyl]methyl]-1,2-diphenyl-(1R,2R)-1,2-ethanediamine

$\stackrel{y}{\circ}$

Figure $\mathbf{S 3 7}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1}$.

Figure $\mathbf{S 3 8}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2}$.

5040
0
0

Figure S39 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$.

Figure $\mathbf{S 4 0}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$.

Figure $\mathbf{S 4 1}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3}$.

M．

Figure $\mathbf{S 4 2}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $243 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of 4 ．
星导蒔

Figure $\mathbf{S 4 3}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{4}$ ．

Figure $\mathbf{S 4 4}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{4}$.

Figure $\mathbf{S 4 5}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{1 a}$.

Figure $\mathbf{S 4 6}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{1 a}$.

Figure $\mathbf{S 4 7}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{1 a}$.

Figure $\mathbf{S 4 8}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectrum of $\mathbf{1 a}$.

Figure $\mathbf{S 4 9}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{1 b}$.

Figure $\mathbf{S 5 0}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{1 b}$.

Figure $\mathbf{S 5 1}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectrum of $\mathbf{1 b}$.

．

Figure $\mathbf{S 5 2}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ）spectrum of 2a＇．

	－	－	$\bar{¢}$
	\odot	$\dot{\top}$	NNNべ「

Figure $\mathbf{S 5 3}{ }^{1} \mathrm{H}$ NMR（ $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ）spectrum of $\mathbf{2 a}{ }^{\prime}$ ．

Figure $\mathbf{S 5 4}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of 2a'.

Figure $\mathbf{S 5 5}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (243 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of 3a.

Figure $\mathbf{S 5 6}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{3 a}$.

Figure $\mathbf{S 5 7}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{3 a}$.

Figure $\mathbf{S 5 8}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{4 a}$.

Figure $\mathbf{S 5 9}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{4 a}$.

| 240 | 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
| :--- |

Figure $\mathbf{S 6 0}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{4 a}$.

Figure S61 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of the mixture of $\mathbf{1 b}$ with isopropanol.

Figure $\mathbf{S 6 2}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectrum of the mixture of $\mathbf{1 b}$ with isopropanol.

∞
∞
∞
∞
∞

10
10
10
10

Figure S63 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of 2b'.

Figure $\mathbf{S 6 4}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of 2b'.

Figure $\mathbf{S 6 5}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{4 b}$ '.

Figure S66 ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) spectrum of $\mathbf{4 b}$ '.

