Supporting Information

The Effectiveness and Mechanism of Ene(amido) Group in Activating Iron for Catalytic Asymmetric Transfer Hydrogenation of Ketones

Qingquan Xue^{1,} Rongliang Wu¹, Di Wang, Meifang Zhu*, Weiwei Zuo*

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China.

*E-mail: zhumf@dhu.edu.cn, zuoweiwei@dhu.edu.cn

1. Scheme for the syntheses of the new tridentate (R, R)-P-NH-NH₂ ligand

Figure S1 Scheme of synthesis of N^{l} -[[2-(diphenylphosphino)phenyl]methyl]-1,2-diphenyl-(1R,2R)-1,2-ethanediamine

2. The setup for the synthesis of *1-(diphenylphosphino)-propanone*.

Figure S2 The setup for the synthesis of *1-(diphenylphosphino)-propanone*.

3. The FTIR spectra of 1b and 2a

Figure S3 The FTIR spectrum of 1b.

Figure S4 The FTIR spectrum of 2a.

4. The ¹H NMR chemical shifts of 1a

Figure S5 ¹H NMR chemical shifts of 1a

5. Qualitative molecular orbital diagrams of 1b

Figure S6 Qualitative molecular orbital diagrams of 1b

Compound reference	1	3
Empirical formula	$C_{44}H_{42}BClF_4FeN_2OP_2$	C43H38BClF5FeN2OP2
Formula weight	854.84	857.80
Temperature/K	296 (2)	173 (2)
Crystal system	monoclinic	Orthorhombic
Space group	P 21	P 21 21 2
a/Å	14.0962(9)	19.6543(3)
b/Å	10.1694(6)	23.2544(7)
c/Å	14.1863(8)	18.1244(5)
α'°	90	90
β/°	93.626(2)	90
$\gamma^{/\circ}$	90	90
Volume/Å ³	2029.5(2)	8283.7(4)
Z	2	8
$\rho_{calc}g/cm^3$	1.399	1.376
µ/mm ⁻¹	0.572	0.564
F (000)	884	3528
Crystal size/mm ³	$0.16 \times 0.13 \times 0.1$	0.170 x 0.140 x 0.060
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	2.466 to 25.998	1.424 to 25.497
Index ranges	$-17 \le h \le 17, -12 \le k \le 12, -17 \le l \le 17$	$-23 \le h \le 18, -28 \le k \le 28, -21 \le 1 \le 21$
Reflections collected	38726	40369
Independent reflections	7986 [$R_{int} = 0.0437$]	15154 [$R_{int} = 0.0559$]
Data/restraints/parameters	7986/1/511	15154/81/1021
Goodness-of-fit on F ²	1.050	1.021
Final R indexes [I>= 2σ (I)]	$R_1 = 0.038, wR_2 = 0.0918$	$R_1 = 0.0602, wR_2 = 0.1534$
Final R indexes [all data]	$R_1 = 0.0433, wR_2 = 0.0966$	$R_1 = 0.0739, wR_2 = 0.1649$
Largest diff. peak/hole / e Å-3	0.387/-0.294	0.795/-0.507

Table S1. Crystal data and Structure refinement for complexes 1 and 3

6. General procedure for ATH:

The quantity of the precatalyst was measured via a stock solution method. A concentrated stock solution was made by dissolving the precatalysts (1.97 x 10⁻² mmol) in 6.08 g cold dichloromethane. After all the solid was dissolved, the solution was immediately sucked into a syringe. The solution was then divided into equal portions into several 20 mL vials such that each portion has 0.2 g of the stock solution, and then dichloromethane was removed under vacuum. These operations led to a precatalyst quantity of 6.48 x 10⁻⁴ mmol in each vial. The base was prepared by dissolving KO'Bu (10 mg, 0.089 mmol) in 'PrOH (1.02 g, 1.30 mL). 'PrOH (6.63 g, 8.44 mL), substrate (3.95 mmol) and a clean stirring bar were added to the vial that contains the precatalyst and the solution was stirred for 5 minutes, or until it was dissolved. 0.015 g of the base stock solution was added into a vial that contains 0.546 g of 'PrOH and the mixed solution was then added into the catalyst solution to start the catalytic reaction. 0.1 mL samples were taken via syringe and injected into Teflon-sealed GC vials prepared with wet, aerated 'PrOH to quench catalysis.

Figure S7 Reaction profile and ee of catalytic reduction of acetophenone using complex **1**. Reaction conditions: $[1] = 6.73 \times 10^{-5}$ M, $[KO'Bu] = 5.45 \times 10^{-4}$ M, [substrate] = 0.412 M, [iPrOH] = 12.4 M, 28°C.

Figure S8 Reaction profile and ee of catalytic reduction of acetophenone using complex **2**. Reaction conditions: $[\mathbf{2}] = 6.73 \times 10^{-5} \text{ M}$, $[\text{KO'Bu}] = 5.45 \times 10^{-4} \text{ M}$, [substrate] = 0.412 M, $[^{i}\text{PrOH}] = 12.4 \text{ M}$, 28°C .

Figure S9 Reaction profile and ee of catalytic reduction of acetophenone using complex 4. Reaction conditions: $[4] = 6.73 \times 10^{-5}$ M, $[KO'Bu] = 5.45 \times 10^{-4}$ M, [substrate] = 0.412 M, $[^{i}PrOH] = 12.4$ M, $28^{\circ}C$.

Figure S10 Gas chromatographs. Reaction conditions: $[Cat] = 6.73 \times 10^{-5}$ M, $[KO'Bu] = 5.45 \times 10^{-4}$ M, [substrate] = 0.412 M, $[i^{i}PrOH] = 12.4$ M, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 7.2 min, product major isomer (*S*) = 7.5 min, starting material = 4.7 min.

Figure S10.1 1 minute 4.7 % conversion 86% ee

The analysis result is as follow:

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.655	1147946	275023			95.289
2	7.197	4002	599			0.332
3	7.500	52753	6839			4.379
Total		1204702	282461			100.000

Figure S10.2 60 minutes 58.3 % conversion 86% ee

The analysis result is as follow:

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.665	279760	69712			41.694
2	7.198	27163	4061			4.048
3	7.474	364068	45079			54.258
Total		670991	118852			100.000

Figure S10.3 420 minutes 68.3 % conversion 86% ee

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.660	459701	109098			31.681
2	7.173	68314	10698			4.708
3	7.432	922996	107537			63.611
Total		1451010	227332			100.000

Figure S11 Gas chromatographs. Reaction conditions: $[Cat] = 6.73 \times 10^{-5}$ M, $[KO'Bu] = 5.45 \times 10^{-4}$ M, [substrate] = 0.412 M, $[^{i}PrOH] = 12.4$ M, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 7.2 min, product major isomer (*S*) = 7.5 min, starting material = 4.7 min.

Figure S11.1 1 minute 5.4% conversion 75% ee

The analysis	result is as	follow:

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.664	237960	55895			94.605
2	7.198	1618	229			0.643
3	7.503	11952	1558			4.752
Total		251530	57682			100.000

Figure S11.2 30 minutes 74.4 % conversion 74% ee

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.670	186078	42247			25.583
2	7.196	66819	9973			9.187
3	7.473	474462	56072			65.231
Total		727359	108291			100.000

Figure S11.3 180 minutes 89.3 % conversion 73% ee

The analysis result is as follow:

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.667	188444	44880			10.733
2	7.168	205651	32380			11.714
3	7.414	1361579	147716			77.553
Total		1755674	224976			100.000

Figure S12 Gas chromatographs. Reaction conditions: $[Cat] = 6.73 \times 10^{-5}$ M, $[KO'Bu] = 5.45 \times 10^{-4}$ M, [substrate] = 0.412 M, ['PrOH] = 12.4 M, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product isomer (*R*) = 7.2 min, product isomer (*S*) = 7.5 min, starting material = 4.7 min.

Figure S12.1 10 seconds 13.9 % conversion

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.666	10119	2318			86.077
2	7.196	776	122			6.599
3	7.507	861	140			7.323
Total		11756	2580			100.000

Figure S12.2 2 minutes 65.3 % conversion

The analysis result is as follow:

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.663	199851	46694			34.702
2	7.177	165279	23608			28.699
3	7.485	210769	24954			36.598
Total		575898	95256			100.000

Figure S12.3 60 minutes 89.8 % conversion

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.668	113189	27022			10.170
2	7.163	438963	62373			39.442
3	7.467	560778	63280			50.388
Total		1112930	152675			100.000

Figure S13 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4} \text{ M}$, $[KO'Bu] = 5.24 \times 10^{-3} \text{ M}$, [substrate] = 0.397 M, $[i^{P}POH] = 12.4 \text{ M}$, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 7.1 min, product major isomer (*S*) = 7.3 min, starting material = 4.6 min, 88 % conversion 80 % ee.

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	4.622	184191	43188			12.194
2	7.075	130988	19670			8.672
3	7.319	1195269	140916			79.133
Total		1510447	203774			100.000

The analysis result is as follow:

Figure S14 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4}$ M, $[KO'Bu] = 5.24 \times 10^{-3}$ M, [substrate] = 0.397 M, ['PrOH] = 12.4 M, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 12.9 min, product major isomer (*S*) = 14.6 min, starting material = 5.6 min, 75 % conversion 98 % ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	5.597	445293	91362			25.298
2	12.930	10175	853			0.578
3	14.613	1304717	73510			74.124
Total		1760185	165724			100.000

The analysis result is as follow:

Figure S15 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4} \text{ M}$, $[KO'Bu] = 5.24 \times 10^{-3} \text{ M}$, [substrate] = 0.397 M, $[i^{P}POH] = 12.4 \text{ M}$, 28 °C. GC analysis conditions: Oven temperature (110 °C). Retention time: product minor isomer = 30.1 min, product major isomer (*S*) = 31.9 min, starting material = 14.7 min, 81 % conversion 87 % ee.

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	14.746	289717	21844			19.258
2	30.087	78522	2651			5.220
3	31.891	1136148	27548			75.522
Total		1504387	52043			100.000

Figure S16 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4}$ M, $[KO'Bu] = 5.24 \times 10^{-3}$ M, [substrate] = 0.397 M, ['PrOH] = 12.4 M, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 10.4 min, product major isomer (*S*) = 11.3 min, starting material = 7.9 min, 70 % conversion 78 % ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	7.874	581484	82171			30.323
2	10.434	145063	13337			7.565
3	11.253	1191063	90481			62.112
Total		1917610	185988			100.000

Figure S17 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4} \text{ M}$, $[KO'Bu] = 5.24 \times 10^{-3} \text{ M}$, [substrate] = 0.397 M, $[i^{P}POH] = 12.4 \text{ M}$, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product major isomer (*S*) = 20.0 min, product minor isomer = 20.6 min, starting material = 13.6 min, 30 % conversion 44 % ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	13.574	999002	84546			69.930
2	19.974	308499	15855			21.595
3	20.572	121076	5280			8.475
Total		1428577	105681			100.000

Figure S18 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4}$ M, $[KO'Bu] = 5.24 \times 10^{-3}$ M, [substrate] = 0.397 M, ['PrOH] = 12.4 M, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 27.4 min, product major isomer (*S*) = 29.3 min, starting material = 14.8 min, 89 % conversion 80 % ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	14.835	175304	13360			10.741
2	27.362	143936	5321			8.819
3	29.263	1312852	35993			80.440
Total		1632092	54675			100.000

Figure S19 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4}$ M, $[KO'Bu] = 5.24 \times 10^{-3}$ M, [substrate] = 0.397 M, [iPrOH] = 12.4 M, 28 °C. GC analysis conditions: Oven temperature (150 °C). Retention time: product minor isomer = 8.6 min, product major isomer (*S*) = 9.2 min, starting material = 4.6 min, 99 % conversion 87 % ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	4.603	13557	3344			0.802
2	8.594	106824	12548			6.318
3	9.177	1570314	152784			92.880
Total		1690695	168677			100.000

The analysis result is as follow:

Figure S20 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4} \text{ M}$, $[KO'Bu] = 5.24 \times 10^{-3} \text{ M}$, [substrate] = 0.397 M, $[i^{P}rOH] = 12.4 \text{ M}$, 28 °C. GC analysis conditions: Oven temperature (120 °C). Retention time: product minor isomer = 41.7 min, product major isomer (*S*) = 45.8 min, starting material = 15.0 min, 96 % conversion 84 % ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	14.979	57867	4020			3.674
2	41.693	122112	3025			7.753
3	45.788	1395049	21298			88.573
Total		1575027	28343			100.000

Figure S21 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4} \text{ M}$, $[KO'Bu] = 5.24 \times 10^{-3} \text{ M}$, [substrate] = 0.397 M, $[i^{P}POH] = 12.4 \text{ M}$, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 25.7 min, product major isomer (*S*) = 28.6 min, starting material = 11.9 min, 93 % conversion 72 % ee.

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	11.921	95840	8621			7.205
2	25.682	174046	6525			13.085
3	28.582	1060273	27949			79.710
Total		1330159	43095			100.000

The analysis result is as follow:

Figure S22 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4} \text{ M}$, $[KO'Bu] = 5.24 \times 10^{-3} \text{ M}$, [substrate] = 0.397 M, $[i^{P}POH] = 12.4 \text{ M}$, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 42.0 min, product major isomer (*S*) = 44.8 min, starting material = 4.6 min, 93 % conversion 72 % ee.

Peaks number **Retention time** Area Height of Mark Name of compounds Area percentage peaks 1 16.603 52866 3434 2.765 2 41.974 134902 3114 7.057 3 44.804 1723882 26775 90.178 Total 1911650 33323 100.000

The analysis result is as follow:

Figure S23 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4}$ M, $[KO'Bu] = 5.24 \times 10^{-3}$ M, [substrate] = 0.397 M, ['PrOH] = 12.4 M, 28 °C. GC analysis conditions: Oven temperature (130 °C). Retention time: product minor isomer = 55.1 min, product major isomer (*S*) = 57.4 min, starting material = 39.6 min, 73 % conversion 90% ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	39.557	441429	12422			26.882
2	55.118	57853	1147			3.523
3	57.354	1142816	17291			69.595
Total		1642098	30859			100.000

The analysis result is as follow:

Figure S24 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4}$ M, $[KO'Bu] = 5.24 \times 10^{-3}$ M, [substrate] = 0.397 M, $[^{i}PrOH] = 12.4$ M, 28 °C. GC analysis conditions: Oven temperature (110 °C). Retention time: product minor isomer = 36.1 min, product major isomer (*S*) = 37.3 min, starting material = 2.6 min, 26 % conversion 64 % ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	2.563	822132	302954			74.088
2	36.122	52200	1822			4.704
3	37.250	235339	6460			21.208
Total		1109671	311236			100.000

The analysis result is as follow:

Figure S25 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4} \text{ M}$, $[KO'Bu] = 5.24 \times 10^{-3} \text{ M}$, [substrate] = 0.397 M, $[i^{i}PrOH] = 12.4 \text{ M}$, 28 °C. GC analysis conditions: Oven temperature (170 °C). Retention time: product major isomer (*S*) = 21.9 min, starting material = 13.0 min, 96 % conversion 99 % ee.

Peaks number **Retention time** Area Height of Mark Name of compounds Area percentage peaks 1 13.021 94011 8434 3.868 2 21.907 2336496 95106 96.12 Total 2430507 103540 100.000

The analysis result is as follow:

Figure S26 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4}$ M, $[KO'Bu] = 5.24 \times 10^{-3}$ M, [substrate] = 0.397 M, ['PrOH] = 12.4 M, 28 °C. GC analysis conditions: Oven temperature (170 °C). Retention time: product minor isomer = 39.7 min, product major isomer (*S*) = 40.7 min, starting material = 29.1 min, 85 % conversion 80 % ee.

Peaks number	Retention time	Area	Height of Mark		Name of compounds	Area percentage
			peaks			
1	29.062	161110	8436			15.492
2	39.725	89071	3316			8.560
3	40.729	789805	23267			75.948
Total		1039932	35019			100.000

The analysis result is as follow:

Figure S27 Gas chromatograph. Reaction conditions: $[Cat] = 6.48 \times 10^{-4} \text{ M}$, $[KO'Bu] = 5.24 \times 10^{-3} \text{ M}$, [substrate] = 0.397 M, $[^{i}PrOH] = 12.4 \text{ M}$, 28 °C. GC analysis conditions: Oven temperature (110 °C). Retention time: product major isomer (*S*) = 14.2 min, product minor isomer = 15.2 min, starting material = 3.5 min, 98 % conversion 89% ee.

Tho one	17010	rocult	10	00	tollow
The ana	IVSIS	LESUIL	18	as	

Peaks number	Retention time	Area	Height of	Mark	Name of compounds	Area percentage
			peaks			
1	3.478	42455	11289			15.492
2	14.181	2339845	152818			8.560
3	15.157	135030	6977			75.948
Total		2517330	35019			100.000

7. Copies of ¹H NMR, ¹⁹F{¹H} NMR, ¹³C{¹H} NMR and ³¹P{¹H} NMR spectra

Figure S29 ¹H NMR (600 MHz, CDCl₃) spectrum of borane adduct of *1-(diphenylphosphino)-propanone*

Figure S31 $^{31}P\{^{1}H\}$ NMR (243 MHz, $C_6D_6)$ spectrum of 1-(diphenylphosphino)-propanone

Figure S32 ¹H NMR (600 MHz, C₆D₆) spectrum of *1-(diphenylphosphino)-propanone*

Figure S33 ¹³C{¹H} NMR (151 MHz, C₆D₆) spectrum of *1-(diphenylphosphino)-propanone*

Figure S35 ¹H NMR (600 MHz, CDCl₃) spectrum of *N*¹-*[[2-(diphenylphosphino)phenyl]methyl]-1,2- diphenyl-(1R,2R)-1,2-ethanediamine*

Figure S37 ³¹P{¹H} NMR (243 MHz, CDCl₃) spectrum of **1**.

Figure S39 $^{31}P\{^{1}H\}$ NMR (243 MHz, CDCl₃) spectrum of 3.

Figure S41 ${}^{13}C{}^{1}H$ NMR (151 MHz, CDCl₃) spectrum of 3.

Figure S43 ¹H NMR (600 MHz, CDCl₃) spectrum of 4.

Figure S45 ${}^{31}P{}^{1}H$ NMR (243 MHz, C₆D₆) spectrum of 1a.

Figure S47 ¹H-¹³C HSQC NMR (600 MHz, C₆D₆) spectrum of 1a.

Figure S48 ¹H-¹H COSY NMR (600 MHz, C₆D₆) spectrum of 1a.

Figure S49 $^{31}P\{^{1}H\}$ NMR (243 MHz, $C_6D_6)$ spectrum of 1b.

Figure S51 $^{13}C\{^{1}H\}$ NMR (151 MHz, $C_6D_6)$ spectrum of 1b.

Figure S53 ¹H NMR (600 MHz, C₆D₆) spectrum of 2a'.

Figure S54 ¹³C{¹H} NMR (151 MHz, C₆D₆) spectrum of 2a'.

Figure S55 ${}^{31}P{}^{1}H$ NMR (243 MHz, C₆D₆) spectrum of 3a.

Figure S56 ¹H NMR (600 MHz, C₆D₆) spectrum of 3a.

Figure S57 $^{13}C\{^{1}H\}$ NMR (151 MHz, $C_6D_6)$ spectrum of 3a.

Figure S59 1 H NMR (600 MHz, C₆D₆) spectrum of 4a.

Figure S60 $^{13}C{^{1}H}$ NMR (151 MHz, C₆D₆) spectrum of 4a.

Figure S61 ${}^{31}P{}^{1}H$ NMR (243 MHz, C₆D₆) spectrum of the mixture of 1b with isopropanol.

Figure S62 ¹H NMR (600 MHz, C₆D₆) spectrum of the mixture of 1b with isopropanol.

Figure S63 ³¹P{¹H} NMR (243 MHz, C₆D₆) spectrum of **2b**'.

Figure S64 ¹H NMR (600 MHz, C₆D₆) spectrum of 2b'.

Figure S65 $^{31}P\{^{1}H\}$ NMR (243 MHz, $C_6D_6)$ spectrum of 4b'.

Figure S66 1 H NMR (600 MHz, C₆D₆) spectrum of 4b'.