Supporting Information

Investigation for thermoelectric properties of MoS₂ monolayer-graphene heterostructure: density functional theory calculations and electrical transport measurements

Sujee Kim ^{†,#} Changhoon Lee^{\ddagger ,I,#} Young Soo Lim^{*,⊥} and Ji-Hoon Shim^{*,†,‡, I}

[†] Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea

[‡] Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Korea

[§] Max Planck POSTECH Center for Complex Phase of Materials, Pohang University of Science and Technology, Pohang, 37673, Korea

I Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang, 37673, Korea

[⊥]Department of Materials System Engineering, Pukyong National University, Busan 48547, Korea

S. Kim and C. Lee have contributed equally to this work

S1) The relative energy as a function of distance between MoS₂ and graphene layer in MoS₂-graphene heterostructure.

In this work, the distance between MoS₂ and graphene layer is 3.3 Å. As shown in figure S1, although 3.35 Å is the equilibrium distance between MoS₂ and graphene layer, the relative energy at distance 3.3 Å and 3.35 Å is smaller than 1meV. So the distance, 3.3 Å, is also reasonable value.

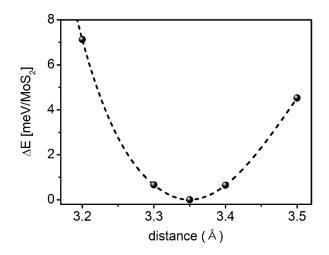


Figure S1: The calculated relative energy ΔE per formula energy of MoS₂ as a function of distance between MoS₂ and graphene layer with vdW+DFT, taking the origin at the lowest energy configuration.