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Rietveld Refinement Details

Rietveld refinements of powder X-ray diffraction data were executed to gain quantitative structural

data regarding the solid solution Li2FeS2–ySey. The occupancies of the metals on the mixed Li/Fe

site were constrained to 0.5 for both Li and Fe, and the mixed constrained to the input stoichiometry
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for the mix ed S/Se site. Positions of the mixed Li/Fe and S/Se sites were allowed to refine and the

position of both the Li and the Fe or the S and the Se were forced to remain equivalent. Structural

parameters and goodness of fit (reduced χ2) values are listed in Table S1.

y in Li2FeS2-ySey a (Å) c (Å) reduced
χ2

Lia coordinates
(x, y, z)

Lib/Fe coordinates
(x, y, z)

S/Se position
(x, y, z)

0.2 3.917(1) 6.3248(5) 2.0736 0, 0, 0 1/3, 2/3, 0.337(2) 2/3, 1/3, 0.26(2)
0.6 3.925(2) 6.3949(7) 3.8025 0, 0, 0 1/3, 2/3, 0.35(8) 2/3, 1/3, 0.255(4)
1 3.997(2) 6.4625(5) 3.0625 0, 0, 0 1/3, 2/3, 0.408(6) 2/3, 1/3, 0.224(1)

1.4 4.018(2) 6.5205(5) 4.1616 0, 0, 0 1/3, 2/3, 0.407(3) 2/3, 1/3, 0.234(2)
1.8 4.056(4) 6.5762(5) 7.0756 0, 0, 0 1/3, 2/3, 0.409(1) 2/3, 1/3, 0.227(5)
2 4.058(2) 6.5892(5) 2.5281 0, 0, 0 1/3, 2/3, 0.380(2) 2/3, 1/3, 0.255(1)
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Figure S1: PXRD data and quantitative Rietveld refinement of Li2FeS2.
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Figure S2: PXRD data and quantitative Rietveld refinement of Li2FeS1.8Se0.2.
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Figure S3: PXRD data and quantitative Rietveld refinement of Li2FeS1.4Se0.6.
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Figure S4: PXRD data and quantitative Rietveld refinement of Li2FeSSe.
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Figure S5: PXRD data and quantitative Rietveld refinement of Li2FeS0.6Se1.4.
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Figure S6: PXRD data and quantitative Rietveld refinement of Li2FeS0.2Se1.8.
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Figure S7: PXRD data and quantitative Rietveld refinement of Li2FeSe2.
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Figure S8: Galvanostatic charge/discharge curves for the solid solution Li2FeS2-ySey.
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Figure S9: The 1st, 2nd, 10th, 25th, and 50th galvanostatic cycles of Li2FeSe2. The first cycle
exhibits multiple inflections below 2.25 V, which are not observed upon further cycling.
Significant capacity fade occurs in the first 10 cycles.
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Figure S10: The 1st, 2nd, 5th, 10th, and 24th galvanostatic cycles of Li2FeSSe. The first cy-
cle exhibits multiple inflections below 2.38 V, which are not observed upon further cycling.
Capacity fade becomes evident after the first 10 cycles.
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Figure S11: dQ/dV plots of the solid solution Li2FeS2-ySey. The inset tracks the various
oxidation processes as a function of chalcogen content.
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Figure S12: Position of the major oxidative and reductive waves observed via cyclic
voltammetry versus chalcogen content.
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Figure S13: dQ/dV plots of Li2FeS2 and Li2FeSe2. The sulfide exhibits reproducible elec-
trochemistry from cycle one to cycle two. The selenide exhibits less clear features on the
second cycle, indicating some irreversible changes occuring on the first cycle.
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Figure S14: Electrochemical impedance measurements of Li2FeS2 and Li2FeSe2 cells
at various states of charge. While the charge transfer resistance (low frequency, high
impedance intercept of the semicircular feature) increases at increasing states of charge
for both the sulfide and the selenide, only the sulfide exhibits reversibility and a decrease
in the Rct upon discharge.
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Figure S15: (a) Ex situ Raman spectroscopy of pristine Li2FeSe2. (b) In situ Raman
spectroscopy of Li2FeSe2 and (c) the correlated charge and discharge curves measured
at C/10 based on 1 e−. A new vibrational mode appears at 219 cm−1 appears upon
charging and is maintained after the full discharge. The new mode is assigned to Se–Se
stretches providing clear evidence of the formation of perselenide moieties throughout
the oxidation process as Se and Fe are both oxidized to compensate for Li+ removal. The
perselenide moieties may also be from the new high-impedance phase formed irreversibly
during oxidation.
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