Supporting information

Effect of Zn in Ag-Loaded Zn-Modified ZnTa₂O₆ for Photocatalytic Conversion of CO₂ by H₂O

Shuying Wang[†], Kentaro Teramura^{†,‡*}, Hiroyuki Asakura^{†,‡}, Saburo Hosokawa^{†,‡}, Tsunehiro Tanaka^{†,‡*}

†Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan ‡Element Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30

E-mail address: teramura@moleng.kyoto-u.ac.jp; tanakat@moleng.kyoto-u.ac.jp

Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

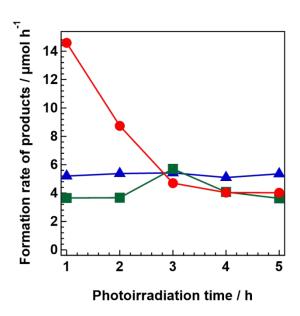


Figure S1. Time-dependent evolution of H_2 (blue), O_2 (green), and CO (red) $3.0 Ag/Z n_3 T a_2 O_8$

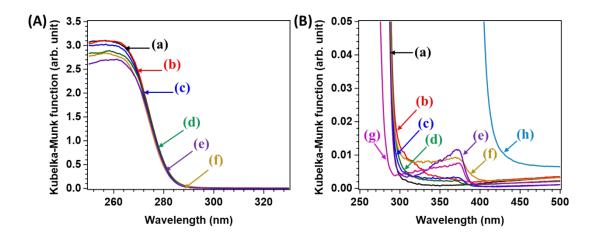


Figure S2 UV-vis spectra of (a) $ZnTa_2O_6$, (b) $2.5Zn/ZnTa_2O_6$, (c) $10Zn/ZnTa_2O_6$, (d) $15Zn/ZnTa_2O_6$, (e) $20Zn/ZnTa_2O_6$, (f) $40Zn/ZnTa_2O_6$, (g) $Zn_3Ta_2O_8$, (h) ZnO_8

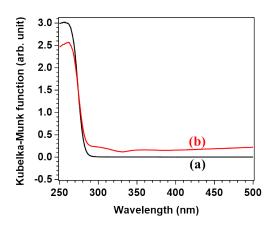


Figure S3 UV-vis spectra of (a) 10Zn/ZnTa₂O₆; (b) Ag/10Zn/ZnTa₂O₆

 $\label{eq:figure S4 SEM images of the (a) ZnTa2O6, (b) 2.5Zn/ZnTa2O6, (c) 10Zn/ZnTa2O6, (d) \\ 15Zn/ZnTa2O6, (e) 20Zn/ZnTa2O6, (f) 40Zn/ZnTa2O6, \\$

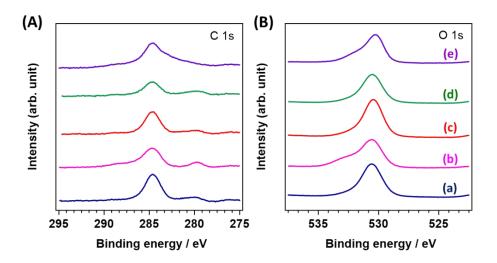


Figure S5. XPS spectra of (A) C 1s and (B) O 1s for (a)ZnTa $_2$ O $_6$, (b) 10Zn/ZnTa $_2$ O $_6$ without calcination; (c) 10Zn/ZnTa $_2$ O $_6$, (d) Zn $_3$ Ta $_2$ O $_8$, and (e) ZnO

Table S1. The ratio of Zn to Ta detected by EDS and XPS $\,$

	Zn/Ta in theory	Zn/Ta by EDS	Zn/Ta by XPS	BET / m ² g ⁻¹
$ZnTa_2O_6$	0.50	0.50	0.63	2.5
$10Zn/ZnTa_2O_6$	0.55	0.57	1.24	2.2
$3.0 Ag/10 Zn/Zn Ta_2 O_6$	0.55	0.57	1.01	/
$Zn_3Ta_2O_8$	1.50	1.54	2.61	/

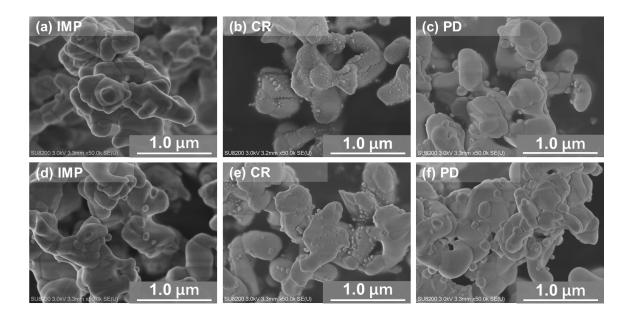


Figure S6. SEM images of (a), (d) $1.5 Ag/10 Zn/ZnTa_2O_6$ (IMP method); (b), (e) $1.5 Ag/10 Zn/ZnTa_2O_6$ (CR method); and (c), (f) $1.5 Ag/10 Zn/ZnTa_2O_6$ (PD method). (a–c) before reaction, and (d–f) after reaction.

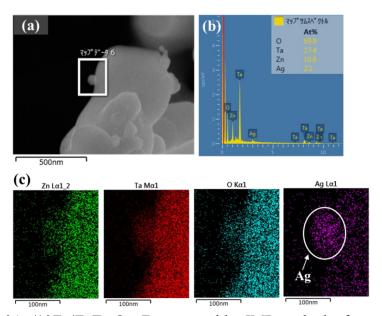


Figure S7. (a) 3.0Ag/10Zn/ZnTa₂O₆: Zn prepared by IMP method, after reaction; (b) EDS mapping of the Ag-loadedZnTa₂O₆: Zn after photocatalytic reactions; (c) EDS mapping of the Zn, Ta, O, and Ag element

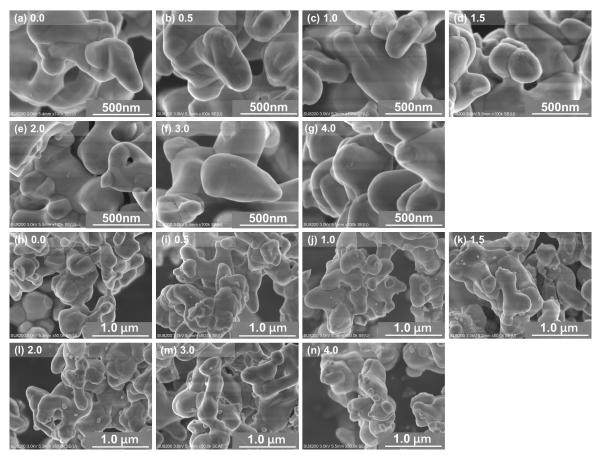


Figure S8. SEM image of the $10Zn/ZnTa_2O_6$ loaded with various amount of Ag cocatalyst (a-g) before rection; (h-n) After 5-h photocatalytic reaction. (a) and (h) 0.0Ag; (b) and (i) 0.5Ag; (c) and (j) 1.0Ag; (d) and (k) 1.5Ag; (e) and (l) 2.0Ag; (f) and (m) 3.0Ag; (g) and (n) 4.0Ag.

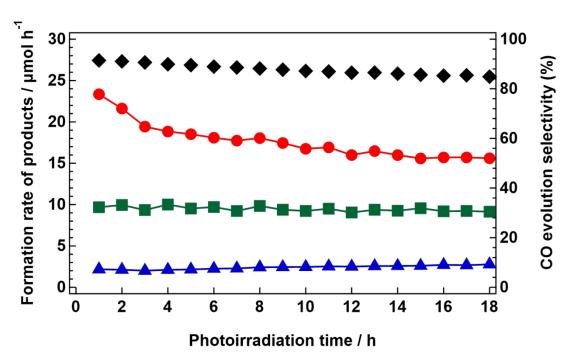


Figure S9. Time-dependent evolution of H_2 (blue), O_2 (green), and CO (red) over $3.0 Ag/10 Zn/Zn Ta_2 O_6$

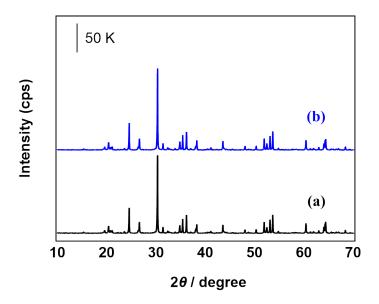


Figure S10. XRD patterns of $3.0 Ag/10 Zn/ZnTa_2O_6$ (a) before and (b) after 15 h photocatalytic reaction.

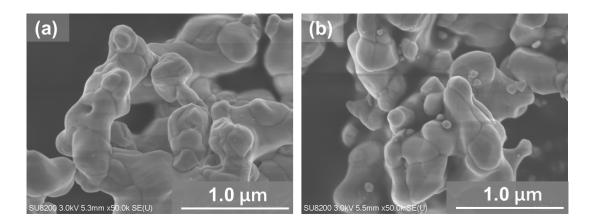


Figure S11. SEM images of $3.0 \text{Ag}/10 \text{Zn}/\text{Zn} \text{Ta}_2 \text{O}_6$ (a) before and (b) after 15 h photocatalytic reaction.

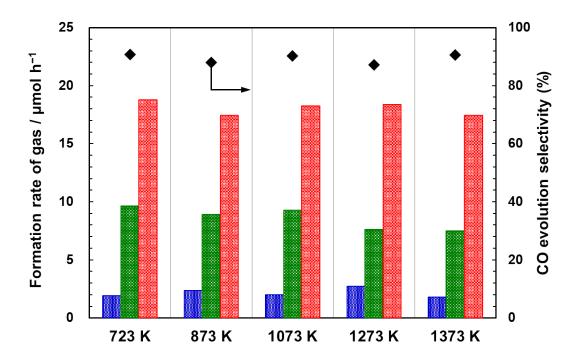
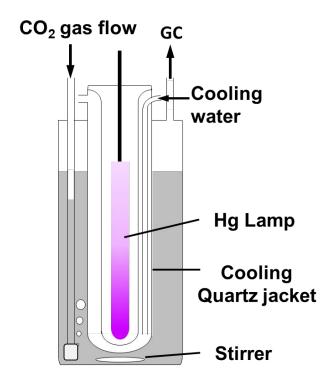



Figure S12 the formation rate of H_2 (blue), O_2 (green), and CO (red) over the $Ag/Zn/ZnTa_2O_6$ fabricated at various kinds calcination temperature.

Scheme S1. The scheme of the inner irradiation reactor

The formation rates of the products (CO, H_2 and O_2) were calculated by the follow equation:

Formation rate of products / mol $h^{-1} = S^*c^*/(1 \text{ mL})^*(30 \text{ mL/min})^*60 \text{ min}$

Where S represents the peak area of gas products detected by the TCD-GC, and FID-GC, c represents a factor of the relationship between the amount of the gas products and the peak area of gas products such as CO, H₂, and O₂. The factor c was obtained by flowing the Ar-diluted mixture gas which contained certain concentration of CO, H₂, and O₂ at different flow rate. The sample loop of TCD-GC and FID-GC is 1 mL. The flow rate of the CO₂ gas in the system is 30 mL/min.