Supporting information

Effect of $\mathbf{Z n}$ in Ag-Loaded $\mathbf{Z n}$-Modified $\mathbf{Z n T a}_{2} \mathbf{O}_{6}$ for Photocatalytic Conversion of CO_{2} by $\mathrm{H}_{\mathbf{2}} \mathrm{O}$

 Tsunehiro Tanaka ${ }^{\dagger}{ }^{\dagger, \text { * }^{*}}$
${ }^{\dagger}$ Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
*Element Strategy Initiative for Catalysts \& Batteries (ESICB), Kyoto University, 1-30
Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
E-mail address: teramura@moleng.kyoto-u.ac.jp; tanakat@moleng.kyoto-u.ac.jp

Figure S1. Time-dependent evolution of H_{2} (blue), O_{2} (green), and CO (red) $3.0 \mathrm{Ag} /$ $\mathrm{Zn}_{3} \mathrm{Ta}_{2} \mathrm{O}_{8}$

Figure S2 UV-vis spectra of (a) $\mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (b) $2.5 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (c) $10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (d) $15 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (e) $20 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (f) $40 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (g) $\mathrm{Zn}_{3} \mathrm{Ta}_{2} \mathrm{O}_{8}$, (h) ZnO

Figure S3 UV-vis spectra of (a) $10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$; (b) $\mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$

Figure S4 SEM images of the (a) $\mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (b) $2.5 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (c) $10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (d) $15 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (e) $20 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (f) $40 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$,

Figure S5. XPS spectra of (A) C 1s and (B) O 1s for (a) $\mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (b) $10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$ without calcination; (c) $10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$, (d) $\mathrm{Zn}_{3} \mathrm{Ta}_{2} \mathrm{O}_{8}$, and (e) ZnO

Table S1. The ratio of Zn to Ta detected by EDS and XPS

	$\mathrm{Zn} / \mathrm{Ta}$ in theory	$\mathrm{Zn} / \mathrm{Ta}$ by EDS	$\mathrm{Zn} / \mathrm{Ta}$ by XPS	$\mathrm{BET} / \mathrm{m}^{2} \mathrm{~g}^{-1}$
$\mathrm{ZnTa}_{2} \mathrm{O}_{6}$	0.50	0.50	0.63	2.5
$10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$	0.55	0.57	1.24	2.2
$3.0 \mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$	0.55	0.57	1.01	$/$
$\mathrm{Zn}_{3} \mathrm{Ta}_{2} \mathrm{O}_{8}$	1.50	1.54	2.61	$/$

Figure S6. SEM images of (a), (d) $1.5 \mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$ (IMP method); (b), (e) $1.5 \mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$ (CR method); and (c), (f) $1.5 \mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$ (PD method). (a-c) before reaction, and (d-f) after reaction.

Figure S7. (a) $3.0 \mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$: Zn prepared by IMP method, after reaction; (b) EDS mapping of the Ag-loadedZnTa O_{2} : Zn after photocatalytic reactions; (c) EDS mapping of the $\mathrm{Zn}, \mathrm{Ta}, \mathrm{O}$, and Ag element

Figure S8. SEM image of the $10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$ loaded with various amount of Ag cocatalyst
(a-g) before rection; (h-n) After 5-h photocatalytic reaction. (a) and (h) 0.0 Ag ; (b) and (i)
0.5 Ag ; (c) and (j) 1.0 Ag ; (d) and (k) 1.5 Ag ; (e) and (l) 2.0 Ag ; (f) and (m) 3.0 Ag ; (g) and (n)
4.0 Ag .

Figure S9. Time-dependent evolution of H_{2} (blue), O_{2} (green), and CO (red) over $3.0 \mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$

Figure S10. XRD patterns of $3.0 \mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$ (a) before and (b) after 15 h photocatalytic reaction.

Figure S11. SEM images of $3.0 \mathrm{Ag} / 10 \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$ (a) before and (b) after 15 h photocatalytic reaction.

Figure S 12 the formation rate of H_{2} (blue), O_{2} (green), and CO (red) over the $\mathrm{Ag} / \mathrm{Zn} / \mathrm{ZnTa}_{2} \mathrm{O}_{6}$ fabricated at various kinds calcination temperature.

Scheme S1. The scheme of the inner irradiation reactor

The formation rates of the products $\left(\mathrm{CO}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{O}_{2}\right)$ were calculated by the follow equation:
Formation rate of products $\left./ \mathbf{m o l} \mathbf{h}^{-1}=S^{*} \boldsymbol{c}^{* /(1 ~ m L}\right) *(30 \mathrm{~mL} / \mathrm{min}) * 60 \mathrm{~min}$
Where \boldsymbol{S} represents the peak area of gas products detected by the TCD-GC, and FID-GC, \boldsymbol{c} represents a factor of the relationship between the amount of the gas products and the peak area of gas products such as $\mathrm{CO}, \mathrm{H}_{2}$, and O_{2}. The factor \boldsymbol{c} was obtained by flowing the Ar-diluted mixture gas which contained certain concentration of $\mathrm{CO}, \mathrm{H}_{2}$, and O_{2} at different flow rate. The sample loop of TCD-GC and FID-GC is 1 mL . The flow rate of the CO_{2} gas in the system is 30 $\mathrm{mL} / \mathrm{min}$.

