Supporting information

Preparation of boronic acid-functionalized cryogels using modular and clickable building blocks for bacteria separation

Hongwei Zheng,^{a,b} Solmaz Hajizadeh,^a Haiyue Gong,^a Hong Lin,^b Lei Ye^{*a}

 ^a Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
 ^b Food Safety Laboratory, College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China

*Corresponding author: Lei Ye, E-mail address: lei.ye@tbiokem.lth.se

Figure S1. FT IR spectra of (a) poly(NIPAm-co-GMA) and (b) poly(NIPAm-co-GMA)@N₃.

Figure S2. GPC trace of poly(NIPAm-co-GMA)@N₃.

Figure S3. SEM images of AG-N₃ cryogel (A, B), AG-alkyne cryogel (C, D), AG-alkyne@polymer-N₃ cryogel (E, F). The scale bars are 10 μ m in (A), (C), (E), and 1 μ m in (B), (D), (F).

Figure S4. Calibration plots for quantification of (A) *E. coli* and (B) *S. epidermidis*.

Figure S5. SEM images of AG-alkyne@polymer-pBA cryogel loaded with S. epidermidis,

after elution using 0.5 M fructose (in 20 mM PBS, pH 9.0, containing 0.5 M NaCl). The scale bars are 10 μ m in (A) and 1 μ m in (B).

Figure S6. Eluted *E. coli* and *S. epidermidis* before (A) and after (B) cultivation in LB medium at 37 °C for 16 h. The bacteria suspension (0.5 mL) eluted by 0.5 M fructose-PBS buffer was transferred into 8 mL of fresh LB medium for cultivation.

Figure S7. Chromatograms of bacteria separation tested with (A) *E. coli* and (B) *S. epidermidis* on different cryogels: (—) AG-alkyne@polymer-pBA, (---) AG-BA. The arrows indicate: (a) loading of 10 mM PBS (pH 8.0), (b) loading of *E. coli* or *S. epidermidis* suspensions ($OD_{600} \approx 1$) in 10 mM PBS (pH 8.0), (c) elution with 0.5 M fructose in 20 mM phosphate buffer (pH 9.0, containing 0.5 M NaCl), (d) washing with 100 mM HAC.

Temperature	Cryogel samples	Swelling Degree (g H ₂ O/g Cryogel)	Macroporosity (Volume %)	
2500	AG cryogel	15.13 ± 0.07	72.42 ± 0.01	
25°C	AG-alkyne@polymer- pBA cryogel	13.38 ± 0.06	69.05 ± 0.01	
	AG cryogel	Swelling Degree (g H ₂ O/g Cryogel) 15.13 ± 0.07 13.38 ± 0.06 14.84 ± 0.06 11.95 ± 0.11	-	
40°C	AG-alkyne@polymer- pBA cryogel	11.95 ± 0.11	-	

 Table S1. Physical properties of AG and AG-alkyne@polymer-pBA cryogel

Adsorbent	Ligands	Targets	Sample	Binding Capacity	Ref.
AG@epoxy@PEI- DFFPBA	boronic acid	Salmonella spp., S. aureus	25% cow milk; water	Salmonella spp.: $(906.60 \pm 15.73) \times 10^7$ CFU/g S. aureus: $(582.59 \pm 13.19) \times 10^7$ CFU/g	[1]
N-methylimidazolium functionalized magnetic particles	N- methylimidazo lium	Listeria monocytogenes	mineral water and tap water	6.22×10^8 CFU/mg	[2]
AGe-Si@brush-pBA	boronic acid	yeast cell	-	6 mg/g	[3]
PDA@Fe ₃ O ₄ nanoparticles	ion-exchange	S. aureus	tap water	$1.2 imes 10^8 \ CFU/mg$	[4]
Si@poly(NIPAm- <i>co-</i> GMA)@PCAPBA	boronic acid	E. coli, S. epidermids	water, 25% milk	<i>E. coli:</i> 13.4×10^7 CFU/mg <i>S. epidermids:</i> 3.36×10^9 CFU/g	[5]
Vancomycin modified PEGylated-magnetic nanoparticles	vancomycin	Listeria monocytogenes	lettuce	~ 2.4×10^7 CFU/mg	[6]
AG-alkyne@polymer- pBA cryogel	boronic acid	E. coli, S. epidermids	water, 25% milk	<i>E. coli:</i> 2.15×10 ⁹ CFU/g <i>S. epidermids:</i> 3.36×10 ⁹ CFU/g	This work

 Table S2. Comparison of binding capacities of different adsorbents towards bacteria

Cryogels	Ligands	Targets	Advantages / Disadvantages	Ref.
Organic-inorganic cryogel composite	boronic acid	nucleosides	Synthesis under mild conditions; high surface area; simple synthesis conditions	[7]
Tyrosine-imprinted cryogel	molecularly imprinted polymer	tyrosine	High selectivity and good reusability	[8]
Poly(Hydroxyethyl Methacrylate) cryogel	antibody	human immunoglobulin M	High specificity and biocompatibility. High- cost	[9]
PolyAdenine	adenine methacrylate	RNA	Sing-step synthesis; high RNA binding capacities; simple operation procedures	[10]
AGe-Si@brush-pBA	boronic acid	yeast cell; haemoglobin	High surface area and multiple affinity ligands. Complicated synthesis procedures	[3]
poly(HEMA- <i>co</i> -MAAc) cryogel	ion-exchange	cisplatin	High hydrophilicity and binding capacities. Selectivity limited	[11]
AG-alkyne@polymer-pBA cryogel	boronic acid	E. coli, S. epidermidis	High ligand density, high binding capacity for bacteria, simple and modular synthesis	This work

 Table S3. Comparison of different composite cryogel for chromatographic separation

Reference

[1] Zheng, H.; Han, F.; Lin, H.; Cao, L.; Pavase, T.; Sui, J. Preparation of a novel polyethyleneimine functionalized sepharose-boronate affinity material and its application in selective enrichment of food borne pathogenic bacteria. *Food Chem.* **2019**, *294*, 468-476.

[2] Wang, Y.; Deng, M.; Jia, L. N-methylimidazolium functionalized magnetic particles as adsorbents for rapid and efficient capture of bacteria. *Microchim Acta* **2014**, *181*, 1275–1283.

[3] Hajizadeh, S.; Ye, L. Hierarchical macroporous material with dual responsive copolymer brushes and phenylboronic acid ligands for bioseparation of proteins and living cells. *Sep. Purif. Technol.* **2019**, *224*, 95-105.

[4] Gao, X.; Yao, X.; Zhong, Z.; Jia, L. Rapid and sensitive detection of Staphylococcus aureus assisted by polydopamine modified magnetic nanoparticles. *Talanta*, **2018**, *186*, 147-153.

[5] Zheng, H.; Gong, H.; Cao, L.; Lin, H.; Ye, L. Photoconjugation of Temperature-and pH-Responsive Polymer with Silica Nanoparticles for Separation and Enrichment of Bacteria. *Colloid. Surface. B* **2020**, 111433.

[6] Meng, X.; Li, F.; Li, F.; Xiong, Y.; Xu, H. Vancomycin modified PEGylated-magnetic nanoparticles combined with PCR for efficient enrichment and detection of Listeria monocytogenes. *Sensor. Actuat. B-Chem.* **2017**, *247*, 546-555.

[7] Zhao, S.; Zou, Y.; Wang, Y.; Zhang, H.; Liu, X. Organized cryogel composites with 3D hierarchical porosity as an extraction adsorbent for nucleosides. *J. Sep. Sci.* **2019**, *42*, 2140-2147.

[8] Bakhshpour, M.; Göktürk, I.; Bereli, N.; Denizli, A. Molecularly imprinted cryogel cartridges for the selective recognition of tyrosine. *Biotechnol. Progr.* **2020**, *36*, e3006.

[9] Bakhshpour. M.; Topcu, A.; Bereli, N.; Alkan, H.; Denizli, A. Poly(Hydroxyethyl Methacrylate) Immunoaffinity Cryogel Column for the Purification of Human Immunoglobulin M. *Gels*, **2020**, *6*, 4.

[10] Köse, K.; Erol, K.; Özgür, E.; Uzun, L.; Denizli, A. PolyAdenine cryogels for fast and effective RNA purification. *Colloid. Surface. B* **2016**, *146*, 678-686.

[11] Farías, T.; Hajizadeh, S.; Ye, L. Cryogels with high cisplatin adsorption capacity: Towards removal of cytotoxic drugs from wastewater. *Sep. Purif. Technol.* **2020**, *235*, 116203.