Supporting Information ## Elucidating the effects of composition on hydrogen sorption in TiVZrNbHfbased High Entropy Alloys Gustav Ek^{1*}, Magnus M. Nygård², Adriano F. Pavan¹, Jorge Montero³, Paul F. Henry^{1,4}, Magnus H. Sørby², Matthew Witman⁵, Vitalie Stavila⁵, Claudia Zlotea³, Bjørn C. Hauback², Martin Sahlberg¹ ¹Department of Chemistry – Ångström laboratory, Uppsala University, Box 523, SE-75120, Uppsala, Sweden ²Institute for Energy Technology, Department for Neutron Materials Characterization, P.O. Box 40, Kjeller NO-2027 Norway ³Université de Paris Est, Institut de Chimie et des Matériaux Paris Est, CNRS, UPEC, 94320 Thiais, France ⁴ISIS Pulsed Neutron and Muon source, Rutherford Appleton Laboratory, OX11 0QX, Didcot, United Kingdom ⁵Sandia National Laboratories, Livermore, California 94551, United States *Corresponding author: gustav.ek@kemi.uu.se **Figure S1:** Hydrogen absorption kinetics after exposure to 40 bar H2 at RT (bottom) and 300°C (top). Figure S2: TG (right) and DSC (left) traces during hydrogen desorption at 10 °C/min. **Figure S3:** Kissinger analysis for the hydrogen desorption for the first (blue) and second (orange) desorption events. **Table S1:** Calculated coherent neutron scattering cross sections for selected compositions using neutrons with wavelength 1.5~Å. | Composition | Neutron scattering cross section (1/cm) | |--------------------------|---| | TiVNbD ₆ | 0.402 | | TiVNb | 0.009 | | TiVZrNbD ₈ | 0.458 | | TiVZrNb | 0.047 | | TiVZrNbHfD ₁₀ | 0.505 | | TiVZrNbHf | 0.087 | **Figure S4:** The onset temperature of the first (top) and second (bottom) desorption events as a function of the mean Pauling electronegativity. **Figure S5:** Simulated neutron powder diffraction patterns for $TiVNbD_6$ with different deuterium occupancy factors and constant unit cell parameter. **Figure S6:** In-situ neutron powder diffraction from the backscattering bank of Polaris during desorption of $TiVNbD_6$. Figure S7: In-situ neutron powder diffraction from the backscattering bank of Polaris during desorption of $TiVZrNbD_8$. **Figure S8**: In-situ neutron powder diffraction from the backscattering bank of Polaris during desorption of TiVZrNbHfD₁₀. **Table S2:** Crystallographic information and refinement strategies for the in-situ neutron diffraction data. | | Site | Wyckoff | х | у | Z | occupancy | flag | limits | |-------|-------|---------|------|------|------|-------------|---------|---| | Fm-3m | | | | | | | | | | | Metal | 4a | 0 | 0 | 0 | nominal | fixed | none | | | D_tet | 8c | 0.25 | 0.25 | 0.25 | 0 < x < 1 | refined | Total occupancy constrained by TG information | | | D_oct | 4b | 0.5 | 0 | 0 | 0 < x < 1 | refined | | | lm-3m | | | | | | | | | | | Metal | 2a | 0 | 0 | 0 | nominal | fixed | none | | | D_tet | 6b | 0 | 0.5 | 0.5 | 0 < x < 1/3 | refined | Total occupancy | | | D_oct | 12d | 0 | 0.5 | 0.25 | 0 < x < 1/6 | refined | constrained by TG information | Figure S9: Van 't Hoff plot for a) TiVZrNbHf, b) TiV_{0.5}ZrNbHf and c) TiVZrNb