SUPPLEMENTARY INFORMATION

(1,2-azole)bis(bipyridyl)ruthenium(II) complexes: electrochemistry, luminescent properties, and electro- and photocatalysts for CO₂ reduction

Elena Cuéllar,^a Laura Pastor,^a Gabriel García-Herbosa,^b John Nganga,^c Alfredo M. Angeles-Boza,^c Alberto Diez-Varga,^b Tomás Torroba,^b Jose M. Martín-Alvarez,^a Daniel Miguel,^a and Fernando Villafañe^{a*}

^a GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain.

^b Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain.

^c Department of Chemistry, University of Connecticut, 55 N. Eagleville Rd, Storrs, CT 06269, USA.

Index

1.	Cyclic voltammograms3	6
	Figure S1. Cyclic voltammogram of 0.5mM cis-[Ru(bpy) ₂ Cl(pzH)](OTf) (1a)3	,
	Figure S2. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂Cl(pzH)](OTf) (1a)3	,
	Figure S3. Cyclic voltammogram of 0.5mM cis-[Ru(bpy) ₂ Cl(indzH)](OTf) (1b)4	ŀ
	Figure S4. Cyclic voltammogram of 0.5mM cis-[Ru(bpy) ₂ Cl(indzH)](OTf) (1b)4	ŀ
	Figure S5. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂Cl(indzH)](OTf) (1b)5	,
	Figure S6. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂Cl(indzH)](OTf) (1b)5	,
	Figure S7. Cyclic voltammogram of 0.5mM cis-[Ru(bpy) ₂ Cl(dmpzH)](OTf) (1c)6	;
	Figure S8. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂Cl(dmpzH)](OTf) (1c)6	;
	Figure S9. Cyclic voltammogram of 0.5mM cis-[Ru(bpy) ₂ (H ₂ O)(pzH)](OTf) ₂ (2a)7	,
	Figure S10. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)2(H ₂ O)(pzH)](OTf) ₂ (2a)7	,
	Figure S11. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)2(H ₂ O)(indzH)](OTf) ₂ (2b)8	;
	Figure S12. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)2(H ₂ O)(indzH)](OTf) ₂ (2b)8	;
	Figure S13. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)2(H ₂ O)(indzH)](OTf) ₂ (2b)9	,
	Figure S14. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)2(H ₂ O)(indzH)](OTf) ₂ (2b)9	,
	Figure S15. Cyclic voltammograms of 0.5mM cis-[Ru(bpy) ₂ (H ₂ O)(indzH)](OTf) ₂ (2b)10)
	Figure S16. Cyclic voltammogram of 0.5mM cis-[Ru(bpy) ₂ (H ₂ O)(dmpzH)](OTf) ₂ (2c)10)
	Figure S17. Cyclic voltammograms of 0.5mM cis-[Ru(bpy) ₂ (H ₂ O)(dmpzH)](OTf) ₂ (2c)11	-
	Figure S18. Cyclic voltammogram of 0.5mM cis-[Ru(bpy) ₂ (indzH) ₂](PF ₆) ₂ (3)11	-
	Figure S19. Cyclic voltammogram of 0.5mM cis-[Ru(bpy) ₂ (indzH) ₂](PF ₆) ₂ (3)12	
	Figure S20. Cyclic voltammograms of 0.5mM cis-[Ru(bpy) ₂ (indzH) ₂](PF ₆) ₂ (3)12	
	Figure S21. Cyclic voltammograms of 0.5mM cis-[Ru(bpy) ₂ (IndzH) ₂](PF ₆) ₂ (3)13	;
	Figure S22. Cyclic voltammograms of 0.5mM cis-[Ru(bpy) ₂ (NCMe) ₂](PF ₆) ₂ (4)13	;
2.	Luminescence	ŀ
	Figure S23	,
	Figure S24. Emission spectra	;
3.	Photocatalytic experiments)
	Figure S25. Turnover number of CO)
	Figure S26. Turnover number of HCO₂ ⁻)
	Figure S27. ¹ H NMR spectrum of the photochemical solution of 1c)

1. Cyclic voltammograms

Figure S1. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)₂Cl(pzH)](OTf) (1a) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) bubbling Ar to the sample, scan rate: 100 mVs⁻¹.

Figure S2. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂**Cl(pzH)](OTf) (1a)** (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) under Ar (black), and after bubbling CO₂ (red).

Figure S3. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)₂Cl(indzH)](OTf) (1b) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) bubbling Ar to the sample, scan rate: 100 mVs⁻¹.

Figure S4. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)₂**Cl(indzH)](OTf) (1b)** (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) bubbling Ar to the sample, scan rate: 500 mVs⁻¹.

Figure S5. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂**Cl(indzH)](OTf) (1b)** (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) bubbling Ar to the sample, at different scan rates.

Figure S6. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂Cl(indzH)](OTf) (1b) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) under Ar (black), and after bubbling CO₂ (red).

Figure S7. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)₂**Cl(dmpzH)](OTf) (1c)** (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) bubbling Ar to the sample, scan rate: 100 mVs⁻¹.

Figure S8. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂Cl(dmpzH)](OTf) (1c) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) under Ar (black), and after bubbling CO₂ (red).

Figure S9. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)₂(H₂O)(pzH)](OTf)₂ (2a) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) bubbling Ar to the sample, scan rate: 100 mVs⁻¹.

Figure S10. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)2(H₂O)(pzH)](OTf)₂ (2a) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) under Ar (black), and after bubbling CO₂ (red).

Figure S11. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)2(H₂O)(indzH)](OTf)₂ (2b) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) bubbling Ar to the sample, scan rate: 100 mVs⁻¹.

Figure S12. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)2(H₂O)(indzH)](OTf)₂ (2b) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) bubbling Ar to the sample, scan rate: 500 mVs⁻¹.

Figure S13. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)2(H_2O)(indzH)](OTf)₂ (2b) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) bubbling Ar to the sample, at different scan rates.

Figure S14. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)2(H₂O)(indzH)](OTf)₂ (2b) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) bubbling Ar to the sample, at different scan rates.

Figure S15. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂(H₂O)(indzH)](OTf)₂ (2b) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) under Ar (black), and after bubbling CO₂ (red).

Figure S16. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)₂(H₂O)(dmpzH)](OTf)₂ (2c) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) bubbling Ar to the sample, scan rate: 100 mVs⁻¹.

Figure S17. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂(H₂O)(dmpzH)](OTf)₂ (2c) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) under Ar (black), and after bubbling CO₂ (red).

Figure S18. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)₂(indzH)₂](PF₆)₂ (3) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) bubbling Ar to the sample, scan rate: 100 mVs⁻¹.

Figure S19. Cyclic voltammogram of 0.5mM cis-[Ru(bpy)₂(indzH)₂](PF₆)₂ (3) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) bubbling Ar to the sample, scan rate: 500 mVs⁻¹.

Figure S20. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂(indzH)₂](PF₆)₂ (3) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) bubbling Ar to the sample, at different scan rates.

Figure S21. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂(IndzH)₂](PF₆)₂ (3) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu₄NPF₆) under Ar (black), and after bubbling CO₂ (red).

Figure S22. Cyclic voltammograms of 0.5mM cis-[Ru(bpy)₂(NCMe)₂](PF₆)₂ (4) (glassy carbon working electrode dish 3.0 mm diameter, dry acetonitrile, 0.1 M Bu_4NPF_6) under Ar (black), and after bubbling CO₂ (red).

2. Luminescence

1a	Absorption λ nm (ϵ x 10 ⁻³ M ⁻¹ cm ⁻¹)	Emission λ nm (% decrease)
MeCN	237 (19871), 287 (49483), 341 (7277), 477 (7263)	625 (34%)
THF	239 (24819), 291 (59853), 354 (8751), 508 (9339)	648 (64%)
Acetone	353 (8379), 504 (8341)	629 (63%)

1b:

1b	Absorption λ nm (ϵ x 10 ⁻³ M ⁻¹ cm ⁻¹)	Emission λ nm (% decrease)
MeCN	236 (24093), 287 (54918), 338 (8109), 476 (8328)	646 (37%)
H ₂ O	237 (18771), 284 (48675), 458 (6598)	629 (2%)

1c	Absorption λ nm (ϵ x 10 ⁻³ M ⁻¹ cm ⁻¹)	Emission λ nm (% decrease)
MeCN	236 (23474), 287 (55804), 341 (8562), 473 (8502)	640 (58%)
THF	239 (30312), 292 (69465), 357 (10999), 515 (11610)	655 (57%)
Acetone	355 (9621), 505 (9348)	651 (48%)

2a:

1c:

(included in main manuscript)

2a	Absorption λ nm (ϵ x 10 ⁻³ M ⁻¹ cm ⁻¹)	Emission λ nm (% decrease)
MeCN	237 (18326), 282 (43084), 339 (5355), 364 (5535), 444 (7066)	624 (23%)
THF	240 (17069), 288 (38912), 332 (5482), 453 (5637)	650 (26%)
Acetone	341 (6150), 363 (6217), 447 (7094)	630 (23%)

S15

Normalize to [0, 1] of "MeCN" Normalize to [0, 1] of "MeCN dox" 1.0 -1.0 0.8 Normalized Absorption 0.6 0.4 0.2 0.2 0.0 -- 0.0 400 450 500 550 600 650 700 Wavelength (nm) 250 300 350 Normalize to [0, 1] of "Acetone" Normalize to [0, 1] of "Acetone dox" 1.0 -- 1.0 0.8 0.8 0.6 0.4 Normalized Absorption 0.2 0.2 0.0 450 500 550 e Wavelength (nm) 600 350 400 650

2b	Absorption λ nm (ϵ x 10 ⁻³ M ⁻¹ cm ⁻¹)	Emission λ nm (% decrease)
MeCN	232 (21800), 281 (48944), 333 (5925), 373	621 (20%)
	(8119), 411 (9208), 429 (9044)	
THF	239 (21578), 288 (48234), 345 (7269), 373	646 (28%)
	(8655), 422 (9145), 438 (9176)	646 (28%)
H₂O	233 (21596), 281 (49385), 372 (7769), 416	625 (9%)
	(9104), 435 (9091)	
Acetone	372 (8832), 412 (9350), 433 (9171)	626 (27%)

2b:

2c	Absorption λ nm (ϵ x 10 ⁻³ M ⁻¹ cm ⁻¹)	Emission λ nm (% decrease)
MeCN	236 (19390), 283 (43887), 342 (6523), 358 (6445), 455 (6892)	638 (53%)
THF	240 (21144), 288 (42437), 343 (7440), 462 (6647)	662 (55%)
Acetone	347 (7356), 458 (7292)	642 (4%)

Figure S23. Above: Normalized UV/vis absorption (black) and emission (blue, $\lambda_{ex} = 420$ nm) spectra at 298 K, in deaerated solvents in optically dilute solutions. Below: Absorption and emission (emission intensity decrease = $100 \cdot I_{non-deaerated}/I_{aerated}$) data at 298 K, in different solvents.

S17

Figure S24. Emission spectra of 1c (left) and 2c (right) in aerated (black) and deaerated (red) MeCN.

3. Photocatalytic experiments

Figure S25. Turnover number of CO (TON_{co}) evolved from 0.1 mM **Ru** complexes, 1.6 mM $[Ru(bpy)_3]^{2+}$ in a CO₂-saturated CH₃CN-TEOA solution (5:1 v/v) irradiated by >300 nm visible light.

Figure S26. Turnover number of HCO_2^- (TON_{HCO2}-) evolved from 0.1 mM **Ru** complexes, 1.6 mM [Ru(bpy)₃]²⁺ in a CO₂-saturated CH₃CN-TEOA solution (5:1 v/v) irradiated by >300 nm visible light.

Figure S27. ¹H NMR spectrum of the photochemical solution of 1c indicating the formate chemical shift ($\delta = -8.50$ ppm) after workup involving addition of known amounts of Verkade's base and ferrocene (as an internal standard).