Supporting Information for:

Development of a Scalable Negishi Cross-Coupling Process for the Preparation of 2-chloro-5-(1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-pyrazol-5-yl)aniline

Candice L. Joe^{*,1}, *Bahar Inankur¹*, *James Chadwick*², *Sha Lou*¹, *Jeffrey Nye*¹, *Neil A. Strotman*¹, *Albert J. DelMonte*¹

¹ Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States

² Chemical Process Development, Bristol Myers Squibb, Reeds Lane, Moreton, Wirral, CH46 1QW, United Kingdom

Table of Contents

General Information	S2
High-Throughput Screening Procedure	S3
Table S1. Ligand screening data with Pd(OAc)2 and [Pd(allyl)Cl]2	S4
NMR Characterization of 1	S5
In Situ FTIR Spectroscopy and Reaction Calorimetry Data	S8

General Information

All operations were performed under a nitrogen atmosphere. Starting materials, reagents, and solvents were used as-received from commercial vendors. Standard benchtop techniques were employed for handling air and moisture sensitive reagents. Hexyllithium (2.3 M in hexane) and ZnCl₂ (1.9 M in 2-Me-THF) were purchased from Sigma-Aldrich. UPLCMS analysis was performed using a Waters Acquity BEH Shield RP-18 column (1.7 μ m, 2.1 mm x 50 mm) with detection by UV at 220 nm and low resolution mass spectrometry detection (positive ion mode) with a Shimadzu LCMS-2020 mass spectrometer. HPLC analysis was performed using a Supelco Ascentis Express C-18 column (2.7 μ m, 4.6 mm x 50 mm) with UV detection at 220 nm. High-resolution mass spectrometery (HRMS) was performed on an Agilent 6230B TOF mass spectrometer. NMR spectra were recorded on a Bruker AV-500 instrument, and are referenced to residual undeuterated solvents (CDCl₃: δ 7.26, DMSO-d₆: δ 2.50; CD₃CN: δ 1.94, MeOH-d₄: δ 3.31). Data are presented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant J (Hz), and integration. Reaction calorimetry was carried out using a Mettler-Toledo EasyMax 402 Calorimeter fitted with HFCal calorimetry hardware, an Aalborg XRF 17, and an Easy Control Box (ECB).

In situ FTIR Spectroscopy

ReactIR 45m with MCT Detector using HappGenzel Apodization; Probe: SiComp (Silicon) connected via AgX 6mm x 1.5m Fiber (Silver Halide); Sampling: 3000 to 650 cm⁻¹ at 8 wavenumber resolution; AutoSelect; Gain: 1x;

High-Throughput Catalyst Screening

Generation of heteroaryl zinc species 4

In a N₂-filled glovebox, charged **2** (300 mg, 1.95 mmol) and THF (3.0 mL) to a 20-mL scintillation vial under N₂ and cooled solution to -10 °C with agitation at 300 RPM. Added *n*-butyllithium (820 μ L, 2.1 mmol, 2.5 M in hexanes) dropwise to the vial over 4 minutes and aged the resulting slurry for 10 minutes at -10 °C. Added ZnCl₂ dropwise to the vial over 4 minutes (1.1 mL, 2.1 mmol, 1.9 M in 2-Me-THF). Aged the slurry for 5 minutes at -10 °C and warmed to 20 °C. To facilitate uniform dosing of the arylzinc reagent to the screening plate, NMP (1.5 mL) was added to the vial at 20 °C.

Screening Procedure

Pre-dosed phosphine ligand vials (2 μ mol for monodentate ligands and 1 μ mol for bidentate ligands) were added to a 96-well reaction plate. A solution of Pd(allyl)Cl]₂ (90 uL of a 0.005M solution in THF) was then added to each vial and the plate was aged at ambient temperature for 20 minutes. A solution of **3** in THF (60 μ L of a 0.4M solution) was then added to each vial. The plate was concentrated to dryness using a Genevac and microstir bars were added to each vial. A solution of **4** (66 μ L, from above) was added to each vial, followed by 34 μ L THF to bring the total reaction volume to 100 μ L. The plate was sealed under N₂ with a Teflon sheet, two black rubber mats, and a metal lid. The plate was removed from the glovebox and heated for 16 hours at 60 °C with orbital shaking at 300 RPM. After cooling to ambient temperature, the vials were diluted with 80:20 MeCN:water (400 μ L). An aliquot (20 μ L) was transferred to a 96-well filter plate and further diluted in 80:20 MeCN:water (650 μ L). The samples were subjected to UPLCMS analysis.

Pd precatal	Pd precatalyst		d THF:NMP (3:1)		Stir	Temp Time		1 (pdt)	THP-Pyrazole
Nam e	mol %	Name	L/M	М	RPM	°C	h	AP	AP
Pd(OAc)2	3.8%	PPh3	2.2	0.24	300	60	16.0	45.38%	8.13%
[(Allyl)PdCl]2	1.9%	PPh3	2.2	0.24	300	60	16.0	41.57%	10.09%
Pd(OAc)2	3.8%	P(fur)3	2.2	0.24	300	60	16.0	22.49%	13.20%
[(Allyl)PdCl]2	1.9%	P(fur)3	2.2	0.24	300	60	16.0	33.98%	11.40%
Pd(OAc)2	3.8%	PPh2(o-anis)	2.2	0.24	300	60	16.0	57.26%	5.81%
[(Allyl)PdCl]2	1.9%	PPh2(o-anis)	2.2	0.24	300	60	16.0	50.73%	8.00%
Pd(OAc)2	3.8%	P(p-CF3-Ph)3	2.2	0.24	300	60	16.0	32.83%	11.24%
[(Allyl)PdCl]2	1.9%	P(p-CF3-Ph)3	2.2	0.24	300	60	16.0	28.88%	12.74%
Pd(OAc)2	3.8%	P(o-Tol)3	2.2	0.24	300	60	16.0	48.51%	9.06%
[(Allyl)PdCl]2	1.9%	P(o-Tol)3	2.2	0.24	300	60	16.0	40.82%	9.86%
Pd(OAc)2	3.8%	PCy3 HBF4	2.2	0.24	300	60	16.0	41.77%	9.50%
[(Allyl)PdCl]2	1.9%	PCy3 HBF4	2.2	0.24	300	60	16.0	34.14%	12.22%
Pd(OAc)2	3.8%	PPh2Pyr	2.2	0.24	300	60	16.0	41.25%	9.26%
[(Allyl)PdCl]2	1.9%	PPh2Pyr	2.2	0.24	300	60	16.0	39.78%	9.66%
Pd(OAc)2	3.8%	PtBu3 HBF4	2.2	0.24	300	60	16.0	80.92%	2.78%
[(Allyl)PdCl]2	1.9%	PtBu3 HBF4	2.2	0.24	300	60	16.0	81.30%	4.04%
Pd(OAc)2	3.8%	PtBu2Me HBF4	2.2	0.24	300	60	16.0	35.57%	10.60%
[(Allyl)PdCl]2	1.9%	PtBu2Me HBF4	2.2	0.24	300	60	16.0	26.50%	13.05%
Pd(OAc)2	3.8%	A-caPhos	2.2	0.24	300	60	16.0	54.31%	7.30%
[(Allyl)PdCl]2	1.9%	A-caPhos	2.2	0.24	300	60	16.0	55.14%	7.80%
Pd(OAc)2	3.8%	A-taPhos	2.2	0.24	300	60	16.0	56.24%	9.28%
[(Allyl)PdCl]2	1.9%	A-taPhos	2.2	0.24	300	60	16.0	78.58%	4.29%
Pd(OAc)2	3.8%	CX-A	2.2	0.24	300	60	16.0	0.27%	15.12%
[(Allyl)PdCl]2	1.9%	CX-A	2.2	0.24	300	60	16.0	0.58%	16.44%
Pd(OAc)2	3.8%	CX-ABn	2.2	0.24	300	60	16.0	28.29%	12.73%
[(Allyl)PdCl]2	1.9%	CX-ABn	2.2	0.24	300	60	16.0	58.12%	7.46%
Pd(OAc)2	3.8%	X-Phos	2.2	0.24	300	60	16.0	89.54%	1.12%
[(Allyl)PdCl]2	1.9%	X-Phos	2.2	0.24	300	60	16.0	86.91%	2.69%
Pd(OAc)2	3.8%	RuPhos	2.2	0.24	300	60	16.0	78.52%	2.78%
[(Allyl)PdCl]2	1.9%	RuPhos	2.2	0.24	300	60	16.0	73.59%	4.86%
Pd(OAc)2	3.8%	S-Phos	2.2	0.24	300	60	16.0	63.43%	4.57%
[(Allyl)PdCl]2	1.9%	S-Phos	2.2	0.24	300	60	16.0	66.51%	4.21%
Pd(OAc)2	3.8%	JackiePhos	2.2	0.24	300	60	16.0	70.89%	12.41%
[(Allyl)PdCl]2	1.9%	JackiePhos	2.2	0.24	300	60	16.0	63.55%	19.35%
Pd(OAc)2	3.8%	Cy-JohnPhos	2.2	0.24	300	60	16.0	79.99%	5.03%
[(AllyI)PdCl]2	1.9%	Cy-JohnPhos	2.2	0.24	300	60	16.0	61.59%	5.82%
Pd(OAc)2	3.8%	Cy-DavePhos	2.2	0.24	300	60	16.0	77.67%	8.28%
[(Allyl)PdCl]2	1.9%	Cy-DavePhos	2.2	0.24	300	60	16.0	73.73%	10.17%
Pd(OAc)2	3.8%	Xantphos	1.1	0.24	300	60	16.0	78.55%	1.94%
[(Allyl)PdCl]2	1.9%	Xantphos	1.1	0.24	300	60	16.0	83.99%	2.42%
Pd(Xantphos)Cl2	3.8%			0.24	300	60	16.0	78.32%	1.93%
Pd(Xantphos)Cl2	3.8%			0.24	300	60	16.0	77.43%	1.91%
Pd(OAc)2	3.8%	Cy-Xantphos	1.1	0.24	300	60	16.0	39.13%	10.95%
[(AllyI)PdCl]2	1.9%	Cy-Xantphos	1.1	0.24	300	60	16.0	11.60%	17.53%
Pd(OAc)2	3.8%	tB-Xantphos	1.1	0.24	300	60	16.0	5.25%	18.84%
[(AllyI)PdCl]2	1.9%	tB-Xantphos	1.1	0.24	300	60	16.0	27.39%	13.41%
Pd(OAc)2	3.8%	DPEphos	1.1	0.24	300	60	16.0	80.82%	2.22%
[(Allyl)PdCl]2	1.9%	DPEphos	1.1	0.24	300	60	16.0	77.42%	3.70%

Table S1. Ligand screening data with $Pd(OAc)_2$ and $Pd(all$	llyl)	CI	2
--	-------	----	---

Pd(OAc)2	3.8%	DCEPhos	1.1	0.24	300	60	16.0	80.50%
[(Allyl)PdCl]2	1.9%	DCEPhos	1.1	0.24	300	60	16.0	78.95%
Pd(OAc)2	3.8%	DPPE	1.1	0.24	300	60	16.0	44.43%
[(Allyl)PdCl]2	1.9%	DPPE	1.1	0.24	300	60	16.0	63.64%
Pd(OAc)2	3.8%	DCPP	1.1	0.24	300	60	16.0	17.33%
[(Allyl)PdCl]2	1.9%	DCPP	1.1	0.24	300	60	16.0	21.99%
Pd(OAc)2	3.8%	DPPB	1.1	0.24	300	60	16.0	68.18%
[(Allyl)PdCl]2	1.9%	DPPB	1.1	0.24	300	60	16.0	59.36%
Pd(OAc)2	3.8%	DCPB HBF4	1.1	0.24	300	60	16.0	34.89%
[(Allyl)PdCl]2	1.9%	DCPB HBF4	1.1	0.24	300	60	16.0	44.96%
Pd(OAc)2	3.8%	DPPPent	1.1	0.24	300	60	16.0	55.33%
[(Allyl)PdCl]2	1.9%	DPPPent	1.1	0.24	300	60	16.0	49.11%
Pd(OAc)2	3.8%	BISBI	1.1	0.24	300	60	16.0	39.71%
[(Allyl)PdCl]2	1.9%	BISBI	1.1	0.24	300	60	16.0	48.27%
Pd(OAc)2	3.8%	DPPF	1.1	0.24	300	60	16.0	60.77%
		DITI		0.24	000	00		
[(Allyl)PdCl]2	1.9%	DPPF	1.1	0.24	300	60	16.0	63.16%
[(Allyl)PdCl]2 Pd(OAc)2	1.9% 3.8%	DPPF DCyPF	1.1 1.1	0.24	300 300	60 60	16.0 16.0	63.16% 40.01%
[(Allyl)PdC]2 Pd(OAc)2 [(Allyl)PdC]2	1.9% 3.8% 1.9%	DPPF DCyPF DCyPF	1.1 1.1 1.1	0.24 0.24 0.24 0.24	300 300 300	60 60 60	16.0 16.0 16.0	63.16% 40.01% 41.52%
[(AllyI)PdC]2 Pd(OAc)2 [(AllyI)PdC]2 Pd(OAc)2	1.9% 3.8% 1.9% 3.8%	DPPF DCyPF DCyPF DCyPF	1.1 1.1 1.1 1.1	0.24 0.24 0.24 0.24 0.24	300 300 300 300	60 60 60 60	16.0 16.0 16.0 16.0	63.16% 40.01% 41.52% 90.34%
[(AllyI)PdC]2 Pd(OAc)2 [(AllyI)PdC]2 Pd(OAc)2 [(AllyI)PdC]2	1.9% 3.8% 1.9% 3.8% 1.9%	DPPF DCyPF DCyPF DCyPF DPP-DtBPF DPP-DtBPF	1.1 1.1 1.1 1.1 1.1	0.24 0.24 0.24 0.24 0.24 0.24	300 300 300 300 300 300	60 60 60 60 60 60	16.0 16.0 16.0 16.0 16.0	63.16% 40.01% 41.52% 90.34% 88.88%
[(AllyI)PdC]2 Pd(OAc)2 [(AllyI)PdC]2 Pd(OAc)2 [(AllyI)PdC]2 Pd(OAc)2	1.9% 3.8% 1.9% 3.8% 1.9% 3.8%	DPPF DCyPF DCyPF DPP-DtBPF DPP-DtBPF BIPHEP	1.1 1.1 1.1 1.1 1.1 1.1	0.24 0.24 0.24 0.24 0.24 0.24 0.24	300 300 300 300 300 300 300	60 60 60 60 60 60 60	16.0 16.0 16.0 16.0 16.0 16.0	63.16% 40.01% 41.52% 90.34% 88.88% 32.78%
[(AllyI)PdC]2 Pd(OAc)2 [(AllyI)PdC]2 Pd(OAc)2 [(AllyI)PdC]2 Pd(OAc)2 [(AllyI)PdC]2 [(AllyI)PdC]2	1.9% 3.8% 1.9% 3.8% 1.9% 3.8% 1.9%	DPPF DCyPF DCyPF DPP-DtBPF DPP-DtBPF BIPHEP BIPHEP	1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.24 0.24 0.24 0.24 0.24 0.24 0.24	300 300 300 300 300 300 300 300	60 60 60 60 60 60 60 60	16.0 16.0 16.0 16.0 16.0 16.0 16.0	63.16% 40.01% 41.52% 90.34% 88.88% 32.78% 57.39%
[(AllyI)PdCI]2 Pd(OAc)2 [(AllyI)PdCI]2 Pd(OAc)2 [(AllyI)PdCI]2 Pd(OAc)2 [(AllyI)PdCI]2 Pd(OAc)2 [(AllyI)PdCI]2 Pd(OAc)2	1.9% 3.8% 1.9% 3.8% 1.9% 3.8% 1.9% 3.8%	DPPF DCyPF DCyPF DPP-DtBPF DPP-DtBPF BIPHEP BIPHEP Cy-BIPHEP	1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	300 300 300 300 300 300 300 300 300	60 60 60 60 60 60 60 60 60	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	63.16% 40.01% 41.52% 90.34% 88.88% 32.78% 57.39% 18.06%

¹H NMR Spectrum (500 MHz, chloroform-*d*) of 2-chloro-5-(1-(tetrahydro-2H-pyran-2-yl)-1Hpyrazol-5-yl)aniline (1)

 $^{1}\text{H NMR} (500 \text{ MHz}, \text{CHLOROFORM-d}) \text{ d } 7.64 - 7.54 \text{ (m, 1H)}, 7.38 - 7.29 \text{ (m, 1H)}, 6.96 - 6.88 \text{ (m, 1H)}, 6.88 - 6.79 \text{ (m, 1H)}, 6.32 - 6.22 \text{ (m, 1H)}, 5.27 - 5.16 \text{ (m, 1H)}, 4.32 - 4.16 \text{ (m, 2H)}, 4.14 - 4.04 \text{ (m, 1H)}, 3.60 \text{ (d, } J = 1.5 \text{ Hz}, 1\text{ H)}, 2.66 - 2.49 \text{ (m, 1H)}, 2.13 - 1.99 \text{ (m, 1H)}, 1.88 - 1.81 \text{ (m, 1H)}, 1.81 - 1.70 \text{ (m, 1H)}, 1.64 - 1.51 \text{ (m, 2H)}$

¹³C NMR Spectrum (126 MHz, chloroform-d) of 2-chloro-5-(1-(tetrahydro-2H-pyran-2-yl)-1Hpyrazol-5-yl)aniline (1)

¹³C NMR (126 MHz, CHLOROFORM-d) d 143.4, 143.0, 139.4, 130.0, 129.5, 119.6, 119.5, 116.1, 106.4, 84.1, 67.7, 29.7, 24.8, 22.9

In situ FTIR Spectroscopy

A SiComp (Silicon) probe was inserted into a 250-mL Chemglass reactor and the reaction was run according to the general procedure. Analysis of the ReactIR data was carried out at 935 cm⁻¹ and 1110 cm⁻¹.

Reaction Calorimetry

Experimental Procedure

In a Mettler-Toledo EasyMax 402 Calorimeter, hexyllithium (20.0 g, 28.5 mL, 2.3M solution in hexane) was charged to a 0 °C solution of **1** (9.58 g, 40 mmol) in THF (97 mL) at a rate of 1.64 g/min with agitation at 300 RPM. The slurry was warmed to 15 °C and the ZnCl₂ solution (37.9 g, 35.5 mL, 1.9 M in 2-methyltetrahydrofuran) was charged at a rate of 0.56 g/mL with agitation at 300 RPM. Calorimetry data for these two steps was collected and is shown below.

Calorimetry				
Energy released			9.621	kJ
Maximum power			8.500	W
Energy released per mole	5-bromo-2	2-chloroanilin	210.664	kJ
Adiabatic Temperature rise			44.002	К
Maximum power per mole	5-bromo-2	2-chloroanilin	186.118	W

Figure S2. Reaction Calorimetry Data for ZnCl₂ Addition

Calorimetry	
Energy released	8.140 kJ
Maximum power	5.500 W
Energy released per mole 5-bromo-2-chloroaniline	167.638 kJ
Adiabatic Temperature rise	34.901 K
Maximum power per mole 5-bromo-2-chloroaniline	113.266 W