Supplementary Information

Synthesis of Glycosyl Fluorides by Photochemical Fluorination with Sulfur(VI) Hexafluoride

Sungjin Kim,[#] Yaroslav Khomutnyk,[#] Anton Bannykh,[#] Pavel Nagorny^{#*}

[#]Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. *nagorny@umich.edu

Table of contents

I. General Information	2
II. Optimization	
a. Photocatalyst screening	4
b. Reaction condition optimization	5
III. Experimental Procedures and Characterization Data	6-46
a. Synthesis of photocatalysts	6
b. Synthesis and characterization data for substrates (1)	7–27
c. Synthesis of glycosyl fluorides 2 (general information)	28–29
d. Summary of <i>a</i> : <i>b</i> ratios for 1 and 2	30
e. Summary of previous methods for the synthesis of 2	30
f. Experimentals and characterization data for products 2	31–47
d. Large Scale Batch Synthesis	48
IV. Continuous Flow Synthesis	
a. Information of the Flow Equipment	49
b. Small Scale Continuous Flow Setup with a Steel Syringe	50
c. Large Scale Continuous Cyclic Flow Setup with an HPLC Pump	51–52
V. UV-Vis Spectra of Photocatalysts	53–56
VI. Studies of the Reaction Mechanism.	
a. Control Experiment	57
b. Light On/Off Experiment	57
c. Catalyst Decomposition Products	58–77
d. SF ₆ Decomposition Side-products and FSO ₃ ⁻ Determination	78
e. Determination of active S-F species by PPh ₃ Quenching Experiment	79–80
f. Fluorination with Pre-Formed Ketyl Radical	81–82
VII.NMR Spectra	

I. General Information

Methods and Reagents:

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out in flame- or oven-dried glassware with magnetic stirring. Reactions were cooled using external cooling baths: ice water (0 °C). Deionized water was used in the preparation of all aqueous solutions and for all aqueous extractions. Solvents used for extraction and chromatography were ACS or HPLC grade. Purification of reaction mixtures was performed by flash column chromatography (FCC) using SiliCycle SilicaFlash P60 (230-400 mesh). Diastereomeric ratios were determined by ¹H NMR or ¹⁹F NMR analysis.

Instrumentation:

¹H NMR spectra were recorded on Varian vnmrs 700 (700 MHz), Varian vnmrs 500 (500 MHz), or Varian INOVA 500 (500 MHz) spectrometers and chemical shifts (δ) are reported in parts per million (ppm) with solvent resonance as the internal standard (CDCl₃ at δ 7.26, CD₃CN at δ 1.94). Data are reported as (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constant(s) in Hz; integration). Protondecoupled ¹³C NMR spectra were recorded on Varian vnmrs 700 (700 MHz) or Varian vnmrs 500 (500 MHz) spectrometers and chemical shifts (δ) are reported in ppm with solvent resonance as the internal standard (CDCl₃ at δ 77.0, CD₃CN at δ 118.7). ¹⁹F NMR spectra were recorded on either Varian vnmrs 500 (500 MHz) or Varian vnmrs 400 (400 MHz) spectrometers and chemical shifts (δ) are reported in parts per million (ppm) and are referenced to CFCl₃ (δ 0.0). High resolution mass spectra (HRMS) were recorded on Micromass AutoSpec Ultima or VG (Micromass) 70-250-S Magnetic sector mass spectrometers in the University of Michigan mass spectrometry laboratory. Infrared (IR) spectra were recorded as thin films on NaCl plates on a Perkin Elmer Spectrum BX FT-IR spectrometer. Absorption peaks were reported in wavenumbers (cm⁻¹).

Assignment of Stereochemistry:

Stereochemistry of glycosyl fluoride products (except mannose and rhamnose) are characterized by: 1. One-bond C-F coupling of anomeric carbon in H-coupled ¹³C NMR; α -glycosyl fluoride, ¹J_{C-F} = 224 - 228 Hz and β -glycosyl fluoride, ¹J_{C-F} = 213 - 219 Hz.

2. Three-bond H-H coupling between anomeric hydrogen and C2-hydrogen in ¹H NMR; α -glycosyl fluoride, ³J_{H-H} = < 3 Hz, and β -glycosyl fluoride, ³J_{H-H} = 5.6 – 7.8 Hz.

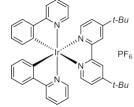
For *D*-mannosyl fluorides and *L*-rhamnosyl fluorides:

1. One-bond C-F coupling of anomeric carbon in H-coupled ^{13}C NMR; α -anomers, $^{1}J_{C-F}$ = 221 - 224 Hz and β -anomers, $^{1}J_{C-F}$ = 213-218 Hz

When previously reported NMR spectra were available, the stereochemistry of the products was confirmed again by comparing with them.

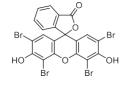
Information of the light equipment:

a. Kessil H160 Tuna Flora LED (Blue LED) – Link to the website

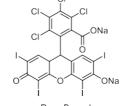

- Peak Wavelength: 452 nm
- b. Waveform lighting realUV[™] LED Strip Lights (365nm) (UV-A LED) Link to the website
 - Peak Wavelength: 369.0 nm
 - UV Output: 0.75 W
 - Radiometric Efficiency: 15%
 - Emission Angle: 120 degree

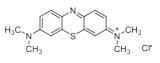
c. Waveform lighting realUV[™] LED Flood Light (365nm) (UV-A Flood Lamp) – <u>Link to the website</u>

- Peak Wavelength: 368.5 nm
- UV Output: 8.0 W
- Radiometric Efficiency: 40%
- Emission Angle: 120 degree


Detailed information of the light sources can be found on the website through the link

II. Optimization a. Photocatalyst Screening




[lr(dtbbpy)(ppy)2]PF6

Eosin Y

Rose Bengal

`N´^{СН}3 СН3

0

Michler's Ketone

С

H₃C、N´ CH₃

Methylene Blue O

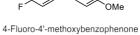
Xanthone

0

CI

,OMe

N-Phenylphenothiazine



Benzophenone

9-Fluorenone

MeO OMe 4,4'-Dimethoxybenzophenone

4-Chloro-3'-methoxybenzophenone

Table SI-1. Photocatalyst Screening

ntry Photocatalyst Light Source NN		AcO AcO 1a (0.1 mmol)	$\begin{array}{c} SF_{6(g)}, hv (UV-A) \\ Photocatalyst (0.4 eq.) \\ DIPEA (20 eq.) \\ DCE (3 mL), 20 h \end{array} \xrightarrow{AcO} \begin{array}{c} AcO \\ $	Ac O V F
[b] $Ir(ppy)_2(dtbbpy)PF_6$ Blue LED	ntry	Photocatalyst	Light Source	NM
	[b]	Ir(ppy) ₂ (dtbbpy)PF ₆	Blue LED	

Entry	Photocatalyst	Light Source	NMR Yield ^[a]
1 ^[b]	$Ir(ppy)_2(dtbbpy)PF_6$	Blue LED	38%
2	Eosin Y	Blue LED	7%
3	Eosin Y	UV-A Flood Lamp	9%
4	Rose Bengal	UV-A Flood Lamp	-
5	Methylene Blue	UV-A Flood Lamp	33%
6	N-Phenylphenothiazine	UV-A Flood Lamp	43%
7	Benzophenone	Blue LED	26%
8	Benzophenone	UV-A Flood Lamp	33%
9	Michler's Ketone	UV-A Flood Lamp	47%
10	Xanthone	UV-A Flood Lamp	25%
11	9-Fluorenone	UV-A Flood Lamp	7%
12	4,4'-Dimethoxybenzophenone	Blue LED	45%
13	4,4'-Dimethoxybenzophenone	UV-A Flood Lamp	60%
14	4-Fluoro-4'-methoxybenzophenone	UV-A Flood Lamp	56%
15	4-Chloro-3'-methoxybenzophenone	UV-A Flood Lamp	29%

[a] Determined by ^{19}F NMR with $\alpha,\alpha,\alpha\text{-trifluorotoluene}$ as an internal standard.

[b] 5 mol% of $Ir(ppy)_2(dtbbpy)PF_6$ and 3 eq. of DIPEA were used.

b. Reaction Condition Optimization

Table SI-2. Solvent Optimization

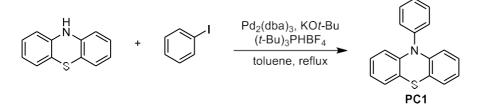
	AcO AcO AcO AcO H 1a (0.1 mmol)	$\begin{array}{ccc} SF_{6(g)}, hv & Ac\\ \hline zophenone (0.4 eq.) \\ \hline DIPEA (6 eq.) & AcO\\ solvent (3 mL) \end{array}$	Portugation was conducted in a 1 dram vial
Entry	Light Source	Solvent	NMR Yield ^[a]
1	UV-A LED	DCE	After 16 h: 40% / 26 h: 47% / 40 h: 55%
2	UV-A Flood Lamp	Toluene	After 20 h: 21% / 33 h: 25% / 57 h: 36%
3	UV-A Flood Lamp	EtOAc	After 20 h: 12% / 33 h: 14% / 57 h: 16%

[a] Determined by ^{19}F NMR with $\alpha,\alpha,\alpha\text{-trifluorotoluene}$ as an internal standard.

Table SI-3. Reaction Condition Optimization

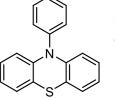
Ac0 - Ac0 Ac0 1a (1	4,4'-dimeth		on was conducted a 1 dram vial
Entry	Light Source	Modification	NMR Yield ^[a]
1	UV-A LED	Reaction was run for 40 hours	53%
2	UV-A LED	Oxygen balloon was added alongside SF ₆ balloon	41%
3	UV-A Flood Lamp	5 eq. of DIPEA	43%
4	UV-A Flood Lamp	10 eq. of DIPEA	61%
5	UV-A Flood Lamp	20 eq. of DIPEA	59%
6	UV-A Flood Lamp	40 eq. of DIPEA	25%
7	UV-A Flood Lamp	10 eq. of triethylamine	52%
8	UV-A Flood Lamp	10 eq. of quinuclidine	5.5%

[a] Determined by ^{19}F NMR with $\alpha,\alpha,\alpha\text{-trifluorotoluene}$ as an internal standard.


Table SI-4. Light Source Optimization

	BnO BnO 1e (0.1 mn	^{0,37} DMBP DIPEA (10 eq.) DCE (3 mL), 20 h	BnO OBn BnO BnO F 2e	
Entry	Photocatalyst Loading	Light Source	Reaction Vessel	Yield
1	0.1 eq.	Two UV-A Flood Lamps	60 mL syringe	84% (46 mg)
2	0.2 eq.	Two UV-A Flood Lamps	60 mL syringe	77% (42 mg)
3	0.2 eq.	One UV-A Flood Lamp	60 mL syringe	80% (44 mg)
4	0.4 eq.	One UV-A Flood Lamp	1 dram vial	59% ^[a]

[a] Determined by ¹⁹F NMR with α, α, α -trifluorotoluene as an internal standard.

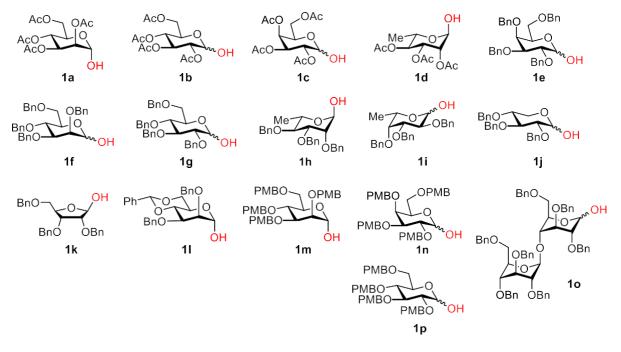

III. Experimental Procedure

a. Synthesis of Photocatalysts

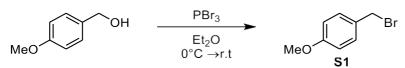
Synthesis of N-phenylphenothiazine

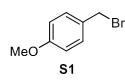
In an oven dried round bottom flask, phenothiazine (4.06 mmol, 1.0 equiv.) was dissolved in anhydrous toluene (10 mL). Iodobenzene (4.95 mmol, 1.2 equiv.), KO*t*-Bu (5.28 mmol, 1.3 equiv.), and (*t*-Bu)₃PHBF₄ (0.24 mmol, 0.06 equiv.) were added, followed by the addition of $Pd_2(dba)_3$ (0.24 mmol, 0.06 equiv.). The reaction mixture was stirred under reflux for 20 h. After cooling the reaction to room temperature, EtOAc (100 mL) and water (50 mL) were added to the reaction mixture. The aqueous layer was extracted with EtOAc (100 mL x 3). The collected organic phase was dried with Na₂SO₄ and concentrated *in vacuo*. The product was purified by FCC (SiO₂, pure hexanes) and confirmed by comparing with literature NMR spectra.¹

PC1


N-Phenylphenothiazine (PC1)

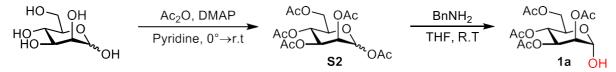
¹**H NMR** (700 MHz, CD₃CN) δ 7.64 (t, *J* = 7.7 Hz, 2H), 7.52 (td, *J* = 7.5, 1.1 Hz, 1H), 7.39 (dt, *J* = 7.2, 1.1 Hz, 2H), 7.04 (dt, *J* = 7.5, 1.2 Hz, 2H), 6.90 (ddd, *J* = 8.4, 7.1, 1.3 Hz, 2H), 6.84 (tt, *J* = 7.4, 1.1 Hz, 2H), 6.22 (dt, *J* = 8.3, 1.1 Hz, 2H); ¹³**C NMR** (176 MHz, CD₃CN) δ 145.6, 142.4, 132.3, 131.8, 129.7, 128.6, 128.4, 124.1, 121.5, 117.7; **IR** (thin film, cm⁻¹): 2921, 1584, 1569, 1489, 1459, 1442, 1301, 1254, 1237, 1126, 1070, 1042, 1022, 1003, 969, 935, 898, 854, 774, 751, 740, 704,


693, 631, 617; HRMS (ESI-TOF) (m/z): [M]⁺ calcd for C₁₈H₁₃NS 275.0769, found 275.0767.


¹Speck, F.; Rombach, D.; Wagenknecht, H-A. Beilstein J. Org. Chem. 2019, 15, 52–59.

b. Synthesis of Substrates

Preparation of 4-Methoxybenzyl bromide (S1)

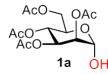


4-Methoxybenzyl bromide (S1)

In a dry round-bottom flask, 4-methoxybenzyl alcohol (112 mmol, 2.8 equiv.) was dissolved with Et₂O (40 mL). After cooling the mixture by placing the flask in an ice bath, PBr₃ (40 mmol, 1 equiv.) was added dropwise into the reaction mixture. The

reaction was stirred for 5 h while it was gradually warmed up to room temperature and quenched by adding aqueous NaCl solution (50 mL). The crude mixture was washed with aqueous NaHCO₃ (saturated, 50 mL) and then aqueous NaCl solution (saturated, 50 mL). The organic layer is concentrated *in vacuo* to yield 4-methoxybenzyl bromide **S1** as colorless liquid. The product was confirmed by ¹H NMR and was subjected to the next synthesis without further purification. ¹H NMR (700 MHz, CDCl₃) δ 7.33 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 4.51 (s, 2H), 3.81 (s, 3H).

Preparation of 2,3,4,6-tetra-O-acetyl-D-mannopyranose (1a)


1,2,3,4,6-Penta-O-acetyl-D-mannopyranoside (S2)

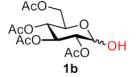
AcO AcO AcO S2 OAc

In an oven dried round-bottom flask, *D*-mannose (5.55 mmol, 1.0 equiv.) and pyridine (20 mL) were added. The reaction mixture was stirred until the solution became homogeneous, and then the round-bottom flask was placed in an ice-bath. After the

reaction was cooled down, acetic anhydride (33.3 mmol, 6.0 equiv.) and DMAP (0.278 mmol, 0.05 equiv.) were added in that order. The reaction was stirred overnight while it was gradually warmed up to the room temperature. The reaction was quenched by diluting with DCM (150 mL) followed by washing with 1N HCl (150 mL x 2), water (150 mL x 2), and then brine (150 mL). Extracted organic layer was dried with Na₂SO₄ and was concentrated *in vacuo* to yield 1,2,3,4,6-penta-*O*-acetyl-D-mannopyranoside **S2** (α : β = 6.2:1) as yellowish gum. The product was subjected to the next synthesis without further purification. ¹H NMR (500 MHz, CDCl₃) δ 6.09 (d, *J* = 1.9 Hz, 1H (α -C₁-H)), 5.35 (d, *J* = 6.2 Hz, 2H), 5.30 (s, 1H), 5.27 – 5.26 (m, 1H), 4.29 (dd, *J* = 12.4, 4.9 Hz, 1H), 4.11 (dd, *J* = 12.4, 2.5 Hz, 1H), 4.06 (q, *J* = 6.9, 6.2 Hz, 1H), 2.18 (s, 3H), 2.17 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H).

2,3,4,6-Tetra-O-acetyl-α-D-mannopyranoside (1a)

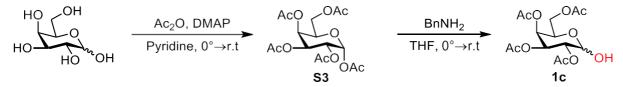
In an oven dried round-bottom flask, **S2** (2.17 g, 5.55 mmol) and THF (20 mL) were added. The mixture was stirred until the solution became homogeneous, and then benzylamine (0.91 mL, 8.33 mmol) was added. The reaction was stirred at room temperate for 20 hours

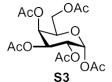

and quenched by evaporating the solvent under reduced pressure. The crude mixture was diluted with DCM (150 mL) and washed with HCl (1.0 M, 100 mL x 2), NaHCO₃ (saturated, 100 mL), and then water (100 mL). The organic layer was dried with Na₂SO₄ and was concentrated *in vacuo* to give amber-colored oil. This oil was subjected to FCC (SiO₂, 20% EtOAc in hexanes \rightarrow 60% EtOAc in hexanes) to afford 2,3,4,6-tetra-O-acetyl-D-mannopyranoside **1a** as yellowish solid, which was confirmed by comparing with reported NMR spectra.² ¹**H NMR** (700 MHz, Chloroform-*d*) δ 5.42 (dd, *J* = 10.1, 3.4 Hz, 1H), 5.30 (t, *J* = 9.8 Hz, 1H), 5.28 – 5.24 (m, 2H), 4.27 – 4.22 (m, 2H), 4.12 (q, *J* = 7.4 Hz, 2H), 3.19 (br, 1H), 2.16 (s, 3H), 2.11 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H).

²Carcabal, P.; Hunig, I.; Gamblin, D. P.; Liu, B.; Jockusch, R. A.; Kroemer, R. T.; Snoek, L. C.; Fairbanks, A. J.; Davis, B. G.; Simons, J. P. *J. Am. Chem. Soc.* **2006**, 128, 6, 1976-1981

Preparation of 2,3,4,6-tetra-O-acetyl-D-glucopyranoside (1b)

2,3,4,6-Tetra-O-acetyl-D-glucopyranoside (1b)

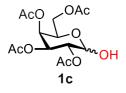



In an oven dried round-bottom flask, 1,2,3,4,6-penta-*O*-acetyl- α -*D*-glucopyranoside (5.12 mmol, 1.0 equiv.) and THF (20 mL) were added. The mixture was stirred until the solution became homogeneous, and then benzylamine (7.69 mmol, 1.5 equiv.) was

added. The reaction was stirred at room temperate for 24 hours and quenched by evaporating the solvent under reduced pressure. The crude mixture was diluted with DCM (150 mL) and washed with 1N HCl (2 x 100 mL), saturated NaHCO₃ solution (100 mL), and then water (100 mL). The organic layer was dried with Na₂SO₄ and was concentrated *in vacuo* to give amber-colored oil. This oil was subjected to FCC (SiO₂, 60% EtOAc in hexane) to afford 2,3,4,6-tetra-*O*-acetyl-D-glucopyranoside **1b** as yellowish solid, which is confirmed by comparing with literature NMR spectra.³

³Ikeda, K.; Morimoto, T.; Kakiuchi, K. J. Org. Chem. 2010, 75, 18, 6279-6282

Preparation of 2,3,4,6-tetra-O-acetyl-α-D-galactopyranose (1c)

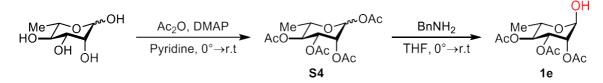


1,2,3,4,6-Penta-O-acetyl-a-D-galactopyranoside (S3)

In an oven dried round-bottom flask, *D*-galactose (5.55 mmol, 1.0 equiv.) and pyridine (20 mL) were added. The reaction mixture was stirred until the solution became homogeneous, and then the round-bottom flask was placed in an ice-bath. After the reaction was cooled

down, acetic anhydride (33.3 mmol, 6.0 equiv.) and DMAP (0.278 mmol, 0.05 equiv.) were added in that order. The reaction was stirred overnight while it was gradually warmed up to the room temperature. The reaction was quenched by diluting with DCM (150 mL) followed by washing with 1N HCl (2 x 150 mL), water (2 x 150 mL), and then brine (150 mL). Extracted organic layer was dried with Na₂SO₄ and was concentrated *in vacuo* to yield 1,2,3,4,6-penta-*O*-acetyl- α -*D*-galactopyranoside **S3** as yellowish gum. The product was subjected to the next synthesis without further purification. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.38 (d, *J* = 1.8 Hz, 1H), 5.50 (d, *J* = 1.5 Hz, 1H), 5.36– 5.32 (m, 2H), 4.34 (td, *J* = 6.6, 1.4 Hz, 1H), 4.14 – 4.05 (m, 2H), 2.16 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H).

2,3,4,6-tetra-O-acetyl-D-galactopyranoside (1c)

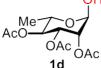


In an oven dried round-bottom flask, **S3** (5.55 mmol, 1.0 equiv.) and THF (20 mL) were added. The mixture was stirred until the solution became homogeneous, and then benzylamine (8.33 mmol, 1.5 equiv.) was added. The reaction was stirred at room temperate for 20 hours and quenched by evaporating the solvent under reduced pressure.

The crude mixture was diluted with DCM (150 mL) and washed with 1N HCl (100 mL x 2), saturated NaHCO₃ solution (100 mL), and then water (100 mL). The organic layer was dried with Na₂SO₄ and was concentrated *in vacuo* to give amber-colored oil. This oil was subjected to FCC (SiO₂, 20% EtOAc in hexanes \rightarrow 60% EtOAc in hexanes) to afford 2,3,4,6-tetra-*O*-acetyl-*D*-galactopyranoside **1c** as yellowish solid, which was confirmed by comparing with reported NMR spectra.⁴

⁴Cai, T. B.; Lu, D.; Tang, X.; Zhang, Y.; Landerholm, M.; Wang, P. G. J. Org. Chem. 2005, 70, 9, 3518-3524

Preparation of 2,3,4-tri-O-acetyl-α-L-rhamnopyranoside (1d)


1,2,3,4-Tetra-O-acetyl-L-rhamnopyranoside (S4)

AcO OAc OAc S4

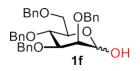
An oven dried round bottom flask was charged with *L*-rhamnose (3.0 mmol, 1.0 equiv.) and anhydrous pyridine (10 mL). After stirring the mixture until it became homogeneous, the round bottom flask was placed in an ice bath and was cooled down

to 0°C. Into the cooled down mixture, acetic anhydride (18 mmol, 6.0 equiv.) and DMAP (0.15 mmol, 0.05 equiv.) were added in that order. The reaction was slowly warmed up to room temperature with stirring until all starting materials were gone. The mixture was then diluted with DCM (100 mL) and washed with 1N HCl solution (2 x 80 mL). The organic layer was washed with water (2 x 80 mL) and then saturated brine (2 x 80 mL). The extracted organic layer was dried with Na₂SO₄ and concentrated *in vacuo* to yield 1,2,3,4-tetra-*O*-acetyl-*L*-rhamnopyranoside **S4** as yellowish gum. The product was then subjected to the next synthesis without further purification.

2,3,4-Tri-*O*-acetyl-α-*L*-rhamnopyranoside (1d)

In an oven dried round-bottom flask, **S4** (3.0 mmol, 1.0 equiv.) and THF (15 mL) were added. The mixture was stirred until the solution became homogeneous, and then benzylamine (4.5 mmol, 1.5 equiv.) was added. The reaction was stirred at room temperate

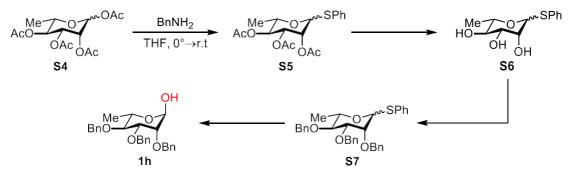
for 20 hours and quenched by evaporating the solvent under reduced pressure. The crude mixture was diluted with DCM (70 mL) and washed with 1N HCl (2 x 50 mL), saturated NaHCO₃ solution (50 mL), and then water (50 mL). The organic layer was dried with Na₂SO₄ and was concentrated *in vacuo* to give amber-colored oil. This oil was subjected to FCC (SiO₂, 20% EtOAc in hexanes \rightarrow 50% EtOAc in hexanes) to afford 2,3,4-tri-*O*-acetyl- α -*L*- rhamnopyranoside **1d** as yellowish solid, which is confirmed by comparing with literature NMR spectra.⁵

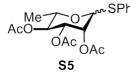

⁵Donahue, M. G.; Johnston, J. N. Bioorg. Med. Chem. Lett. 2006, 16, 5602–5604

Preparation of 2,3,4,6-tetrakis-O-(phenylmethyl)-D-galactopyranoside (1e)

BnO OBn Purchased from Alfa Aesar. Lot#: E28Z019.

Preparation of 2,3,4,6-tetrakis-O-(phenylmethyl)-D-Mannopyranoside (1f)

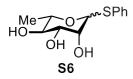

Purchased from Chem-Impex. Lot#: 001684-20150326.



Preparation of 2,3,4,6-Tetrakis-O-(phenylmethyl)-D-glucopyranoside (1g)

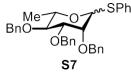
Purchased from CarboSynth. Batch#: MT066911502.

Preparation of 2,3,4-tri-O-(phenylmethyl)-α-L-rhamnopyranoside (1h)



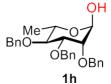
Phenyl 2,3,4-tri-O-acetyl-1-thio-L-rhamnopyranoside (S5)

In an oven dried round bottom flask, S4 (3.0 mmol, 1.0 equiv.) and anhydrous DCM (5 mL) were added. After stirring until the mixture became homogeneous, PhSH (4.5 mmol, 1.5 equiv.) and $BF_3 \cdot OEt_2$ (9.0 mmol, 3.0 equiv.) were added. The reaction


mixture was stirred overnight and quenched with saturated NaHCO₃ solution (20 mL). The aqueous layer was extracted with DCM (3 x 35 mL) and dried with Na₂SO₄. The extracted organic layer was concentrated *in vacuo* and subjected to FCC (SiO₂, 30% EtOAc in hexanes) to afford phenyl 2,3,4-tri-*O*-acetyl-1-thio-*L*-rhamnopyranoside **S5** as white solid.

Phenyl 1-thio-L-rhamnopyranoside (S6)

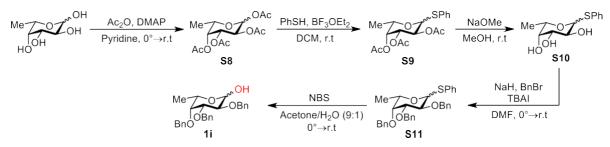
In an oven dried round bottom flask, **S5** (3.0 mmol, 1 equiv.) and MeOH (20 mL) were added. After stirring until the mixture became homogeneous, a chip of sodium metal (0.3 mmol, 0.1 equiv.) was added and stirred at room temperature until all starting


materials were consumed. Once all starting materials are gone, the reaction was neutralized with acetic acid and was concentrated *in vacuo* to yield phenyl 1-thio-*L*-rhamnopyranoside **S6** as white gum. The product was then subjected to next reaction without further purification.

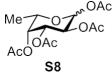
Phenyl 2,3,4-tri-O-(phenylmethyl)-1-thio-L-rhamnopyranoside (S7)

An oven dried and nitrogen filled round-bottom flask was charged with **S6** (3.0 mmol, 1.0 equiv.) and DMF (20 mL). After cooling down the reaction in an ice bath, NaH (18 mmol, 6.0 equiv.) was added portion wise. Once H_2 gas stops generating, BnBr (18

mmol, 6.0 equiv.) was added followed by TBAI (0.15 mmol, 0.05 equiv.). The reaction mixture was stirred at room temperature overnight and quenched by adding water. The mixture was extracted with EtOAc (3 x 60 mL), and the organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 5% EtOAc in hexanes) to afford phenyl 2,3,4-tri-*O*-(phenylmethyl)-1-thio-*L*-rhamnopyranoside **S7** as yellowish oil.

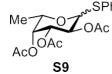

OH 2,3,4-tri-*O*-(phenylmethyl)-α-*L*-rhamnopyranoside (1h)

In a clean round-bottom flask, **S7** (2.5 mmol, 1 equiv.) was dissolved with acetone/water mixture (9:1, 22.2 mL). After cooling down the mixture in an ice bath, NBS (5.0 mmol, 2.0 equiv.) was added. The reaction was stirred overnight while it was gradually warmed up to


the room temperature. Water (20 mL) was added to quench the reaction followed by the extraction with EtOAc (3 x 70 mL). The combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO2, 30% EtOAc in hexanes) to afford 2,3,4-tri-*O*-(phenylmethyl)- α -*L*-rhamnopyranoside **1h** as white solid, which is confirmed by comparing with literature NMR spectra.⁶

⁶Zhang, J.; Fu, J.; Si, W.; Wang, X.; Wang, Z.; Tang, J. Carbohydrate Research. 2011, 346, 2290-2293

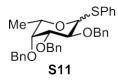
Preparation of 2,3,4-tris-O-(phenylmethyl)-L-fucopyranoside (1i)


C 1,2,3,4-Tetra-O-acetyl-L-fucopyranoside (S8)

In an oven dried round bottom flask, *L*-fucose (3.05 mmol, 1.0 equiv.) and anhydrous pyridine (10 mL) were added. After stirring the mixture until it became homogeneous, the round bottom flask was placed in an ice bath and was cooled down to 0°C. Into the cooled

down reaction, acetic anhydride (18.3 mmol, 6.0 equiv.) and DMAP (0.15 mmol, 0.05 equiv.) were added in that order. The reaction was slowly warmed up to room temperature with stirring until starting materials are gone. The mixture was then diluted with DCM (100 mL) and washed with 1N HCl solution (2 x 80 mL). The organic layer was washed with water (2 x 80 mL) and then saturated brine (2 x 80 mL). The extracted organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The product 1,2,3,4-tetra-*O*-acetyl-*L*-fucopyranoside **S8** is subjected to the next synthesis without further purification.

Phenyl 2,3,4-tri-O-acetyl-1-thio-L-fucopyranoside (S9)

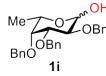


In an oven dried round bottom flask, **S8** (3.0 mmol, 1.0 equiv.) and anhydrous DCM (5 mL) were added. After stirring until the mixture became homogeneous, PhSH (4.5 mmol, 1.5 equiv.) and $BF_3 \cdot OEt_2$ (9.0 mmol, 3.0 equiv.) were added. Then, the reaction mixture

was stirred overnight and quenched with saturated NaHCO₃ solution (20 mL). The aqueous layer was extracted with DCM (3 x 35 mL) and dried with Na₂SO₄. The extracted organic layer was concentrated *in vacuo* and subjected to FCC (SiO₂, 30% EtOAc in hexane \rightarrow 50% EtOAc in hexane) to afford phenyl 2,3,4-tri-*O*-acetyl-1-thio-*L*-fucopyranoside **S9** as white solid.

SPh Phenyl 1-thio-L-fucopyranoside (S10)

 $HO \stackrel{OH}{\mathbf{S10}}$ In an oven dried round bottom flask, **S9** (2.9 mmol, 1 equiv.) and MeOH (20 mL) were added. After stirring until the mixture became homogeneous, Na metal (0.29 mmol, 0.1 equiv.) was added and stirred at room temperature until all starting materials were consumed. Once all starting materials are gone, the reaction was neutralized with acetic acid and was concentrated *in vacuo* to afford phenyl 1-thio-*L*-fucopyranoside **S10** as yellowish gum. The product was then subjected to next reaction without further purification.

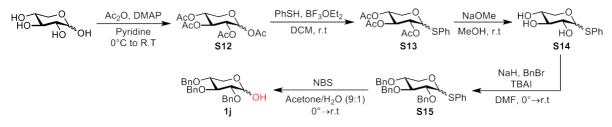


Phenyl 2,3,4-tri-O-(phenylmethyl)-1-thio-L-fucopyranoside (S11)

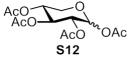
An oven dried and nitrogen filled round-bottom flask was charged with **S10** (3.0 mmol, 1.0 equiv.) and DMF (23 mL). After cooling down the reaction in an ice bath, NaH (18 mmol, 6.0 equiv.) was added portion wise. Once H_2 gas stops generating, BnBr (18 mmol,

6.0 equiv.) was added followed by TBAI (0.15 mmol, 0.05 equiv.). The reaction mixture was stirred at room temperature overnight and quenched by adding water. The mixture was extracted with EtOAc (3 x 100 mL), and the organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 20% EtOAc in hexanes) to afford phenyl 2,3,4-tris-*O*-(phenylmethyl)-1-thio- *L*-fucopyranoside **S11** as yellowish oil.

2,3,4-Tris-O-(phenylmethyl)-L-fucopyranoside (1i)

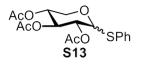


In a clean round-bottom flask, **S11** (2.6 mmol, 1 equiv.) was dissolved with acetone/water mixture (9:1, 25 mL). After cooling down the mixture in an ice bath, NBS (5.2 mmol, 2 equiv.) was added. The reaction was stirred overnight while it was gradually warmed up to

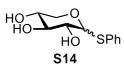

the room temperature. Water (20 mL) was added to quench the reaction followed by the extraction with EtOAc (3 x 100 mL). The combined organic layer was dried with Na_2SO_4 and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 30% EtOAc in hexanes) to afford **1i** as white solid, which is confirmed by comparing with literature NMR spectra.⁷

⁷Nishi, Y.; Tanimoto, T. Biosci. Biotechnol. Biochem. 2009, 73 (3), 562–569

Preparation of 2,3,4-tris-O-(phenylmethyl)-D-xylopyranoside (1j)

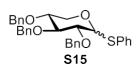

1,2,3,4-Tetra-O-acetyl-D-xylopyranoside (S12)

In an oven dried round bottom flask, *D*-xylopyranose (13 mmol, 1.0 equiv.) and anhydrous pyridine (40 mL) were added. After stirring the mixture until it became homogeneous, the round bottom flask was placed in an ice bath and was cooled down


to 0°C. Into the cooled down reaction, acetic anhydride (65 mmol, 5.0 equiv.) and DMAP (0.65 mmol, 0.05 equiv.) were added in that order. The reaction was slowly warmed up to room temperature with stirring until starting materials are gone. The mixture was then diluted with DCM (150 mL) and washed with 1N HCl solution (2 x 120 mL). The organic layer was washed with water (2 x 120 mL) and then saturated brine (2 x 120 mL). The extracted organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The product 1,2,3,4-Tetra-*O*-acetyl-*D*-xylopyranose **S12** is subjected to the next synthesis without further purification.

Phenyl 2,3,4-tri-O-acetyl-1-thio-D-xylopyranoside (S13)

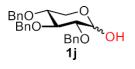
In an oven dried round-bottom flask, **S12** (13 mmol, 1.0 equiv.) and DCM (15 mL) were added. After the addition of thiophenol (19.5 mmol, 1.5 equiv.), the round-bottom flask was sealed with a rubber-septum cap and purged with nitrogen gas. The reaction


mixture was stirred until it became homogeneous, and then $BF_3 \cdot OEt_2$ (33 mmol, 3.0 equiv.) was slowly injected into the flask. The reaction was stirred overnight at room temperature and quenched with saturated NaHCO₃ solution (50 mL). After extracting the mixture with DCM (3 x 70mL), the combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 20% EtOAc in hexane) to afford phenyl 2,3,4-tri-*O*-acetyl-1-thio-*D*-xylopyranose **S14** as yellowish oil.

Phenyl 1-thio-D-xylopyranoside (S14)

A dry round-bottom flask was filled with **S14** (13 mmol, 1.0 equiv.) and anhydrous methanol (40 mL). After the reaction mixture became homogeneous, a chip of sodium metal (1.3 mmol, 0.1 equiv.) was added. The reaction was stirred overnight at room

temperature, and then quenched by adding acetic acid until the pH of the reaction became neutral. The crude mixture was concentrated *in vacuo* to yield yellowish white solid. The product phenyl 1-thio-*D*-xylopyranose **S14** was subjected to the next synthesis without further purification.

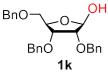


Phenyl 2,3,4-tris-O-(phenylmethyl)-1-thio-D-xylopyranoside (S15)

An oven dried and nitrogen filled round-bottom flask was charged with **S14** (13 mmol, 1.0 equiv.) and DMF (60 mL). After cooling down the reaction in an ice bath, NaH (78 mmol, 6.0 equiv.) was added portion wise. Once H_2 gas stops generating, BnBr (78

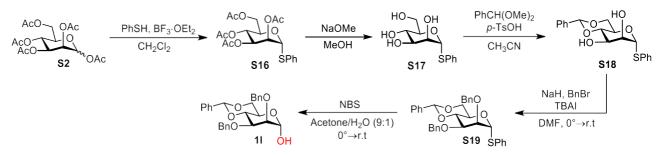
mmol, 6.0 equiv.) was added followed by TBAI (0.65 mmol, 0.05 equiv.). The reaction mixture was stirred at room temperature overnight and quenched by adding water. The mixture was extracted with EtOAc (3 x 100 mL), and the organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 20% EtOAc in hexane) to afford phenyl 2,3,4-tris-*O*- (phenylmethyl)-1-thio-*D*-xylopyranoside **S15** as yellowish oil.

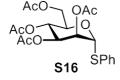
2,3,4-tris-O-(phenylmethyl)-D-xylopyranoside (1j)



In a clean round-bottom flask, **S15** (13 mmol, 1 equiv.) was dissolved with acetone/water mixture (9:1, 50 mL). After cooling down the mixture in an ice bath, NBS (26 mmol, 2 equiv.) was added. The reaction was stirred overnight while it was gradually warmed up

to the room temperature. Water (50 mL) was added to quench the reaction followed by the extraction with EtOAc (3 x 120 mL). The combined organic layer was dried with Na_2SO_4 and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO2, 10% EtOAc in DCM) to afford 2,3,4-tris-*O*-(phenylmethyl)-*D*-xylopyranose **1j** as white solid, which is confirmed by comparing with literature NMR spectra.⁸


Preparation of 2,3,5-Tris-O-(phenylmethyl)-β-D-ribofuranose (1k)


Purchased from Combi-Blocks. Batch#: A98634.

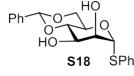
⁸Zhang, J.; Fu, J.; Si, W.; Wang, X.; Wang, Z.; Tang, J. Carbohydrate Research. 2011, 346, 2290-2293

Preparation of 2,3-bis-O-(phenylmethyl)-4,6-O-[(R)-phenylmethylene]-α-D-mannopyranoside (11)

Phenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside (S16)

In an oven dried round-bottom flask, **S2** (11 mmol, 1.0 equiv.) and DCM (15 mL) were added. After the addition of thiophenol (16.5 mmol, 1.5 equiv.), the round-bottom flask was sealed with a rubber-septum cap and purged with nitrogen gas. The reaction mixture

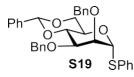
was stirred until it became homogeneous, and then $BF_3 \cdot OEt_2$ (33 mmol, 3.0 equiv.) was slowly injected into the flask. The reaction was stirred overnight at room temperature and quenched with aqueous NaHCO₃ (saturated, 50 mL). After extracting the mixture with DCM (3 x 70mL), the combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 20% EtOAc in hexanes) \rightarrow 40% EtOAc in hexanes) to afford phenyl 2,3,4,6-tetra-*O*-acetyl-1-thio-*D*-mannopyranoside **S16** as yellowish oil.


HO OH HO OH HO SI7 SPh

Phenyl 1-thio-α-D-mannopyranoside (S17)

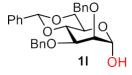
A dry round-bottom flask was filled with **S16** (9.5 mmol, 1.0 equiv.) and anhydrous methanol (40 mL). After the reaction mixture became homogeneous, a chip of sodium metal (0.95 mmol, 0.1 equiv.) was added. The reaction was stirred overnight at room

temperature, and then quenched by adding acetic acid until the pH of the reaction became neutral. The crude mixture was concentrated *in vacuo* to yield yellowish white solid. The product was subjected to the next synthesis without further purification.


Phenyl 4,6-O-[(R)-phenylmethylene]-1-thio-α-D-manopyranoside (S18)

An oven dried and nitrogen filled round-bottom flask was charged with **S17** (4.5 mmol, 1.0 equiv.) and anhydrous acetonitrile (26 mL). PhCH(OMe)₂ (6.75 mmol, 1.5 equiv.) and *p*-TsOH (0.27 mmol, 0.06 equiv.) were added and the mixture was refluxed for 3

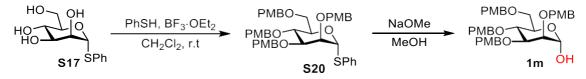
hours. Once all starting materials are consumed, the reaction was quenched with Et₃N (3 mL), diluted with EtOAc (50 mL), and then washed with brine. Collected organic layer was dried with NaSO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 5% EtOAc in hexanes) to afford phenyl 4,6-O-[(R)-phenylmethylene]-1-thio- α -D-manopyranoside **S18** as white solid.


Phenyl 2,3-bis-O-(phenylmethyl)-4,6-O-[(R)-phenylmethylene]-1-thio-α-D-mannopyranoside (S19)

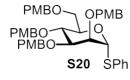
An oven dried and nitrogen filled round-bottom flask was charged with **S18** (3.0 mmol, 1.0 equiv.) and DMF (20 mL). After cooling down the reaction in an ice bath, NaH (18 mmol, 6.0 equiv.) was added portion wise. Once H₂ gas stops generating, BnBr (12 mmol, 4 equiv.) was added followed by TBAI (0.15 mmol, 0.05 equiv.). The reaction

mixture was stirred at room temperature overnight and quenched by adding water. The mixture was extracted with EtOAc (3 x 60 mL), and the organic layer was dried with Na_2SO_4 and concentrated *invacuo*.

2,3-Bis-O-(phenylmethyl)-4,6-O-[(R)-phenylmethylene]-a-D-mannopyranoside (11)

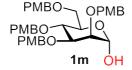


In a clean round-bottom flask, **S19** (3.0 mmol, 1.0 equiv.) was dissolved with acetone/water mixture (9:1, 22.2 mL). After cooling down the mixture in an ice bath, NBS (6.3 mmol, 2.1 equiv.) was added. The reaction was stirred overnight while it was

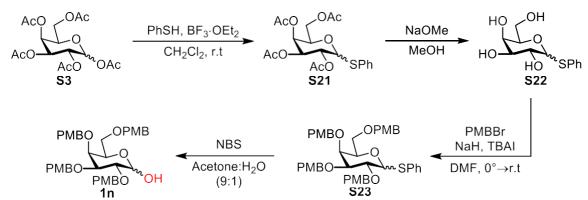

gradually warmed up to the room temperature. Water (20 mL) was added to quench the reaction followed by the extraction with EtOAc (3 x 60 mL). The combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 40% EtOAc in hexanes) to afford 2,3-bis-*O*-(phenylmethyl)-4,6-*O*-[(*R*)-phenylmethylene]- α -*D*-mannopyranoside **11** as white solid, which is confirmed by comparing with literature NMR spectra.⁹

⁹Codée, J. D. C.; Hossain, L. H.; Seeberger, P. H. Org. Lett. 2005, 7, 15, 3251–3254

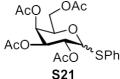
Preparation of 2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]-α-D-mannopyranoside (1m)


Phenyl 2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]-1-thio-a-D-mannopyranoside (S20)

An oven dried and nitrogen filled round-bottom flask was charged with **S17** (9.5 mmol, 1.0 equiv.) and DMF (50 mL). After cooling down the reaction in an ice bath, NaH (52 mmol, 5.5 equiv.) was added portion wise. Once H₂ gas stops generating, PMBBr (47.5 mmol, 5.0 equiv.) was added followed by TBAI (0.95 mmol, 0.1 equiv.). The reaction

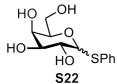

mixture was stirred at room temperature overnight and quenched by adding water. The mixture was extracted with EtOAc (3 x 100 mL), and the organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, hexanes \rightarrow 40% EtOAc in hexanes) to afford phenyl 2,3,4,6-tetrakis-*O*-[(4-methoxyphenyl)methyl]-1-thio- α -*D*-mannopyranoside **S20**.

2,3,4,6-Tetrakis-O-[(4-methoxyphenyl)methyl]-α-D-mannopyranoside (1m)



In a clean round-bottom flask, **S20** (9.5 mmol, 1.0 equiv.) was dissolved with acetone/water mixture (9:1, 55.5 mL). After cooling down the mixture in an ice bath, NBS (20 mmol, 2.1 equiv.) was added. The reaction was stirred overnight while it was

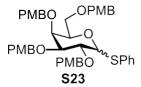
gradually warmed up to the room temperature. Water (50 mL) was added to quench the reaction followed by the extraction with EtOAc (3 x 120 mL). The combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 50% EtOAc in hexanes \rightarrow 70% EtOAc in hexanes) to afford 2,3,4,6-Tetrakis-*O*-[(4-methoxyphenyl)methyl]- α -*D*-mannopyranoside **1m** as white solid. ¹H **NMR** (700 MHz, CDCl₃) δ 7.27 (d, *J* = 10.2 Hz, 6H), 7.06 (dd, *J* = 8.7, 2.6 Hz, 2H), 6.90 – 6.78 (m, 8H), 5.21 (d, *J* = 1.9 Hz, 1H), 4.77 (d, *J* = 10.4 Hz, 1H), 4.66 (d, *J* = 20.2 Hz, 2H), 4.55 (d, *J* = 3.8 Hz, 2H), 4.52 (d, *J* = 11.9 Hz, 1H), 4.48 (d, *J* = 11.9 Hz, 1H), 4.39 (d, *J* = 10.5 Hz, 1H), 3.96 (ddd, *J* = 8.9, 6.3, 2.0 Hz, 1H), 3.90 (dd, *J* = 9.5, 3.0 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.79 (s, 3H), 3.76 (t, *J* = 2.5 Hz, 1H), 3.68 – 3.66 (m, 1H), 3.65 (d, *J* = 1.9 Hz, 1H), 3.62 (dd, *J* = 10.5, 6.4 Hz, 1H); ¹³C **NMR** (176 MHz, CDCl₃) δ 159.1, 159.1, 159.1, 159.1, 130.7, 130.6, 130.4, 130.1, 129.8, 129.7, 129.6, 129.6, 129.6, 129.5, 129.2, 129.2, 113.7, 113.7, 113.7, 113.6, 92.7, 79.4, 74.9, 74.6, 74.3, 72.8, 72.2, 71.8, 71.4, 69.1, 55.2, 55.2; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₃₈H₄₄NaO₁₀ 683.2832, found 683.2810


Preparation of 2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]-D-galactopyranose (1n)

Phenyl 2,3,4,6-tetra-O-acetyl-1-thio-D-galactopyranoside (S21)

In an oven dried round-bottom flask, **S3** (11 mmol, 1.0 equiv.) and DCM (15 mL) were added. After the addition of thiophenol (16.5 mmol, 1.5 equiv.), the round-bottom flask was sealed with a rubber-septum cap and purged with nitrogen gas. The reaction

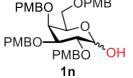
mixture was stirred until it became homogeneous, and then BF₃·OEt₂ (33 mmol, 3.0 equiv.) was slowly injected into the flask. The reaction was stirred overnight at room temperature and quenched with saturated NaHCO₃ solution (50 mL). After extracting the mixture with DCM (3 x 70mL), the combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 20% EtOAc in hexanes \rightarrow 40% EtOAc in hexanes) to afford phenyl 2,3,4,6-tetra-*O*-acetyl-1-thio-*D*-galactopyranoside **S21** as product. ¹**H NMR** (500 MHz, CDCl₃) δ 7.54 – 7.49 (m, 2H), 7.34 – 7.30 (m, 3H), 5.42 (dd, *J* = 3.4, 1.1 Hz, 1H), 5.24 (t, *J* = 10.0 Hz, 1H), 5.05 (dd, *J* = 9.9, 3.3 Hz, 1H), 4.72 (d, *J* = 10.0 Hz, 1H), 4.19 (dd, *J* = 11.3, 7.0 Hz, 1H), 4.12 (dd, *J* = 11.4, 6.3 Hz, 2H), 3.96 – 3.92 (m, 1H), 2.12 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H), 1.98 (s, 3H).



Phenyl 1-thio-D-galactopyranoside (S22)

A dry round-bottom flask was filled with **S21** (11 mmol, 1.0 equiv.) and dry methanol (45 mL). After the reaction mixture became homogeneous, a chip of sodium metal (1.1 mmol, 0.1 equiv.) was added. The reaction was stirred overnight at room temperature,

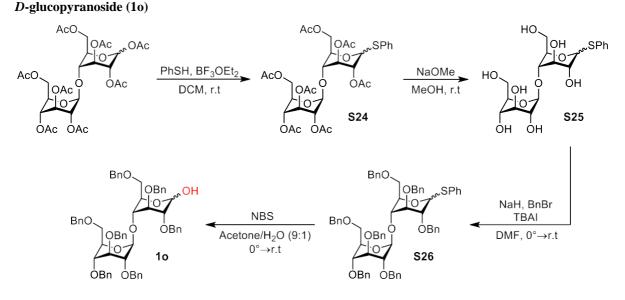
and then quenched by adding acetic acid until the pH of the reaction became neutral. The crude mixture was concentrated *in vacuo* to yield yellowish white solid. The product was subjected to the subsequent reaction without further purification.


Phenyl 2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]-1-thio-D-galactopyranoside (S23)

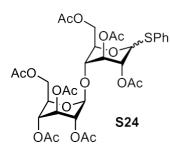
An oven dried and nitrogen filled round-bottom flask was charged with S22 (11 mmol, 1.0 equiv.) and DMF (60 mL). After cooling down the reaction in an ice bath, NaH (88 mmol, 8.0 equiv.) was added portion wise. Once H₂ gas stops generating, PMBBr (88 mmol, 8.0 equiv.) was added followed by TBAI (1.1 mmol, 0.1 equiv.). The

reaction mixture was stirred at room temperature overnight and quenched by adding water. The mixture was extracted with EtOAc (3 x 100 mL), and the organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 20% EtOAc in hexanes \rightarrow 30% EtOAc in hexanes) to afford phenyl 2,3,4,6-tetrakis-*O*-[(4-methoxyphenyl)methyl]-1-thio-*D*-galactopyranoside **S23** as yellowish gum.

2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]-D-galactopyranoside (1n)

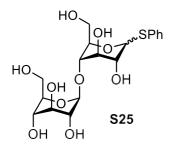


In a clean round-bottom flask, **S23** (10 mmol, 1.0 equiv.) was dissolved with acetone/water mixture (9:1, 55.5 mL). After cooling down the mixture in an ice bath, NBS (21 mmol, 2.1 equiv.) was added. The reaction was stirred overnight while it was


gradually warmed up to the room temperature. Water (50 mL) was added to quench the reaction followed by the extraction with EtOAc (3 x 120 mL). The combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO2, 30% EtOAc in hexanes \rightarrow 40% EtOAc in hexanes) to afford 2,3,4,6-tetrakis-*O*-[(4-methoxyphenyl)methyl]-*D*-galactopyranoside **1n** as white solid product, which is confirmed by comparing with literature NMR spectra.¹⁰

¹⁰Whalen, L. J.; Halcomb, R. L. Org. Lett. 2004, 6, 19, 3221-3224

Preparation of 2,3,6-tris-*O*-(phenylmethyl)-4-*O*-[2,3,4,6-tetrakis-*O*-(phenylmethyl)-β-*D*-glucopyranosyl]-



Phenyl 4-O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-1-thio-D-glucopyranoside 2,3,6-triacetate (S24)

In an oven dried round-bottom flask, α -D-cellobiose octaacetate (3.0 mmol, 1.0 equiv.) and DCM (10 mL) were added. After the addition of thiophenol (4.5 mmol, 1.5 equiv.), the round-bottom flask was sealed with a rubber-septum cap and purged with nitrogen gas. The reaction mixture was stirred until it became homogeneous, and then BF₃·OEt₂ (9.0 mmol, 3.0 equiv.) was slowly injected into the flask. The reaction was stirred overnight at room temperature and quenched with saturated NaHCO₃ solution (10 mL). After extracting the mixture with

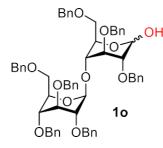
DCM (3 x 70mL), the combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 50% EtOAc in hexanes) to afford phenyl 4-O-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)-1-thio-D-glucopyranoside 2,3,6-triacetate **S24** as fluffy white solid.

Phenyl 4-O-β-D-glucopyranosyl-1-thio-D-glucopyranoside (S25)

A dry round-bottom flask was filled with **S24** (3.0 mmol, 1.0 equiv.) and dry methanol (20 mL). After the reaction mixture became homogeneous, a chip of sodium metal (0.3 mmol, 0.1 equiv.) was added. The reaction was stirred overnight at room temperature, and then quenched by adding acetic acid until the pH of the reaction became neutral. The crude mixture was concentrated *in vacuo* to yield **S25** as yellowish white solid. The product was subjected to the subsequent

reaction without further purification.

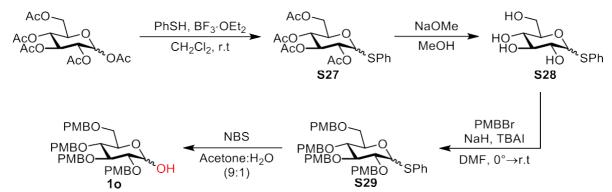
Phenyl 2,3,6-tris-*O*-(phenylmethyl)-4-*O*-[2,3,4,6-tetrakis-*O*-(phenylmethyl)-β-*D*-glucopyranosyl]-1-thio-*D*-glucopyranoside (S26)



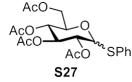
An oven dried and nitrogen filled round-bottom flask was charged with **S25** (3.0 mmol, 1.0 equiv.) and DMF (30 mL). After cooling down the reaction in an ice bath, NaH (48 mmol, 16 equiv.) was added portion wise. Once H₂ gas stops generating, BnBr (42 mmol, 14 equiv.) was added followed by TBAI (0.15 mmol, 0.05 equiv.). The reaction mixture was stirred at room temperature overnight and quenched by adding water. The mixture was extracted with EtOAc (3 x 80 mL),

and the organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, hexanes \rightarrow 20% EtOAc in hexanes) to afford phenyl 2,3,6-tris-*O*-(phenylmethyl)-4-*O*-[2,3,4,6-tetrakis-*O*-(phenylmethyl)- β -*D*-glucopyranosyl]-1-thio-*D*-glucopyranoside **S26** as yellowish white solid.

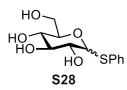
$2,3,6-Tris-{\it O-(phenylmethyl)-4-O-[2,3,4,6-tetrakis-{\it O-(phenylmethyl)-\beta-D-glucopyranosyl]-D-gluco$


glucopyranoside (10)

In a clean round-bottom flask, **S26** (2.0 mmol, 1.0 equiv.) was dissolved with acetone/water mixture (9:1, 22 mL). After cooling down the mixture in an ice bath, NBS (4.2 mmol, 2.1 equiv.) was added. The reaction was stirred overnight while it was gradually warmed up to the room temperature. Water (20 mL) was added to quench the reaction followed by the extraction with EtOAc (3 x 70 mL). The combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 30% EtOAc in


hexanes) to afford 2,3,6-tris-O-(phenylmethyl)-4-O-[2,3,4,6-tetrakis-O-(phenylmethyl)- β -D-glucopyranosyl]-D-glucopyranoside **10** as white solid, which is confirmed by comparing with literature NMR spectra.¹¹

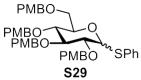
¹¹Liu, B.; Mechelen, J.; Berg, R.; Nieuwendijk, A.; Aerts, J.; Marel, G.; Codée, J. Overkleeft, H. S. Eur. J. Org. Chem. 2019, 118–129


Preparation of 2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]-α-D-glucopyranoside (1p)

Phenyl 2,3,4,6-tetra-O-acetyl-1-thio-D-glucopyranoside (S27)

In an oven dried round-bottom flask, 1,2,3,4,6-penta-*O*-acetyl-*D*-glucopyranoside (5.0 mmol, 1.0 equiv.) and DCM (5 mL) were added. After the addition of thiophenol (7.5 mmol, 1.5 equiv.), the round-bottom flask was sealed with a rubber-septum cap and

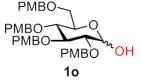
purged with nitrogen gas. The reaction mixture was stirred until it became homogeneous, and then BF₃·OEt₂(15 mmol, 3.0 equiv.) was slowly injected into the flask. The reaction was stirred overnight at room temperature and quenched with saturated NaHCO₃ solution (10 mL). After extracting the mixture with DCM (3 x 50mL), the combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, pure hexane \rightarrow 30% EtOAc in hexanes) to afford phenyl 2,3,4,6-tetra-*O*-acetyl-1- thio-*D*-glucopyranoside **S27** as white solid.



Phenyl 1-thio-D-glucopyranoside (S28)

A dry round-bottom flask was filled with **S27** (5.0 mmol, 1.0 equiv.) and dry methanol (30 mL). After the reaction mixture became homogeneous, a chip of sodium metal (0.5 mmol, 0.1 equiv.) was added. The reaction was stirred overnight at room temperature,

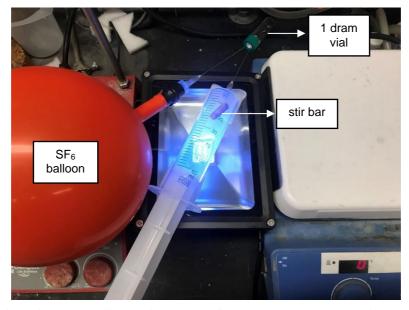
and then quenched by adding acetic acid until the pH of the reaction became neutral. The crude mixture was concentrated *in vacuo* to yield **S28** as yellowish white solid. The product was subjected to the subsequent reaction without further purification.


Phenyl 2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]-1-thio-D-glucopyranoside (S29)

An oven dried and nitrogen filled round-bottom flask was charged with **S28** (5.0 mmol, 1.0 equiv.) and DMF (30 mL). After cooling down the reaction in an ice bath, NaH (25 mmol, 5.0 equiv.) was added portion wise. Once H₂ gas stops generating, PMBBr (25 mmol, 5.0 equiv.) was added followed by TBAI (0.5 mmol, 0.1 equiv.).

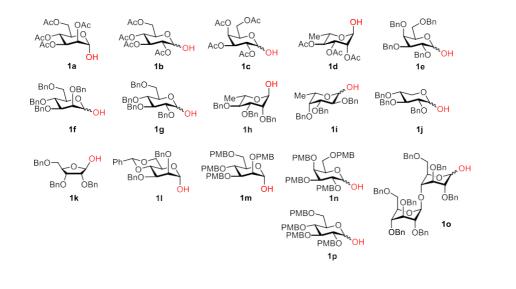
The reaction mixture was stirred at room temperature overnight and quenched by adding water. The mixture was extracted with EtOAc (3 x 100 mL), and the organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO₂, 40% EtOAc in hexanes) to afford phenyl 2,3,4,6-tetrakis-*O*-[(4-methoxyphenyl)methyl]-1-thio-*D*-glucopyranoside **S29** as yellowish white gum.

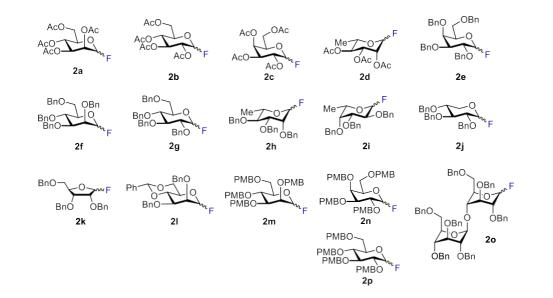
2,3,4,6-Tetrakis-*O*-[(4-methoxyphenyl)methyl]-α-*D*-glucopyranoside (10)


In a clean round-bottom flask, **S26** (5.0 mmol, 1.0 equiv.) was dissolved with acetone/water mixture (9:1, 33.3 mL). After cooling down the mixture in an ice bath, NBS (10 mmol, 2.0 equiv.) was added. The reaction was stirred overnight while it was

gradually warmed up to the room temperature. Water (35 mL) was added to quench the reaction followed by the extraction with EtOAc (3 x 100 mL). The combined organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The concentrated crude mixture was subjected to FCC (SiO2, 40% EtOAc in hexanes) to afford 2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]- α -D-glucopyranoside **10** as white solid, the structure of which was confirmed by the comparison with the reported in literature NMR spectra.¹²

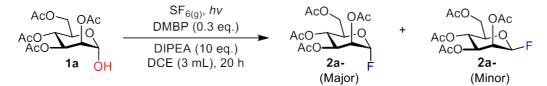
¹²Lucchetti, N.; Gilmour, R. Chem. Eur. J. 2018, 24,16266 –16270


c. Synthesis of Glycosyl Fluorides


General Procedure: An oven-dried 1 dram vial was charged with the sugar substrate (0.1 mmol, 1 equiv.) and 4,4'-dimethoxybenzophenone (0.02 mmol, 0.2 equiv.). The vial containing the mixture was sealed with PTFE/Silicone septum cap and was further dried under high vacuum for 5 minutes. Into the sealed vial, DCE (3 mL) and DIPEA (1 mmol, 10 equiv.) were added, and the vial was sonicated until the mixture became homogeneous. The mixture was sparged with a balloon containing SF₆ gas for 30 seconds. After the sparging was done, the outlet needle was removed followed by transfer of the reaction mixture into a 60 mL plastic syringe containing a stir bar. The syringe containing the mixture was placed on UV-A Flood Light lamp (distance between the lamp and the syringe = 1cm) and the reaction was stirred for 20 h, and then stopped by turning off the UV-A lamp.

The resultant reaction mixture was diluted with 30 mL of DCM, and then washed with 1N HCl (20 mL x 3), NaHCO₃ (20 mL), water (20 mL), and brine (25 mL). The extracted organic layer was dried with Na₂SO₄ and concentrated *in vacuo* to give red-brown oil, which was subjected to FCC (SiO₂) to afford a pure product.

Procedure for acetylated glycosides: Similar to the general procedure except 0.03 mmol (0.3 equiv.) of 4,4'- dimethoxybenzophenone was used instead of 0.02 mmol (0.2 equiv.). For the substrates **1b** and **1c**, two UV-A lamps were used instead of one.

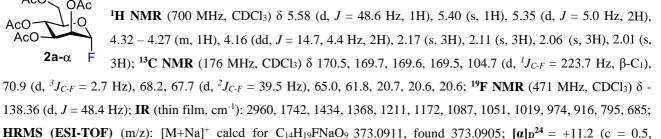


Substrate	Initial dr (<i>a</i> : <i>b</i> ratio) of the starting substrate 1 determined by ¹ H NMR	Product fluoride (2) dr (<i>a</i> : <i>b</i> ratio) Determined by ¹⁹ F NMR
1a	alpha only	13:1
1b	5:1	1:4.8
1c	4.2:1	1:3.1
1d	alpha only	6.7:1
1e	1.4:1	1:2.9
1f	2.5:1	19:1
1g	4.75:1	1:3.7
1h	alpha only	5:1
1i	2.7:1	1:3.6
1j	5.5:1	1:4.3
1k	beta only	1:13
11	alpha only	7.8:1
1m	alpha only	36:1
1n	3.35:1	1:2.4
1o	1.86:1	1:3.4
1р	3:1	1.3.7

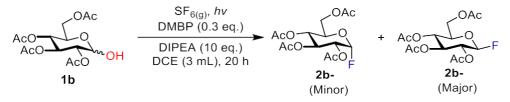
Table SI-5. Initial and final a:b ratios of the starting materials 1 used in the reactions and products 2

Table SI-6. Summary of the previous methods for the synthesis of glycosyl fluoride products 2

product	method	yield	d.r. (<i>a</i> : <i>b</i>)	link to the paper
2a	Xtalfluor-E, DCE, reflux	94%	alpha only	<u>Link</u>
2b	DAST, DCM, microreactor	89%	5:4	<u>Link</u>
0.5	DAST, DCE, 70°C	38%	1:2.4	L in L
2c	DAST, DMTST, DCM, 25°C	100%	1:9.1	Link
2d	AgF. I ₂	80%	alpha only	<u>Link</u>
2e	DAST (1.2 eq.), THF, -30°C, N ₂	91%	3:5	<u>Link</u>
2f	DAST (1.2 eq.), THF, -30°C, N ₂	91%	alpha only	<u>Link</u>
2g	DAST, DCM, microreactor	100%	1:4	<u>Link</u>
2h	2h –		-	-
2i	2i DAST, NBS, DCM, -15°C		1:2	<u>Link</u>
2j	HF, DCM, -70°C	~ 100%	alpha only	<u>Link</u>
2k	DAST (1.2 eq.), THF, -30°C, N ₂	90%	10:1	<u>Link</u>
21	DAST, -78°C to 0°C, 2h	91%	beta only	<u>Link</u>
2m	-	-	_	_
2n	NBS, DAST	93%	not provided	<u>Link</u>
20		-	-	_
2р	_	-	_	_



Synthesis of 2,3,4,6-Tetra-O-acetyl-D-mannopyranosyl fluoride (2a)

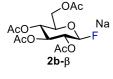

CH₂Cl₂).

The product was synthesized employing a procedure for acetylated glycosides. After a work-up, the reaction mixture was subjected to FCC (SiO₂, pure hexanes \rightarrow 40% EtOAc in hexane) to afford pure **2a** (25.1 mg, α : β = 13 : 1) in 72% yield as yellow oil. Stereochemistry of the products was confirmed by comparing with previously reported NMR spectra.¹³

2,3,4,6-Tetra-O-acetyl-a-D-mannopyranosyl fluoride (Major product).

¹³ Chambers, R. D.; Sandford, G.; Sparrowhawk, M. E.; Atherton, M. J. J. Chem. Soc., Perkin Trans. 1, 1996, 1941-1944

Synthesis of 2,3,4,6-Tetra-O-acetyl-D-glucopyranosyl fluoride (2b)

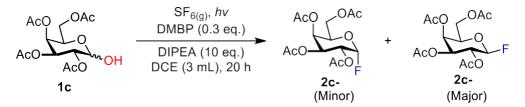

The product was synthesized employing a procedure for acetylated glycosides. After a work-up, the reaction mixture was subjected to FCC (SiO₂, pure hexanes \rightarrow 40% EtOAc in hexanes) to afford **2b** as amber colored oil (14.1 mg, α : β = 1 : 4.8) in 53% yield.

2,3,4,6-Tetra-O-acetyl-α-D-glucopyranosyl fluoride (Minor product)

¹**H** NMR (700 MHz, CDCl₃) δ 5.75 (dd, *J* = 52.8, 2.8 Hz, 1H), 5.50 (t, *J* = 9.9 Hz, 1H), 5.16 (t, *J* = 10.0 Hz, 1H), 4.96 (ddd, *J* = 24.2, 10.2, 2.8 Hz, 1H), 4.29 (dd, *J* = 12.5, 4.1 Hz, 1H), 4.19 (ddd, *J* = 10.3, 4.2, 2.2 Hz, 1H), 4.15 (dd, *J* = 12.5, 2.2 Hz, 1H), 2.11 (s, 3H), 2.10 (s, 6H),

2.05 (s, 3H), 2.03 (s, 3H); ¹³**C NMR** (176 MHz, CDCl₃) δ 170.5, 170.0, 169.9, 169.4, 103.7 (d, ¹*J*_{*C-F*} = 229.5 Hz, α -C₁), 70.2 (d, ²*J*_{*C-F*} = 24.5 Hz), 69.8 (d, ³*J*_{*C-F*} = 4.3 Hz), 69.4, 67.3, 61.2, 20.7, 20.6, 20.5; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -149.75 (dd, *J* = 52.8, 24.3 Hz, α -C₁-F); **IR** (thin film, cm⁻¹): 2918, 1743, 1434, 1367, 1208, 1160, 1103, 1033, 904, 779; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₁₄H₁₉FNaO₉ 373.0911, found 373.0899

2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl fluoride (Major product)



OAc

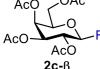
2b-α

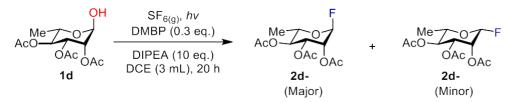
¹**H NMR** (700 MHz, CDCl₃) δ 5.36 (ddd, J = 52.0, 6.2, 1.8 Hz, 1H), 5.20 (tt, J = 9.4, 4.8 Hz, 2H), 5.12 – 5.08 (m, 1H), 4.29 – 4.24 (m, 1H), 4.24 – 4.20 (m, 1H), 3.90 (ddd, J = 7.5, 4.9, 2.5 Hz, 1H), 2.10 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H); ¹³**C NMR** (176 MHz, CDCl₃) δ 170.6,

170.0, 169.3, 169.1, 106.2 (d, ${}^{I}J_{C-F} = 219.6$ Hz, β-C₁), 72.0 (d, ${}^{3}J_{C-F} = 3.8$ Hz), 71.8 (d, ${}^{3}J_{C-F} = 8.3$ Hz), 71.2 (d, ${}^{2}J_{C-F} = 28.8$ Hz), 67.4, 61.7, 20.7, 20.6; 19 **F** NMR (471 MHz, CDCl₃) δ -137.07 (dd, J = 51.9, 10.4 Hz, β-C₁-F); **IR** (thin film, cm⁻¹): 2918, 1743, 1434, 1367, 1208, 1160, 1103, 1033, 904, 779; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₁₄H₁₉FNaO₉ 373.0911, found 373.0899; **[α]** $p^{24} = +13.6$ (c = 0.5, CH₂Cl₂)

Synthesis of 2,3,4,6-Tetra-O-acetyl-D-galactopyranosyl fluoride (2c)

The product was synthesized employing a procedure for acetylated glycosides. After a work-up, the reaction mixture was subjected to FCC (SiO₂, pure hexanes \rightarrow 40% EtOAc in hexanes) to afford 2c as amber colored oil $(15.6 \text{ mg}, \alpha : \beta = 1 : 3.1)$ in 45% yield.


2,3,4,6-Tetra-O-acetyl-α-D-galactopyranosyl fluoride (Minor product).

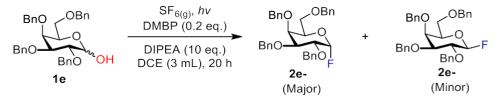

¹**H NMR** (700 MHz, CDCl₃) δ 5.80 (d, J = 53.3 Hz, 1H), 5.53 (t, J = 2.5 Hz, 1H), 5.37 (dt, J = 10.8, 2.8 Hz, 1H), 5.19 (ddt, J = 23.8, 10.9, 2.6 Hz, 1H), 4.41 (t, J = 6.7 Hz, 1H), 4.18 – 4.09 (m, 2H), 2.16 (s, 3H), 2.12 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H); ¹³C NMR (176 MHz, cdcl₃) δ 170.3, 170.2, 170.0, 169.9,

104.3 (d, ${}^{1}J_{C-F} = 228.4$ Hz, α -C₁), 68.9 (d, ${}^{3}J_{C-F} = 3.5$ Hz), 67.5, 67.3, 67.0, 61.3, 20.7, 20.6, 20.6; 19 F NMR (471 MHz, CDCl₃) δ -150.77 (dd, J = 53.1, 24.0 Hz); **IR** (thin film, cm⁻¹): 2921, 2851, 1744, 1369, 1212, 1167, 1104, 1042, 951, 899; HRMS (ESI-TOF) (m/z): $[M+Na]^+$ calcd for C₁₄H₁₉FNaO₉ 373.0911, found 373.0905; $[\alpha]_{D}^{25} = +28.1$ (c = 0.4, CH₂Cl₂)

2,3,4,6-Tetra-O-acetyl-β-D-galactopyranosyl fluoride (Major product).

¹**H NMR** (700 MHz, Chloroform-*d*) δ 5.44 – 5.40 (m, 1H), 5.35 – 5.21 (m, 2H), 5.04 (dt, *J* = 10.5, 2.8 Hz, 1H), 4.24 – 4.18 (m, 2H), 4.05 (t, J = 6.6 Hz, 1H), 2.17 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 170.4, 170.0, 169.9, 169.3, 107.1 (d, ¹*J*_{*C*-*F*} = 218.6 Hz, **2c-**β β -C₁), 71.2 (d, ${}^{3}J_{C-F} = 4.7$ Hz), 70.0 (d, ${}^{3}J_{C-F} = 10.6$ Hz), 68.8 (d, ${}^{2}J_{C-F} = 24.9$ Hz), 66.4, 61.3, 20.7, 20.6, 20.5; ¹⁹F NMR $(471 \text{ MHz}, \text{CDCl}_3) \delta$ -141.42 (dd, J = 50.7, 13.2 Hz); **IR** (thin film, cm⁻¹): 2921, 2851, 1744, 1369, 1212, 1167, 1104, 1042, 951, 899; **HRMS (ESI-TOF)** (m/z): $[M+Na]^+$ calcd for $C_{14}H_{19}FNaO_9$ 373.0911, found 373.0905; $[\alpha]_D^{25} = +6.0$ $(c = 0.4, CH_2Cl_2)$

Synthesis of 2,3,4-tri-O-acetyl-L-rhamnopyranosyl fluoride (2d)


The product was synthesized employing a procedure for acetylated glycosides. After a work-up, the reaction mixture was purified by FCC (SiO₂, pure hexanes \rightarrow 10% EtOAc in hexanes) to afford **2d** as amber colored oil (21.3 mg, α : β = 6.7 : 1) in 73% yield. Stereochemistry of the products was confirmed by comparing with previously reported NMR spectra.¹⁴

2,3,4-Tri-O-acetyl-α-L-rhamnopyranosyl fluoride (Major product)

¹**H NMR** (500 MHz, CDCl₃) δ 5.49 (dd, J = 48.6, 1.9 Hz, 1H), 5.38 (ddd, J = 3.2, 1.9, 0.9 Hz, 1H), 5.29 (ddd, J = 10.2, 3.6, 1.7 Hz, 1H), 5.12 (t, J = 10.0 Hz, 1H), 4.04 (dq, J = 9.9, 6.2 Hz, 1H), 2.16 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.27 (d, J = 6.3 Hz, 3H); ¹³C **NMR** (126 MHz, CDCl₃) δ 169.8,

169.8, 169.7, 104.8 (d, ${}^{I}J_{C-F} = 221.9$ Hz), 70.0, 68.9 (d, ${}^{3}J_{C-F} = 3.0$ Hz), 68.2 (d, ${}^{3}J_{C-F} = 1.7$ Hz), 70.0 (d, ${}^{2}J_{C-F} = 40.3$ Hz), 20.7, 20.6, 17.3; ¹⁹**F** NMR (376 MHz, CDCl₃) δ -137.47 (d, J = 48.9 Hz); **IR** (thin film, cm⁻¹): 2925, 1748, 1605, 1509, 1457, 1369, 1293, 1242, 1214, 1173, 1038, 974, 929, 893, 830, 813, 793, 778, 684, 640

¹⁴Nishiyama, K.; Esaki, S.; Deguchi, I.; Sugiyama, N.; Kamiya, S. Biosci. Biotechnol. Biochem. 1993, 57, 107–114

Synthesis of 2,3,4,6-tetrakis-O-(phenylmethyl)-D-galactopyranosyl fluoride (2e)

OBn

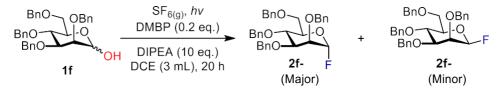
BnÒ **2e-**β

BnO

BnO

The product was synthesized employing the general procedure. After a work-up, the reaction mixture was subjected to FCC (SiO₂, pure hexanes \rightarrow 30% EtOAc in hexanes) to afford pure **2e** (46.4 mg, α : β = 1 : 2.9) in 85% yield as cloudy oil.

_OBn 2,3,4,6-Tetrakis-O-(phenylmethyl)-α-D-galactopyranosyl fluoride (minor product).


 $\begin{array}{l} \text{BnO} \\ \text{BnO} \\ \text{Ze-}\alpha \end{array} \begin{array}{l} \text{Correct} \\ \text{BnO} \\ \text{Ze-}\alpha \end{array} \begin{array}{l} \text{H NMR (700 MHz, CDCl_3) } \delta 7.39 - 7.26 (m, 20\text{H}), 5.59 (dd, J = 53.7, 2.7 \text{ Hz}, 1\text{H}), 4.94 (d, J = 11.3 \text{ Hz}, 1\text{H}), 4.83 (dd, J = 23.1, 11.7 \text{ Hz}, 2\text{H}), 4.74 (dd, J = 20.8, 11.8 \text{ Hz}, 2\text{H}), 4.57 (d, J = 11.3 \text{ Hz}, 1\text{H}), 4.48 (d, J = 11.8 \text{ Hz}, 1\text{H}), 4.42 (d, J = 11.8 \text{ Hz}, 1\text{H}), 4.13 - 4.09 (m, 1\text{H}), 4.08 - 4.01 (m, 2\text{H}), 3.95 \end{array}$

(dd, J = 10.1, 2.7 Hz, 1H), 3.55 (d, J = 5.9 Hz, 2H); ¹³C NMR (176 MHz, CDCl₃) δ 138.4, 138.4, 138.0, 137.7, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.7, 127.5, 106.2 (d, ${}^{1}J_{C-F} = 226.1$ Hz, α-C₁), 78.4, 75.7 (d, ${}^{2}J_{C-F} = 23.8$ Hz), 74.8, 74.3, 73.7, 73.5, 73.1, 71.7 (d, ${}^{3}J_{C-F} = 2.8$ Hz), 68.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -150.10 (dd, J = 53.7, 25.2 Hz); **IR** (thin film, cm⁻¹): 3030, 2870, 1496, 1453, 1363, 1302, 1208, 1099, 1053, 1027, 910, 820, 732, 695, 632; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₃₄H₃₅FNaO₅ 565.2392, found 565.2353; **[α]** $p^{23} = +26.2$ (c = 0.4, CH₂Cl₂)

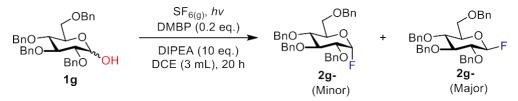
2,3,4,6-Tetrakis-O-(phenylmethyl)-β-D-galactopyranosyl fluoride (major product).

 $F = 11.5 \text{ Hz}, 1\text{H}, 4.86 \text{ (d, } J = 11.0 \text{ Hz}, 1\text{H}, 4.80 - 4.71 \text{ (m, 3H)}, 4.61 \text{ (d, } J = 11.5 \text{ Hz}, 1\text{H}, 4.50 \text{ (d, } J = 11.8 \text{ Hz}, 1\text{H}), 4.43 \text{ (d, } J = 11.8 \text{ Hz}, 1\text{H}), 3.99 - 3.91 \text{ (m, 2H)}, 3.69 - 3.61 \text{ (m, 3H)}, 3.56 \text{ (ddd, } J = 11.8 \text{ Hz}, 1\text{H}), 3.90 + 3.91 \text{ (m, 2H)}, 3.69 + 3.61 \text{ (m, 3H)}, 3.56 \text{ (ddd, } J = 11.8 \text{ Hz}, 1\text{ H}), 3.90 + 3.91 \text{ (m, 2H)}, 3.69 + 3.61 \text{ (m, 3H)}, 3.56 \text$

9.6, 2.9, 0.9 Hz, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 138.3, 138.1, 138.1, 137.6, 128.4, 128.4, 128.3, 128.2, 128.1, 128.1, 127.9, 127.9, 127.7, 127.7, 127.6, 127.5, 110.2 (d, ${}^{1}J_{C-F} = 215.4$ Hz, β -C₁), 81.0 (d, ${}^{3}J_{C-F} = 11.3$ Hz), 79.1 (d, ${}^{2}J_{C-F} = 20.8$ Hz), 75.0, 75.0, 74.6, 73.6, 73.6, 73.1, 73.0, 68.3; ¹⁹F NMR (471 MHz, CDCl₃) δ -139.13 (d, J = 53.4 Hz); **IR** (thin film, cm⁻¹): 3030, 2870, 1496, 1453, 1363, 1302, 1208, 1099, 1053, 1027, 910, 820, 732, 695, 632; **HRMS** (**ESI-TOF**) (m/z): [M+Na]⁺ calcd for C₃₄H₃₅FNaO₅ 565.2392, found 565.2353; **[a]**p²³ = +29.8 (c = 1.1, CH₂Cl₂)

Synthesis of 2,3,4,6-tetraki-O-(phenylmethyl)-D-mannopyranosyl fluoride (2f)

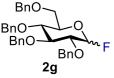
BnO


The product was synthesized employing the general procedure. After a work-up, the reaction mixture was subjected to FCC (SiO₂, pure hexanes \rightarrow 30% EtOAc in hexanes) to afford **2f** as cloudy oil (37.6 mg, α : β = 19 : 1) in 69% yield. Stereochemistry of products was confirmed by comparing with previously reported NMR spectra.15

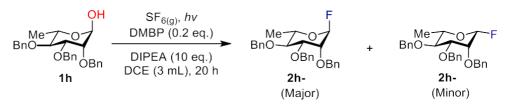
2,3,4,6-Tetrakis-O-(phenylmethyl)-a-D-Mannopyranosyl fluoride (major product)

OBn ¹**H NMR** (700 MHz, CDCl₃) δ 7.38 – 7.27 (m, 18H), 7.20 – 7.17 (m, 2H), 5.61 (d, J = 50.8 Hz, 1H), BnO BnO 4.89 (d, J = 10.8 Hz, 1H), 4.81 (d, J = 12.3 Hz, 1H), 4.72 – 4.64 (m, 4H), 4.55 (d, J = 12.4 Hz, 2H), **2f-**α 4.09 (t, J = 9.5 Hz, 1H), 3.93 (ddd, J = 10.1, 4.7, 1.8 Hz, 1H), 3.89 (d, J = 8.9 Hz, 2H), 3.79 (dd, J =

11.0, 4.7 Hz, 1H), 3.73 (dd, J = 11.1, 1.9 Hz, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 138.2, 138.1, 138.1, 137.8, 128.4, 128.3, 128.3, 127.9, 127.9, 127.8, 127.7, 127.7, 127.6, 106.44 (d, ${}^{J}_{CF}$ = 222.0 Hz), 79.2, 75.1, 74.2, 74.2, 74.0, 73.6, 73.4, 73.4, 73.2, 72.6, 68.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -138.01 (d, J = 50.6 Hz); IR (thin film, cm⁻¹): 3030, 2863, 1496, 1453, 1363, 1311, 1183, 1094, 1026, 952, 801, 733, 695; HRMS (ESI-TOF) (m/z): [M+Na]⁺ calcd for C₃₄H₃₅FNaO₅ 565.2366, found 565.2358; $[\alpha]p^{24} = +12.0$ (c = 1.1, CH₂Cl₂)


¹⁵Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X-W. Org. Lett. 2011, 13, 1, 42-45

Synthesis of 2,3,4,6-tetrakis-O-(phenylmethyl)-D-glucopyranosyl fluoride (2g)

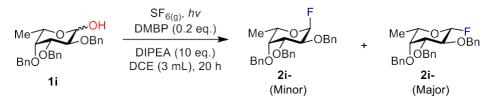

The product was synthesized employing the general procedure. After a work-up, the reaction mixture was subjected to FCC (SiO₂, pure hexanes \rightarrow 20% EtOAc in hexanes) to afford **2g** as cloudy oil (44.1 mg, α : β = 1 : 3.7) in 81% yield.

2,3,4,6-Tetrakis-O-(phenylmethyl)-D-glucopyranosyl fluoride (2g)

(Isolated as $\alpha : \beta = 1 : 3.7$)

BNO 2g ¹H NMR (700 MHz, Chloroform-*d*) δ 7.41 – 7.28 (m, 24.2H), 7.18 (dd, J = 7.3, 2.3 Hz, 2.65H), 5.59 (dd, J = 53.2, 2.6 Hz, 0.27H, α-C₁-H), 5.29 (dd, J = 52.9, 6.8 Hz, 1H, β-C₁-H), 4.99 (d, J = 10.9 Hz, 0.29H), 4.93 (d, J = 11.0 Hz, 1H), 4.90 – 4.86 (m, 1.61H), 4.85 – 4.80 (m, 2.32H), 4.74 (d, J = 11.2 Hz, 1.40H), 4.66 (d, J = 12.1 Hz, 1H), 4.63 (d, J = 12.1 Hz, 0.36H), 4.57 (dd, J = 11.5, 3.0 Hz, 2H), 4.55 (d, J = 10.8 Hz, 0.35H), 4.51 (d, J = 12.2 Hz, 0.33H), 4.02 (t, J = 9.4 Hz, 0.28H), 4.00 – 3.96 (m, 0.28H), 3.80 – 3.74 (m, 3.68H), 3.73 – 3.68 (m, 1.37H), 3.66 – 3.57 (m, 2.40H); ¹³C NMR (176 MHz, CDCl₃) δ 138.4, 138.2, 138.0, 137.8, 137.8, 137.7, 137.6, 137.6, 128.5, 128.4, 128.4, 128.4, 128.11, 128.0, 128.0, 127.9, 127.9, 127.8, 127.8, 127.8, 127.7, 127.7, 127.7, 109.8 (d, ${}^{1}J_{C\cdot F} = 215.9$ Hz, β-C₁), 105.5 (d, ${}^{1}J_{C\cdot F} = 226.8$ Hz, α-C₁), 83.4 (d, ${}^{3}J_{C\cdot F} = 11.2$ Hz), 81.5, 81.4, 81.4, 79.3 (d, ${}^{2}J_{C\cdot F} = 24.8$ Hz), 76.6, 75.8, 75.4, 75.1, 74.9, 74.8 (d, ${}^{3}J_{C\cdot F} = 4.9$ Hz), 74.4 (d, ${}^{3}J_{C\cdot F} = 2.1$ Hz), 73.5, 73.5 (d, ${}^{3}J_{C\cdot F} = 3.4$ Hz), 72.6 (d, J = 3.9 Hz), 68.3, 67.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -137.93 (dd, J = 53.4, 11.8 Hz), -149.47 (dd, J = 53.5, 25.5 Hz); IR (thin film, cm⁻¹): 3030, 2867, 1496, 1453, 1360, 1308, 1208, 1155, 1088, 1062, 909, 821, 733. 695; HRMS (ESI-TOF) (m/z): [M+Na]⁺ calcd for C₃₄H₃₅FNaO₅ 565.2392, found 565.2353

Synthesis of 2,3,4-tris-O-(phenylmethyl)-L-rhamnopyranosyl fluoride (2h)


Me BnO-

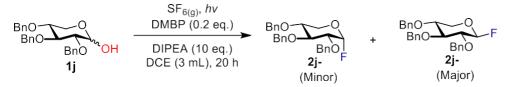
The product was synthesized employing the general procedure. The product was purified by FCC (SiO₂, pure hexanes \rightarrow 20% EtOAc in hexanes) and was obtained as amber colored oil (29.7 mg, α : β = 5 : 1) in 68% yield. The structure of the product was confirmed by comparing with previously reported data.

2,3,4-Tris-O-(phenylmethyl)-α-L-rhamnopyranosyl fluoride (Major product)

¹**H NMR** (700 MHz, CDCl₃) δ 7.38 – 7.29 (m, 15H), 5.49 (dd, J = 50.6, 2.0 Hz, 1H), 4.95 (d, J = 10.9 Hz, 1H), 4.81 (d, J = 12.2 Hz, 1H), 4.72 – 4.64 (m, 4H), 3.89 – 3.82 (m, 3H), 3.67 (t, J = 9.4 Hz, 1H), 1.36 (d, J = 6.2 Hz, 3H); ¹³**C NMR** (176 MHz, CDCl₃) δ 138.3, 138.2, 137.8, 128.5,

128.4, 128.4, 128.0, 128.0, 127.9, 127.7, 127.7, 127.7, 106.4 (d, ${}^{I}J_{C-F} = 221.1$ Hz), 79.6, 79.2, 75.4, 73.7 (d, ${}^{2}J_{C-F} = 35.2$ Hz), 73.4, 72.6, 70.6 (d, ${}^{3}J_{C-F} = 2.3$ Hz), 17.9; ¹⁹**F** NMR (471 MHz, CDCl₃) δ -137.07 (d, J = 50.6 Hz); **IR** (thin film, cm⁻¹): 3030, 2922, 1721, 1496, 1453, 1363, 1248, 1207, 1184, 1074, 1027, 911, 841, 734, 695; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₂₇H₂₉FNaO₄ 459.1948, found 459.1948; **[α]p^{23.6}** = +7.66 (c = 1.1, CH₂Cl₂)

Synthesis of 2,3,4-tris-O-(phenylmethyl)-L-fucopyranosyl fluoride (2i)


The product was synthesized employing the general procedure. The product was purified by FCC (SiO₂, pure hexanes \rightarrow 20% EtOAc in hexanes) and was obtained as amber colored oil (35 mg, α : β = 1 : 3.6) in 80% yield.

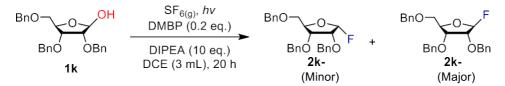
2,3,4-Tris-O-(phenylmethyl)-α-L-fucopyranosyl fluoride (minor product).

¹**H NMR** (700 MHz, Chloroform-*d*) δ 7.41 – 7.27 (m, 15H), 5.57 (dd, *J* = 54.0, 2.8 Hz, 1H), 4.99 (d, *J* = 11.5 Hz, 1H), 4.85 (dd, *J* = 11.8, 3.9 Hz, 2H), 4.75 (dd, *J* = 19.1, 11.8 Hz, 2H), 4.66 (d, *J* = 11.5 Hz, 1H), 4.08 – 4.00 (m, 2H), 3.94 (dd, *J* = 10.1, 2.7 Hz, 1H), 3.70 (dd, *J* = 2.8, 1.2 Hz, 1H),

1.17 (d, J = 6.5 Hz, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 138.5, 138.3, 138.1, 128.5, 128.4, 128.4, 128.3, 128.0, 127.8, 127.7, 127.7, 127.5, 106.4 (d, ${}^{1}J_{C\cdot F} = 224.5$ Hz, α -C₁), 78.8, 75.6 (d, ${}^{2}J_{C\cdot F} = 23.9$ Hz), 74.9, 73.7, 73.2, 69.1 (d, ${}^{3}J_{C\cdot F} = 3.2$ Hz), 16.5; ¹⁹F NMR (471 MHz, CDCl₃) δ -149.66 (dd, J = 54.1, 25.3 Hz); **IR** (thin film, cm⁻¹): 3030, 2872, 1496, 1453, 1361, 1307, 1208, 1100, 1056, 1027, 912, 801, 732, 695, 629 ; **HRMS** (**ESI-TOF**) (m/z): [M+Na]⁺ calcd for C₂₇H₂₉FNaO₄ 459.1892, found 459.1917; **[a]p²⁴** = -41.9 (c=0.5, CH₂Cl₂)

 $\begin{array}{l} \text{Me} \overbrace{\textbf{OBn}}^{\text{OBn}} & \textbf{2,3,4-tris-}O-(\textbf{phenylmethyl})-\beta-L-fucopyranosyl fluoride (major product). \\ & \textbf{H} \ \textbf{NMR} \ (700 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 7.41 - 7.28 \ (m, 15\text{H}), 5.16 \ (dd, J = 53.3, 7.1 \ \text{Hz}, 1\text{H}), 5.00 \ (d, J = 11.6 \ \text{Hz}, 1\text{H}), 4.87 \ (d, J = 10.9 \ \text{Hz}, 2\text{H}), 4.80 \ (d, J = 11.7 \ \text{Hz}, 1\text{H}), 4.79 \ (d, J = 10.8 \ \text{Hz}, 1\text{H}), 4.74 \ (d, J = 11.8 \ \text{Hz}, 1\text{H}), 4.69 \ (d, J = 11.6 \ \text{Hz}, 1\text{H}), 3.94 \ (ddd, J = 13.3, 9.7, 7.0 \ \text{Hz}, 1\text{H}), 3.60 \ (m, 2\text{H}), 3.55 \ (dd, J = 9.8, 2.9 \ \text{Hz}, 1\text{H}), 1.26 \ (d, J = 6.4 \ \text{Hz}, 3\text{H}); {}^{13}\text{C} \ \textbf{NMR} \ (176 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 138.2, 138.2, 138.2, 128.4, 128.3, 128.3, 128.2, 128.1, 127.7, 127.7, 127.6, 110.3 \ (d, {}^{J}_{C-F} = 213.5 \ \text{Hz}, \beta-\text{C}_1), 81.4 \ (d, {}^{3}_{J_{C-F}} = 11.7 \ \text{Hz}), 79.0 \ (d, {}^{2}_{J_{C-F}} = 20.6 \ \text{Hz}), 75.8, 74.9, 74.7, 73.3, 70.8 \ (d, {}^{3}_{J_{C-F}} = 4.9 \ \text{Hz}), 16.6; {}^{19}\text{F} \ \textbf{NMR} \ (471 \ \text{MHz}, \text{CDCl}_3) \ \delta \ -139.10 \ (dd, J = 53.2, 13.1 \ \text{Hz}); \textbf{IR} \ (\text{thin film, cm}^{-1}): 3030, 2872, 1496, 1453, 1361, 1307, 1208, 1100, 1056, 1027, 912, 801, 732, 695, 629 \ ; \ \textbf{HRMS} \ (\textbf{ESI-TOF}) \ (m/z): [M+Na]^+ \ calcd \ for \ C_{27}H_{29}FNaO_4 \ 459.1892, found \ 459.1917; [a]p^{24} = -54.2 \ (c=0.7, \text{CH}_2\text{Cl}_2) \end{array}$

Synthesis of 2,3,4-tris-O-(phenylmethyl)-D-xylopyranosyl fluoride (2j)


The product was synthesized employing the general procedure. The product was purified by FCC (SiO₂, pure hexanes \rightarrow 20% EtOAc in hexanes) and was obtained as amber colored oil (33.7 mg, α : β = 1 : 4.3) in 80% yield.

BnO BnO BnO BnO F

2,3,4-Tris-O-(phenylmethyl)-D-xylopyranosyl fluoride

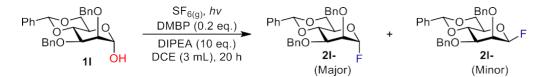
(Isolated as α : $\beta = 1 : 4.3$ mixture).

2j ¹**H** NMR (700 MHz, CDCl₃) δ 7.40 – 7.30 (m, 19.57H), 5.48 (dd, J = 53.1, 2.7 Hz, 0.23H, α-C₁-H), 5.35 (dd, J = 54.0, 5.6 Hz, 1H, β-C₁-H), 4.93 (s, 0.45H), 4.84 – 4.76 (m, 3.49H), 4.73 – 4.68 (m, 2.45H), 4.67 – 4.60 (m, 1.56H), 4.06 (ddd, J = 12.2, 4.2, 1.6 Hz, 1H), 3.93 (t, J = 9.3 Hz, 0.25H), 3.79 (dd, J = 11.3, 5.8 Hz, 0.38H), 3.74 – 3.66 (m, 2.32H), 3.63 (ddd, J = 10.8, 9.0, 5.7 Hz, 0.33H), 3.60 – 3.52 (m, 2H), 3.48 (ddd, J = 25.7, 9.6, 2.7 Hz, 0.34H); ¹³C NMR (176 MHz, CDCl₃) δ 138.2, 137.8, 137.7, 128.5, 128.5, 128.4, 128.4, 128.3, 128.0, 128.0, 128.0, 127.9, 127.9, 127.9, 127.8, 127.8, 127.7, 127.7, 127.7, 110.1 (d, ${}^{1}J_{C\cdot F} = 218.6$ Hz, β-C₁), 105.6 (d, ${}^{1}J_{C\cdot F} = 227.4$ Hz, α-C₁), 80.8, 80.6 (d, ${}^{3}J_{C\cdot F} = 9.1$ Hz), 79.7 (d, ${}^{2}J_{C\cdot F} = 25.1$ Hz), 79.1 (d, ${}^{2}J_{C\cdot F} = 24.8$ Hz), 76.7, 75.8, 74.7, 74.1, 74.1, 73.6 (d, ${}^{2}J_{C\cdot F} = 18.3$ Hz), 72.7, 71.0 (d, ${}^{3}J_{C\cdot F} = 9.7$ Hz), 63.2 (d, ${}^{3}J_{C\cdot F} = 4.4$ Hz), 61.9 (d, ${}^{3}J_{C\cdot F} = 4.7$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -134.11 (dd, J = 53.9, 11.6 Hz), -151.07 (dd, J = 53.1, 25.7 Hz); **IR** (thin film, cm⁻¹): 3030, 2869, 1496, 1453, 1361, 1257, 1208, 1162, 1088. 1027, 942, 733, 695, 618; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₂₆H₂₇FNaO₄ 445.1792, found 445.1780.

Synthesis of 2,3,5-Tris-O-(phenylmethyl)-D-ribofuranosyl fluoride (2k)

BnO

BnO

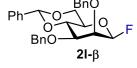

2k-β

The product was synthesized employing the general procedure. The product was purified by FCC (SiO₂, pure hexanes \rightarrow 30% EtOAc in hexanes) and was obtained as amber colored oil (33.5 mg, α : β = 1 : 13) in 79% yield.

2,3,5-Tris-O-(phenylmethyl)-β-D-ribofuranosyl fluoride (Major porduct).

¹**H** NMR (700 MHz, CDCl₃) δ 7.38 – 7.27 (m, 15H), 5.69 (d, J = 63.4 Hz, 1H, β -C₁-H), 4.67 (s, OBn 2H), 4.61 (d, J = 12.1 Hz, 1H), 4.56 (d, J = 13.6 Hz, 2H), 4.48 (d, J = 11.8 Hz, 1H), 4.44 (dtd, J = 8.1, 5.1, 2.7 Hz, 1H), 4.14 (ddd, J = 7.4, 4.5, 2.4 Hz, 1H), 4.00 (t, J = 4.2 Hz, 1H), 3.70 (dd, J = 11.0,

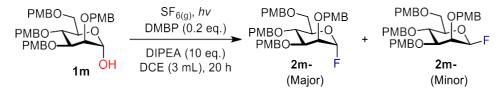
3.4 Hz, 1H), 3.60 (dd, J = 11.0, 5.3 Hz, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 138.1, 137.4, 137.3, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.6, 127.6, 112.5 (d, ${}^{1}J_{C-F} = 224.4$ Hz, β -C₁), 82.3 (d, ${}^{3}J_{C-F} = 2.6$ Hz), 78.9 (d, ${}^{2}J_{C-F} = 30.1$ Hz), 73.3, 72.8, 72.8, 70.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.29 (dt, J = 63.1, 5.5 Hz, β -C₁-F); **IR** (thin film, cm⁻¹): 3030, 2862, 1726, 1496, 1454, 1358, 1308, 1257, 1208, 1096, 1026, 784, 735, 696; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₂₆H₂₇FNaO₄ 445.1792, found 445.1782; **[a]p²⁴**= +63.9 (c=0.7, CH₂Cl₂)


Synthesis of 2,3-bis-*O*-(phenylmethyl)-4,6-*O*-[(R)-phenylmethylene]-D-mannopyranosyl fluoride (2l) The product was synthesized employing the general procedure. The product was purified by FCC (SiO₂, pure hexanes \rightarrow 40% EtOAc in hexanes) and was obtained as amber colored oil (29.5 mg, α : β = 7.8 : 1) in 66% yield. Stereochemistry of the products was determined by comparing with previously reported NMR spectra.¹⁶

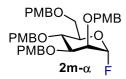
Ph O BnO BnO 2l-α F **2,3-Bis**-*O*-(phenylmethyl)-**4,6**-*O*-[(**R**)-phenylmethylene]-α-D-mannopyranosyl fluoride (major product).

¹**H NMR** (700 MHz, CDCl₃) δ 7.51 (d, *J* = 7.1 Hz, 2H), 7.41 – 7.28 (m, 13H), 5.65 (s, 1H), 5.50 (d, *J* = 49.6 Hz, 1H), 4.89 (d, *J* = 12.0 Hz, 2H), 4.74 – 4.68 (m, 2H), 4.33 –

4.27 (m, 2H), 3.99 - 3.92 (m, 3H), 3.87 (td, J = 10.3, 2.0 Hz, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 138.3, 137.6, 137.4, 128.9, 128.5, 128.4, 128.2, 128.1, 128.1, 127.7, 127.6, 126.1, 107.0 (d, ${}^{1}J_{C-F} = 223.7$ Hz), 101.6, 78.3, 75.5 (d, ${}^{3}J_{C-F} = 2.5$ Hz), 75.0, 74.8, 74.2, 73.5, 68.3, 66.1 (d, ${}^{3}J_{C-F} = 2.4$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -137.06 (d, J = 49.7 Hz); **IR** (thin film, cm⁻¹): 2919, 1454, 1372, 1313, 1214, 1166, 1099, 1054, 1006, 965, 925, 799, 735, 696, 641; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₂₇H₂₇FNaO₅ 473.1692, found 473.1729; **[\alpha]**_D²³ = -17.4 (c = 0.6, CH₂Cl₂).


$2, 3\text{-}Bis\text{-}O\text{-}(phenylmethyl)\text{-}4, 6\text{-}O\text{-}[(R)\text{-}phenylmethylene]\text{-}\beta\text{-}D\text{-}mannopyranosyl}$

fluoride (minor product, isolated as α : β = 1 : 7 mixture). **¹H NMR** (700 MHz, CDCl₃) δ 7.49 (d, J = 7.2 Hz, 2H), 7.44 (d, J = 7.5 Hz, 2H), 7.40 – 7.28 (m, 11H), 5.62 (s, 1H), 5.30 (d, J = 49.2 Hz, 1H), 4.93 – 4.80 (m, 2H), 4.71 (ddd, J = 84.0,


12.3, 2.2 Hz, 2H), 4.38 – 4.34 (m, 1H), 4.25 (td, J = 9.8, 2.1 Hz, 1H), 4.01 (t, J = 3.3 Hz, 1H), 3.95 (td, J = 10.4, 1.9 Hz, 1H), 3.67 (dt, J = 9.8, 2.8 Hz, 1H), 3.41 (td, J = 10.3, 9.6, 2.9 Hz, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 138.0, 137.8, 137.2, 129.0, 128.4, 128.3, 128.2, 127.8, 127.8, 127.7, 126.0, 107.6 (d, ${}^{1}J_{C-F} = 217.5$ Hz), 101.5, 78.2, 75.0 (d, ${}^{2}J_{C-F} = 17.0$ Hz), 74.7 (d, ${}^{4}J_{C-F} = 1.6$ Hz), 72.8, 68.3, 66.8 (d, ${}^{3}J_{C-F} = 5.3$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -142.75 (d, J = 49.3 Hz); **IR** (thin film, cm⁻¹): 2919, 1454, 1372, 1313, 1214, 1166, 1099, 1054, 1006, 965, 925, 799, 735, 696, 641; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₂₇H₂₇FNaO₅ 473.1692, found 473.1729; **[a]**_D²³ = -35.4 (c = 0.1, CH₂Cl₂).

¹⁶Lee, Y. J.; Baek, J. Y.; Lee, B-Y.; Kang, S. S.; Park, H-S.; Jeon, H. B.; Kim, K. S. Carbohydrate Research. **2006**. 341(10). 1708-1716

Synthesis of 2,3,4,6-Tetrakis-O-[(4-methoxyphenyl)methyl]-D-mannopyranosyl fluoride (2m)

The product was synthesized employing the general procedure. The product was purified by FCC (SiO₂, pure hexanes $\rightarrow 10\%$ EtOAc in hexanes) and was obtained as cloudy oil (49.2 mg, $\alpha : \beta = 36 : 1$) in 74% yield



$2,3,4,6\text{-}Tetrak is \text{-}O\text{-}[(4\text{-}methoxyphenyl)methyl]\text{-}\alpha\text{-}D\text{-}mannopyranosyl fluoride}$

(Major Product)

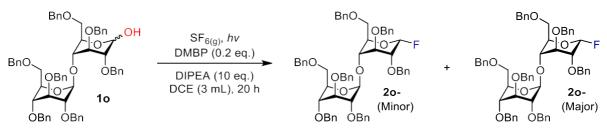
¹**H NMR** (500 MHz, CDCl₃) δ 7.29 – 7.24 (m, 6H), 7.06 (d, *J* = 8.6 Hz, 2H), 6.90 – 6.79 (m, 8H), 5.53 (dd, *J* = 50.6, 1.6 Hz, 1H), 4.75 (dd, *J* = 24.8, 11.2 Hz, 2H), 4.64 – 4.53 (m, 4H), 4.44 (dd, *J*

= 21.7, 11.1 Hz, 2H), 4.00 – 3.95 (m, 1H), 3.86 (ddd, J = 10.0, 4.8, 1.8 Hz, 1H), 3.80 (dd, J = 10.6, 4.1 Hz, 14H), 3.71 (dd, J = 11.0, 4.7 Hz, 1H), 3.66 (dd, J = 10.9, 2.0 Hz, 1H); ¹³**C** NMR (126 MHz, cdcl₃) δ 159.4, 159.2, 159.2, 159.2, 130.4, 130.4, 130.2, 129.9, 129.6, 129.6, 129.3, 113.8, 113.7, 106.5 (d, ${}^{1}J_{C-F} = 221.9$ Hz), 78.8, 74.7, 74.2, 74.2, 73.7, 73.1, 73.0, 72.9, 72.8, 72.2, 68.2, 55.3, 55.2, 55.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -137.88 (d, J = 50.6 Hz); **IR** (thin film, cm⁻¹): 2908, 2835, 1611, 1585, 1512, 1463, 1442, 1422, 1361, 1301, 1244, 1172, 1090, 1030, 950, 816, 756, 711, 667, 636; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₃₈H₄₃FNaO₉ 685.2783, found 685.2753; **[a]** $p^{24} = +7.45$ (c = 0.88, CH₂Cl₂).

Synthesis of 2,3,4,6-tetrakis-O-[(4-methoxyphenyl)methyl]-D-galactopyranosyl fluoride (2n)

The product was synthesized employing the general procedure. The product was purified by FCC (SiO₂, pure hexanes \rightarrow 30% EtOAc in hexanes) and was obtained as cloudy oil (37.5 mg, α : β = 1 : 2.4) in 72% yield

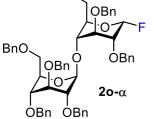
 PMBO
 OPMB
 2,3,4,6-Tetrakis-O-[(4-methoxyphenyl)methyl]-α-D-galactopyranosyl fluoride


 PMBO
 (minor product).
 (minor product).

 IH
 NMR (700 MHz, CDCl₃) δ 7.32 - 7.26 (m, 4H), 7.22 - 7.15 (m, 4H), 6.92 - 6.79 (m, 8H),

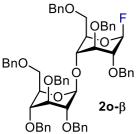
2n- α 5.51 (dd, J = 53.7, 2.8 Hz, 1H), 4.84 (d, J = 11.0 Hz, 1H), 4.77 (d, J = 11.5 Hz, 1H), 4.72 (d, J = 11.3 Hz, 1H), 4.65 (dd, J = 13.8, 11.4 Hz, 2H), 4.49 (d, J = 11.0 Hz, 1H), 4.42 (d, J = 11.5 Hz, 1H), 4.34 (d, J = 11.5 Hz, 1H), 4.04 (t, J = 6.5 Hz, 1H), 4.01 – 3.93 (m, 2H), 3.88 (dd, J = 10.1, 2.7 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.51 – 3.44 (m, 2H); ¹³C NMR (176 MHz, CDCl₃) δ 159.3, 159.3, 159.2, 159.2, 130.6, 130.6, 130.2, 129.8, 129.6, 129.5, 129.2, 113.8, 113.7, 106.4 (d, ¹*J*_{*C*-*F*} = 225.8 Hz), 78.2, 75.3 (d, ²*J*_{*C*-*F*} = 23.5 Hz), 74.4, 73.8, 73.4, 73.1, 72.7, 71.8 (d, ³*J*_{*C*-*F*} = 2.7 Hz), 68.0, 55.3, 55.2; **IR** (thin film, cm⁻¹): 2912, 2835, 1611, 1585, 1512, 1463, 1442, 1422, 1362, 1301, 1244, 1172, 1096, 1031, 817, 757, 710, 665, 637, 621; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₃₈H₄₃FNaO₉ 685.2783, found 685.2716; **[\alpha]\rho^{23.3} = +26.9 (c = 0.13, CH₂Cl₂).**

PMBO OPMB 2,3,4,6-Tetrakis-*O*-[(4-methoxyphenyl)methyl]-β-D-galactopyranosyl fluoride (major product). **PMBO** 2n-β J = 8.5, 5.5 Hz, 4H), 6.87 – 6.85 (m, 6H), 6.83 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 6.1 Hz, 2H), 7.20 (dd, J = 8.5, 5.5 Hz, 4H), 6.87 – 6.85 (m, 6H), 6.83 (d, J = 8.6 Hz, 2H), 5.13 (dd, J = 53.2,


7.0 Hz, 1H), 4.83 (d, J = 11.2 Hz, 1H), 4.76 (d, J = 10.7 Hz, 1H), 4.69 (d, J = 10.6 Hz, 1H), 4.64 (q, J = 11.4 Hz, 2H), 4.52 (d, J = 11.3 Hz, 1H), 4.42 (d, J = 11.4 Hz, 1H), 4.34 (d, J = 11.4 Hz, 1H), 3.91 – 3.85 (m, 1H), 3.82 (d, J = 2.7 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 3.61 – 3.57 (m, 2H), 3.56 – 3.52 (m, 1H), 3.49 – 3.46 (m, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 159.4, 159.3, 159.2, 159.2, 130.5, 130.3, 130.3, 129.8, 129.8, 129.8, 129.6, 129.2, 113.8, 113.8, 113.6, 110.3 (d, ${}^{I}J_{C-F} = 215.3$ Hz, β -C₁), 80.7 (d, ${}^{3}J_{C-F} = 11.3$ Hz), 78.8 (d, ${}^{2}J_{C-F} = 20.7$ Hz), 74.7, 74.6, 74.1, 73.7 (d, ${}^{3}J_{C-F} = 4.8$ Hz), 73.2, 72.7, 72.5, 68.1, 55.3, 55.3, 55.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -138.96 (dd, J = 53.0, 13.4 Hz); **IR** (thin film, cm⁻¹): 2912, 2835, 1611, 1585, 1512, 1463, 1442, 1422, 1362, 1301, 1244, 1172, 1096, 1031, 817, 756, 710, 664, 637, 622; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₃₈H₄₃FNaO₉ 685.2783, found 685.2716; **[a]p²⁴** = +39.8 (c = 0.19, CH₂Cl₂).

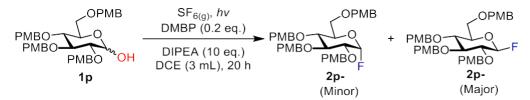
Synthesis of 2,3,6-Tris-O-(phenylmethyl)-4-O-[2,3,4,6-tetrakis-O-(phenylmethyl)-β-D-glucopyranosyl]-D-glucopyranosyl fluoride (20)

The product was synthesized employing the general procedure.. The product was purified by FCC (SiO₂, pure hexanes $\rightarrow 20\%$ EtOAc in hexanes) to afford **20** as cloudy oil (68 mg, $\alpha : \beta = 1 : 3.4$) in 70% yield.


2,3,6-Tris-O-(phenylmethyl)-4-O-[2,3,4,6-tetrakis-O-(phenylmethyl)-β-Dglucopyranosyl]-α-D-glucopyranosyl fluoride (minor product).

BnO

¹**H** NMR (700 MHz, CDCl₃) δ 7.40 (d, J = 6.5 Hz, 2H), 7.33 – 7.20 (m, 31H), 7.19 (d, J = 7.4 Hz, 2H), 5.48 (dd, J = 53.4, 2.7 Hz, 1H, α -C₁-H), 5.12 (dd, J = 11.4, 2.0 Hz, 1H), 4.89 – 4.86 (m, 1H), 4.83 – 4.72 (m, 6H), 4.63 (dd, J = 11.9, 2.0 Hz, 1H), 4.56 (d, J = 11.5 Hz, 2H), 4.44 (dd, J = 12.3, 2.0 Hz, 1H), 4.39 (ddd, J = 11.7, 6.9, 2.8 Hz, 3H), 4.07 – 4.03 (m,


1H), 3.90 - 3.84 (m, 2H), 3.80 (dd, J = 10.1, 2.2 Hz, 1H), 3.73 (d, J = 10.9 Hz, 1H), 3.61 (t, J = 8.8 Hz, 1H), 3.58 - 3.55 (m, 1H), 3.48 (ddd, J = 25.5, 19.6, 10.3 Hz, 4H), 3.39 - 3.35 (m, 1H), 3.33 - 3.29 (m, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 139.2, 138.6, 138.5, 138.3 138.3, 137.9, 137.6, 128.5, 128.4, 128.4, 128.4, 128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.8, 127.8, 127.8, 127.7, 127.6, 127.6, 127.3, 127.2, 105.8 (d, ${}^{1}J_{C-F} = 226.8$ Hz, α -C₁), 102.5, 84.9, 82.7, 79.8, 78.2 (d, ${}^{2}J_{C-F} = 24.3$ Hz), 78.0, 75.6, 75.6, 75.4, 75.2, 75.0, 74.8, 73.8, 73.3, 72.6 (d, ${}^{3}J_{C-F} = 4.2$ Hz), 69.0, 69.0, 67.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -149.55 (dd, J = 53.4, 25.8 Hz); **IR** (thin film, cm⁻¹): 1497, 1453, 1361, 1072, 1029, 1005, 908, 753, 731, 695, 665, 635, 619, 611; **HRMS (ESI-TOF)** (m/z): [M+NH4]⁺ calcd for C₆₁H₆₇FNO₁₀ 992.4738, found 992.4733; **[a]** $p^{23.6} = +23.1$ (c = 0.23, CH₂Cl₂)

2,3,6-Tris-O-(phenylmethyl)-4-O-[2,3,4,6-tetrakis-O-(phenylmethyl)-β-Dglucopyranosyl]-β-D-glucopyranosyl fluoride (major product).

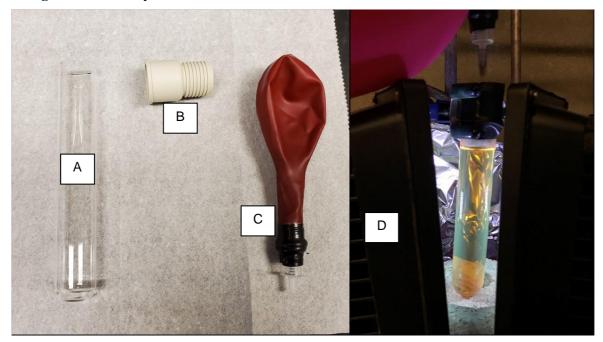
¹**H NMR** (700 MHz, CDCl₃) δ 7.37 (d, J = 5.2 Hz, 2H), 7.34 – 7.22 (m, 31H), 7.19 (d, J = 7.3 Hz, 2H), 5.25 (dd, J = 53.5, 6.5 Hz, 1H, β-C₁-H), 5.05 (d, J = 11.4 Hz, 1H), 4.89 (d, J = 10.9 Hz, 1H), 4.81 (d, J = 10.6 Hz, 2H), 4.75 (dd, J = 17.7, 9.3 Hz, 4H), 4.69 (d, J = 11.2 Hz, 1H), 4.58 (dd, J = 17.0, 11.4 Hz, 2H), 4.50 (d, J = 7.9 Hz, 1H),

4.47 – 4.39 (m, 3H), 4.13 (t, J = 8.9 Hz, 1H), 3.84 (dd, J = 11.1, 3.4 Hz, 1H), 3.72 – 3.48 (m, 8H), 3.39 (t, J = 8.5 Hz, 1H), 3.30 (dd, J = 10.4, 4.0 Hz, 1H); ¹³C NMR (176 MHz, CDCl₃) δ 138.9, 138.5, 138.4, 138.4, 138.2, 137.8, 137.8, 128.4, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 128.1, 127.9, 127.8, 127.8, 127.8, 127.8, 127.8, 127.7, 127.7, 127.6, 127.6, 127.5, 127.4, 127.3, 109.5 (d, ${}^{1}J_{C-F} = 215.9$ Hz, β-C₁), 102.3, 84.9, 82.7, 81.3 (d, ${}^{3}J_{C-F} = 10.3$ Hz), 80.5 (d, ${}^{2}J_{C-F} = 23.0$ Hz), 77.9, 75.8, 75.6, 75.0, 74.9 (d, ${}^{3}J_{C-F} = 3.7$ Hz), 74.8, 74.7, 74.3, 73.4, 73.3, 68.9, 67.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -135.75 (dd, J = 53.5, 12.3 Hz); **IR** (thin film, cm⁻¹): 1497, 1453, 1361, 1072, 1029, 1005, 908, 753, 731, 695, 665, 635, 619, 611; **HRMS (ESI-TOF)** (m/z): [M+NH4]⁺ calcd for C₆₁H₆₇FNO₁₀ 992.4738, found 992.4733; **[α]n²³ =** +25.9 (c = 1.1, CH₂Cl₂)

Synthesis of 2,3,4,6-Tetrakis-O-[(4-methoxyphenyl)methyl]-D-glucopyranosyl fluoride (2p)

The product was synthesized employing the general procedure. The product was purified by FCC (SiO₂, pure hexanes \rightarrow 30% EtOAc in hexanes) to afford **2p** as cloudy oil (47.2 mg, $\alpha : \beta = 1 : 3.7$) in 71% yield

РМВО РМВО РМВО РМВО РМВО **2р-**β

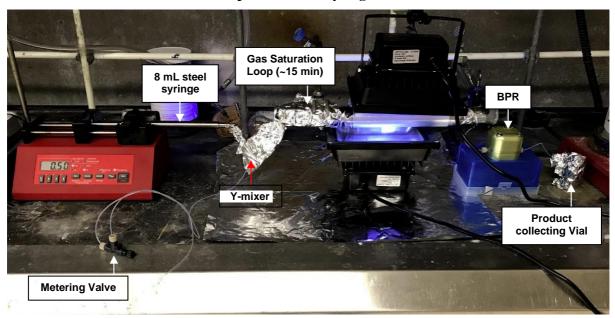

2,3,4,6-Tetrakis-O-[(4-methoxyphenyl)methyl]-β-D-glucopyranosyl fluoride

(Major product, Isolated as $\alpha : \beta = 1 : 9.4$ mixture).

¹**H NMR** (500 MHz, CDCl₃) δ 7.29 – 7.21 (m, 6H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.86 (dd, *J* = 8.6, 3.2 Hz, 6H), 6.80 (d, *J* = 8.6 Hz, 2H), 5.21 (dd, *J* = 52.9, 6.7 Hz, 1H), 4.79 (dd, *J* = 19.8, 10.7

Hz, 2H), 4.70 (dd, J = 10.6, 1.4 Hz, 2H), 4.63 (d, J = 10.8 Hz, 1H), 4.56 (d, J = 11.8 Hz, 1H), 4.47 (d, J = 11.8 Hz, 1H), 4.41 (d, J = 10.4 Hz, 1H), 3.80 (s, 6H), 3.79 (s, 6H), 3.70 – 3.64 (m, 2H), 3.64 – 3.57 (m, 2H), 3.56 – 3.50 (m, 2H); ¹³C **NMR** (126 MHz, CDCl₃) δ 159.4, 159.3, 159.3, 159.2, 130.6, 130.1, 129.9, 129.8, 129.7, 129.6, 129.5, 113.9, 113.8, 109.9 (d, ${}^{1}J_{C-F} = 215.9$ Hz), 83.2 (d, ${}^{3}J_{C-F} = 11.4$ Hz), 81.2 (d, ${}^{2}J_{C-F} = 21.4$ Hz), 75.1, 74.8 (d, ${}^{3}J_{C-F} = 5.0$ Hz), 74.6, 74.1, 74.1, 73.2, 68.0, 55.3; ¹⁹F **NMR** (471 MHz, CDCl₃) δ -138.15 (dd, J = 53.0, 11.9 Hz).; **IR** (thin film, cm⁻¹): 2907, 2835, 1611, 1585, 1512, 1463, 1441, 1359, 1302, 1244, 1172, 1083, 1031, 816, 758, 712, 637; **HRMS (ESI-TOF)** (m/z): [M+Na]⁺ calcd for C₃₈H₄₃FNaO₉ 685.2792, found 685.2772; **[a]** $\mathbf{p}^{24} = +20.7$ (c = 0.34, CH₂Cl₂).

d. Large Scale Batch Synthesis


- A. FisherbrandTM Disposable Borosilicate Glass Tube (25x150mm)
- B. Suba-Seal® septum (24/40 joint)
- C. Norm-JectTM Syringe (5 mL) + 2 Balloons
- D. Waveform lighting realUV[™] LED Flood Light (365nm)

An oven-dried glass tube was charged with 2,3,4,6-tetrakis-*O*-(phenylmethyl)-*D*-glucopyranoside **1g** (1.85 mmol, 1.0 equiv.), 4,4'-dimethoxybenzophenone (0.37 mmol, 0.2 equiv.), and a stir bar. After sealing the glass tube with a rubber septum, the tube was left under high vacuum for 5 minutes. Once the tube is taken off from the vacuum line, dichloroethane (42 mL) and DIPEA (18.5 mmol, 10 equiv.) were injected into the tube and the mixture was stirred until it became homogeneous. Then, the mixture was sparged with SF₆ filled balloon for 30 seconds. Once the sparging was done, the tube was irradiated with two UV-A Lamps until all starting material was consumed (166 h). The reaction mixture was worked up following the general procedure and purified by FCC (SiO₂, pure hexanes \rightarrow 20% EtOAc in hexanes) and 2,3,4,6-tetrakis-*O*-(phenylmethyl)-*D*-glucopyranosyl fluoride **2g** was obtained in 93% yield (0.93 gram, $\alpha : \beta = 1 : 3.4$).

IV. Continuous Flow Synthesis

a. Information of the flow equipment:

- a. NE-1010 Higher Pressure Syringe Pump (Serial No. 296019) Link to the website
- b. 8 ml Stainless Steel Syringe with 1/16 inch SWAGELOK® (70-2267) Link to the website
- c. Upchurch Scientific[™] Low Pressure Y Connectors (P-512) <u>Link to the website</u>
- d. Upchurch Scientific[™] Micro-Metering and Micro-Splitter Valves: Needle Valves (P445)
 Link to the website
- e. Upchurch Scientific NUT SHT ML LITETCH 1/16IN 10PK (LT115X) Link to the website
- f. Upchurch Scientific[™] Flangeless Fittings: Ferrules, PEEK (P250X) <u>Link to the webstie</u>
- g. Upchurch ScientificTM Low-Pressure Unions: PEEK (P-702) <u>Link to the website</u>
- h. Zaiput Flow Back Pressure Regulator (BPR-100) Link to the website
- i. Waters Prep LC 4000 Preparative Chromatography System Link to the website

b. Small Scale Continuous Flow Setup with a Steel Syringe

Into an oven dried vial, 2,3,4,6-tetrakis-O-(phenylmethyl)-D-glucopyranose **1g** (0.2 mmol, 1.0 equiv.) and 4,4'-dimethoxybenzophenone (0.04 mmol, 0.2 equiv.) were added. Followed by addition of 1,2-dichloroethane (6 mL) and DIPEA (2.0 mmol, 10 equiv.), the reaction mixture was sonicated until it became homogeneous. The prepared reaction mixture was transferred into 8 mL steel syringe, which was then connected to the flow system. The flow rate of syringe pump and SF₆ gas were adjusted for desired residence time of the reaction mixture inside the flow tube that was irradiated by UV-A Flood Lamp. From the collecting vial, 3.2 mL (equivalent to one standard-scale reaction) of the reaction mixture was collected and then analyzed.

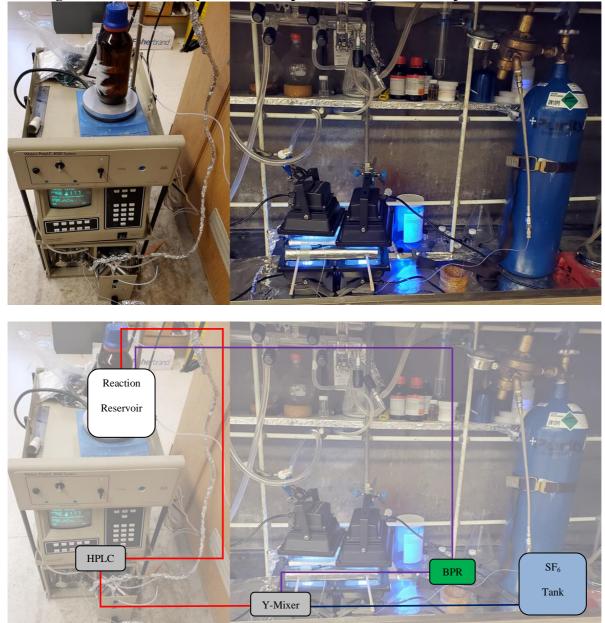

			SF _{6(g)} , <i>hv</i> (UV-A) DMBP (0.2 eq.) DIPEA (10 eq.) DCE (0.033M)	BnO BnO BnO F	
Entry	BPR Pressure	Residence Time (h)	NMR Yield ^[a]	Yield ^[b]	BRSM
1	50 psi	9	64%	62% (33.7 mg)	84%
2	90 psi	8.5	81%	78% (42.1 mg)	91%

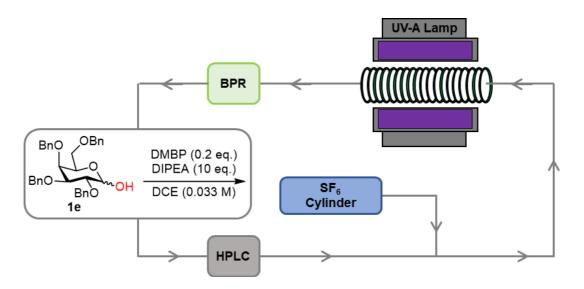
Table SI-7. Small Scale Synthesis of Glycosyl Fluoride with a Continuous Flow Setup

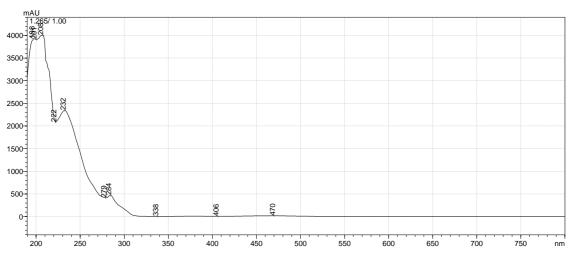
[a] Determined by ¹⁹F NMR with α, α, α -trifluorotoluene as an internal standard.

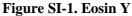
[b] Determined from 3.2 mL of the reaction mixture collected, which is equivalent to one standard reaction

c. Large Scale Continuous Cyclic Flow Setup with a Prep-HPLC Pump

Number of UV-A lamps: 4 Length of flow tube irradiated by the lamps: approximately 100 feet Pressure of BPR: 100 psi




Table SI-8. Large Scale Synthesis of Glycosyl Fluoride with a Continuous Flow Setup


Total Volume (mL)	Collected Volume (mL)	BPR Pressure	Cycling Time (h)	Yield	BRSM
475	455	100 psi	120	93% (7.17 g)	99.8% (0.5 g)

Into a clean 500 mL glass bottle, 2,3,4,6-tetrakis-O-(phenylmethyl)-*D*-galactopyranose **1e** (14.8 mmol, 1.0 equiv.) and 4,4'dimethoxybenzophenone (2.96 mmol, 0.2 equiv.) were dissolved into DCM (444 mL). After adding DIPEA (140.8 mmol, 10 equiv.), the mixture was shaken until it became homogeneous. The reservoir bottle containing the reaction mixture was then connected to HPLC pump and stirred with a magnetic stir bar while the reaction was running. After connecting flow tubes and priming, the HPLC pump was turned on and the flow rate was adjusted to 2 mL/min, which maintained the pressure at 114 psi with an occasional fluctuation of \pm 20 psi. The regulator of SF₆ tank was adjusted between 120-130 psi for a steady flow of the reaction mixture. The reaction was cycled through the flow tube until almost all the starting material was consumed, which was monitored by TLC. After turning off the pump, 455 mL of the reaction mixture in the reservoir bottle was collected (corresponds to 7.66 g of starting material and 7.69 g of the product) and worked up following the standard procedure. Purification of crude mixture by FCC gave 7.17 g of 2,3,4,6-tetrakis-*O*-(phenylmethyl)-*D*-galactopyranosyl fluoride **2e** as product in 93% yield ($\alpha : \beta = 1 : 2.7$), and 0.50 g of starting material was recovered (99.8% BRSM).

V. UV-Vis Study of Photocatalysts

UV absorbance of photocatalysts was measured with UV-Vis detector (Shimadzu SPD-M20A) by injecting 20 microliter of 1 mM samples (0.01 mmol of photocatalyst in 10 mL of acetonitrile) into a reverse-phase HPLC (Shimadzu CTO-20A). All photocatalysts were eluted with 97% acetonitrile/ 3% water mixture except for Methylene Blue (30% acetonitrile/ 70% water).

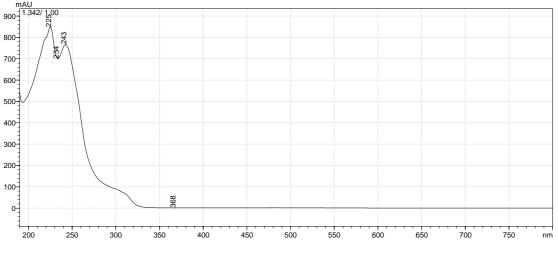


Figure SI-2. Rose Bengal

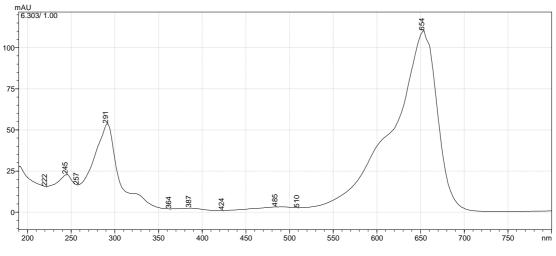


Figure SI-3. Methylene Blue

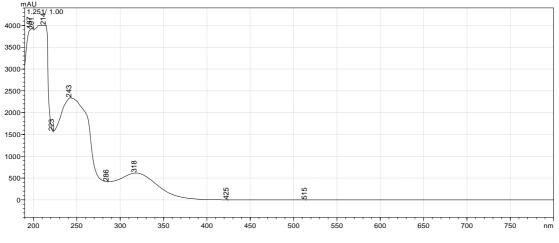


Figure SI-4. N-Phenylphenothiazine

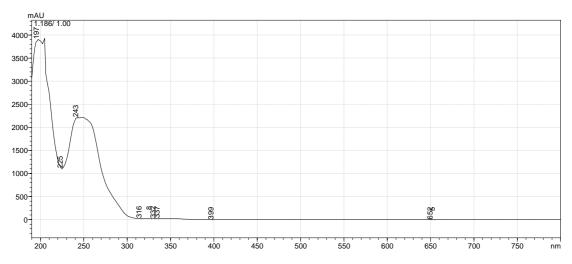


Figure SI-5. Benzophenone

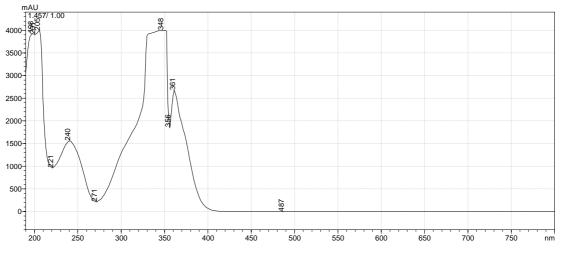


Figure SI-6. Michler's Ketone

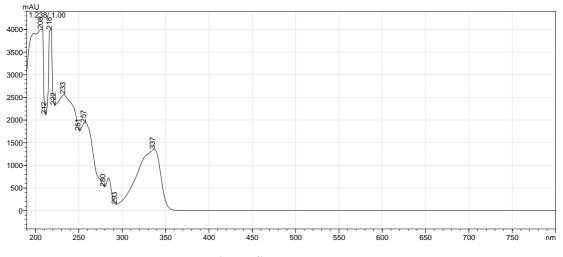


Figure SI-7. Xanthone

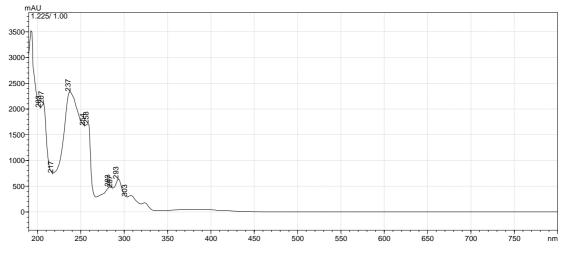


Figure SI-8. 9-Fluorenone

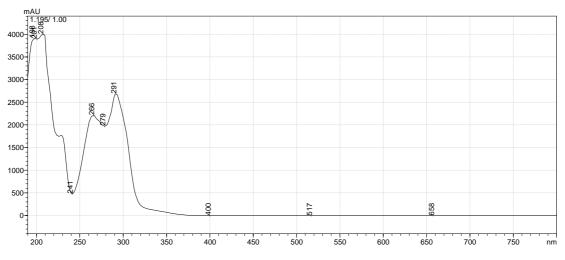


Figure SI-9. 4,4'-Dimethoxybenzophenone

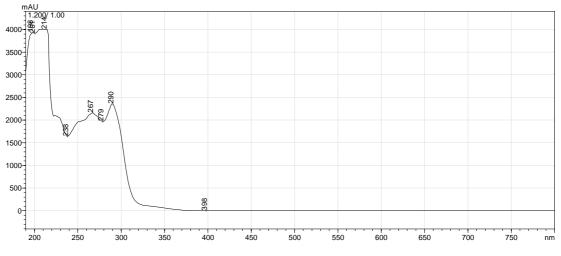


Figure SI-10. 4-Fluoro-4'-methoxybenzophenone

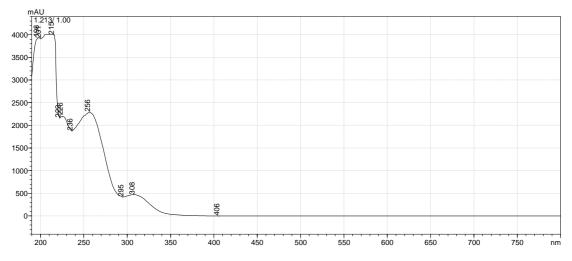
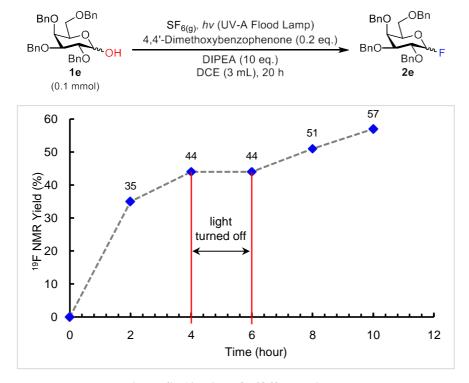


Figure SI-11. 4-Chloro-3'-methoxybenzophenone


VI. Additional Experiment

a. Control Experiment

Table SI-9. Result of Control Experiment

	RO	SF _{6(g)} , <i>hv</i> (UV-A) 4,4'-Dimethoxybenzophenone (0.2 eq.)	ROJO
	RO 1 (0.1 mmol)	DIPEA (10 eq.) DCE (3 mL), 20 h	2 F
Entry	Substrate	Control	Conversion
1	1 a	No catalyst	13%
2	1e	No catalyst	16%
3	1k	No catalyst	18%
4	1e	No light	_
5	1e	No DIPEA	_

b. Light On/Off Experiment

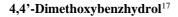
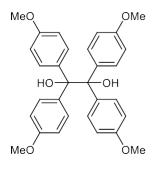
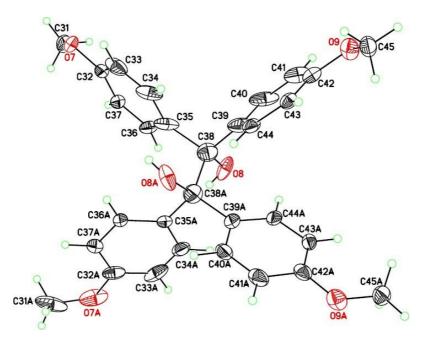


Figure SI-12. Light On/Off Experiment

The reaction was setup in a 1 dram vial following the general procedure outlined above. The yield was measured by ¹⁹F NMR with α,α,α -trifluorotoluene as an internal standard. From the vial, 0.2 mL of reaction mixture was taken out every 2 h to monitor the progression of the reaction. After 4 h from setting up a reaction, the light was turned off for 2 h, and then turned back on. This result is implying that the reaction proceeds via a non-chain mechanism, that the active fluorinating reagent (SF₄) is quickly consumed after it is generated *in situ*, does not build up in the reaction and requires light to be regenerated from SF₆.


c. Identification of the Decomposed Photocatalyst

Identified side-products resulting from the catalyst decomposition that are typically observed in variable quantities while executing the standard fluorination protocol (24 h):


 $\begin{array}{c} \text{OH} & (\text{Minor decomposed catalyst, isolated as } 1:8.8 = \text{minor:major mixture}) \ ^{1}\text{H NMR} \\ \text{(Minor decomposed catalyst, isolated as } 1:8.8 = \text{minor:major mixture}) \ ^{1}\text{H NMR} \\ \text{(500 MHz, CDCl_3) } \delta \ 7.28 \ (\text{d}, J = 8.7 \text{ Hz}, 4\text{H}, \text{Ar}\underline{\text{H}}), \ 6.87 \ (\text{d}, J = 8.7 \text{ Hz}, 4\text{H}, \text{Ar}\underline{\text{H}}), \\ \text{(500 MHz, CDCl_3) } \delta \ 7.28 \ (\text{d}, J = 8.7 \text{ Hz}, 4\text{H}, \text{Ar}\underline{\text{H}}), \ 6.87 \ (\text{d}, J = 8.7 \text{ Hz}, 4\text{H}, \text{Ar}\underline{\text{H}}), \\ \text{(500 MHz, CDCl_3) } \delta \ 7.28 \ (\text{d}, J = 8.7 \text{ Hz}, 4\text{H}, \text{Ar}\underline{\text{H}}), \ 5.78 \ (\text{s}, 1\text{H}, \text{Ar}_2\text{C}\underline{\text{H}}\text{OH}), \ 3.79 \ (\text{s}, 6\text{H}, \text{ArOC}\underline{\text{H}}_3), \ 2.38 \ (\text{s}, 1\text{H}, \text{Ar}_2\text{CHO}\underline{\text{H}}); \ ^{13}\text{C} \\ \text{NMR} \ (126 \text{ MHz, CDCl}_3) \ \delta \ 159.0, \ 136.7, \ 127.7, \ 113.8, \ 75.4 \ (\text{Ar}_2\underline{\text{C}}\text{HOH}), \ 55.27 \ (\text{ArO}\underline{\text{C}}\text{H}_3). \end{array}$

1,1,2,2-Tetrakis(p-methoxyphenyl)-1,2-ethanediol

(Major decomposed catalyst, crystallized) ¹**H** NMR (700 MHz, CDCl₃) δ 7.18 (d, *J* = 8.9 Hz, 8H), 6.70 (d, *J* = 8.9 Hz, 8H), 3.76 (s, 12H), 2.87 (br, 2H); ¹³C NMR (176 MHz, cdcl₃) δ 158.2, 136.7, 129.8, 112.5, 82.7 (Ar₂<u>C</u>OH), 55.1; **HRMS (ESI-TOF)** (m/z): [2M+Na]⁺ calcd for C₆₀H₆₀NaO12 995.3976, found 995.3975.

X-ray Crystal Structure Analysis of 1,1,2,2-tetrakis(p-methoxyphenyl)-1,2-ethanediol

Ellipsoid contour %probability level = 50%

¹⁷Denegri, B.; Kronja, O. J. Org. Chem. 2007, 72, 22, 8427-8433

Structure Determination

Colorless blocks of 1,1,2,2-tetrakis(p-methoxyphenyl)-1,2-ethanediol were grown from a 20% ethyl acetate in hexaness solution of the compound at 25 deg. C. A crystal of dimensions 0.20 x 0.18 x 0.18 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode ($\lambda = 1.54187$ A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the crystal. A total of 2028 images were collected with an oscillation width of 1.0° in w. The exposure times were 1 sec. for the low angle images, 4 sec. for high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for absorption. The integration of the data yielded a total of 74249 reflections to a maximum 20 value of 138.87° of which 9005 were independent and 8968 were greater than 2s(I). The final cell constants (Crystal Data and Structure Refinement) were based on the xyz centroids of 43167 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection. The structure was solved and refined with the Bruker SHELXTL (version 2018/3) software package, using the space group $P_2(1)2(1)2$ with Z = 4 for the formula $C_{30}H_{30}O_6$. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in a combination of refined and idealized positions. The structure was refined as a twocomponent inversion twin with the asymmetric unit consisting of four independent half-molecules located on twofold rotation axes. Full matrix least-squares refinement based on F^2 converged at R1 = 0.0578 and wR2 = 0.1586[based on I > 2sigma(I)], R1 = 0.0580 and wR2 = 0.1592 for all data. Additional details are presented in Table 1 and are given as Supporting Information in a CIF file. Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray instrumentation.

G.M. Sheldrick (2015) "Crystal structure refinement with SHELXL", Acta Cryst., C71, 3-8 (Open Access). CrystalClear Expert 2.0 r16, Rigaku Americas and Rigaku Corporation (2014), Rigaku Americas, 9009, TX, USA 77381-5209, Rigaku Tokyo, 196-8666, Japan.

CrysAlisPro 1.171.38.41 (Rigaku Oxford Diffraction, 2015).

Empirical formula	C30 H30 O6
Formula weight	486.54
Temperature	85(2) K
Wavelength	1.54184 A
Crystal system, space group	Orthorhombic, P2(1)2(1)2
Unit cell dimensions	a = 16.08990(10) A alpha = 90 deg.
	b = 16.48600(10) A beta = 90 deg.
	c = 18.20870(10) A gamma = 90 deg.
Volume	4830.01(5) A^3
Z, Calculated density	8, 1.338 Mg/m^3
Absorption coefficient	0.752 mm^-1
F(000)	2064
Crystal size	0.200 x 0.180 x 0.180 mm
Theta range for data collection	2.427 to 69.435 deg.
Limiting indices	-19<=h<=18, -20<=k<=19, -22<=l<=21
Reflections collected / unique	74249 / 9005 [R(int) = 0.0566]
Completeness to theta $= 67.684$	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.92602
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9005 / 2 / 674
Goodness-of-fit on F^2	0.998
Final R indices [I>2sigma(I)]	R1 = 0.0578, $wR2 = 0.1586$
R indices (all data)	R1 = 0.0580, wR2 = 0.1592
Absolute structure parameter	0.4(2)
Extinction coefficient	0.00079(15)
Largest diff. peak and hole	1.596 and -0.522 e.A^-3

Table SI-10. Crystal Data and Structure Refinement

	X	У	Z	U(eq)
O(1)	7945(2)	6480(2)	10835(1)	27(1)
O(2)	9153(2)	4250(2)	8353(2)	31(1)
O(3)	8529(2)	6839(2)	5782(2)	42(1)
O(4)	6862(2)	6947(2)	7257(1)	25(1)
O(5)	4230(2)	5795(2)	4931(1)	24(1)
O(6)	6611(2)	6383(2)	2207(2)	32(1)
O(7)	6331(3)	7790(2)	9422(2)	54(1)
O(8)	5937(2)	10634(2)	7040(2)	36(1)
O(9)	6672(2)	8471(2)	4366(2)	35(1)
O(10)	7983(2)	8326(2)	2982(2)	28(1)
O(11)	10745(2)	9192(2)	643(1)	22(1)
O(12)	8370(2)	8194(2)	-1959(2)	27(1)
C(1)	8379(3)	6950(2)	11366(2)	27(1)
C(2)	8389(2)	6186(2)	10251(2)	20(1)
C(3)	9247(2)	6233(2)	10188(2)	22(1)
C(4)	9638(2)	5894(2)	9581(2)	26(1)
C(5)	9184(3)	5509(2)	9030(2)	27(1)
C(6)	8320(3)	5483(3)	9106(2)	30(1)
C(7)	7927(2)	5812(2)	9703(2)	26(1)
C(8)	9513(3)	5061(3)	8354(2)	33(1)
C(9)	9269(3)	5553(3)	7654(2)	31(1)
C(10)	9351(2)	6397(3)	7592(2)	30(1)
C(11)	9108(2)	6810(3)	6965(2)	29(1)
C(11) C(12)	8762(2)	6384(3)	6377(2)	25(1) 26(1)
C(12) C(13)	8667(2)	5550(3)	6436(2)	27(1)
C(13) C(14)	8925(3)	5149(3)	7066(2)	30(1)
C(14) C(15)	8034(3)	6457(4)	5251(3)	53(1)
C(15) C(16)	7210(2)	6493(2)	7846(2)	23(1)
C(10) C(17)	6450(2)	6530(2)	6725(2)	18(1)
C(17) C(18)	6376(2)	5692(2)	6695(2)	20(1)
C(18) C(19)	5942(2)		6118(2)	
		5338(2) 5704(2)		22(1)
C(20)	5576(2)	5794(2)	5565(2)	22(1)
C(21)	5667(2)	6638(2) 7004(2)	5606(2)	26(1)
C(22)	6088(2) 5065(2)	7004(2)	6173(2)	24(1)
C(23)	5065(2)	5471(2)	4914(2)	22(1)
C(24)	5483(2)	5731(2)	4190(2)	23(1)
C(25)	6343(2)	5703(2)	4084(2)	24(1)
C(26)	6702(2)	5925(2)	3421(2)	25(1)
C(27)	6210(2)	6179(2)	2844(2)	22(1)
C(28)	5354(2)	6213(2)	2930(2)	23(1)
C(29)	5006(2)	5983(2)	3601(2)	22(1)
C(30)	6106(3)	6679(3)	1618(2)	36(1)
C(31)	6876(4)	8093(4)	9976(3)	65(2)
C(32)	6118(3)	8318(3)	8877(2)	33(1)
C(33)	5725(3)	7984(3)	8264(3)	43(1)
C(34)	5498(3)	8463(3)	7676(3)	39(1)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(35)	5631(3)	9294(3)	7678(3)	38(1)
C(36)	5990(3)	9620(2)	8309(2)	27(1)
C(37)	6244(2)	9149(2)	8903(2)	24(1)
C(38)	5476(3)	9872(3)	6986(3)	38(1)
C(39)	5705(4)	9411(3)	6295(3)	43(1)
C(40)	6557(3)	9416(3)	6134(3)	47(1)
C(41)	6852(3)	9095(3)	5507(3)	40(1)
C(42)	6306(3)	8754(2)	4993(2)	27(1)
C(43)	5464(2)	8729(2)	5140(2)	23(1)
C(44)	5169(3)	9044(2)	5794(2)	28(1)
C(45)	6141(3)	8106(3)	3832(2)	32(1)
C(46)	8388(3)	7891(3)	3553(2)	33(1)
C(47)	8477(2)	8663(2)	2454(2)	19(1)
C(48)	9335(2)	8714(2)	2490(2)	19(1)
C(49)	9776(2)	9039(2)	1901(2)	20(1)
C(50)	9384(2)	9292(2)	1265(2)	24(1)
C(51)	8516(2)	9266(2)	1249(2)	24(1)
C(52)	8062(2)	8961(2)	1836(2)	23(1)
C(53)	9913(2)	9529(2)	584(2)	24(1)
C(54)	9459(2)	9232(2)	-111(2)	26(1)
C(55)	9461(2)	8402(2)	-240(2)	26(1)
C(56)	9081(2)	8078(2)	-848(2)	25(1)
C(57)	8693(2)	8579(2)	-1357(2)	20(1)
C(58)	8655(2)	9412(2)	-1235(2)	22(1)
C(59)	9035(2)	9725(2)	-610(2)	24(1)
C(60)	7932(2)	8672(2)	-2487(2)	24(1)

O(1)-C(2)	1.370(4)
O(1)-C(1)	1.422(5)
O(2)-C(8)	1.457(5)
O(2)-H(2A)	0.83(3)
O(2)-H(2B)	0.84(3)
O(3)-C(12)	1.370(5)
O(3)-C(15)	1.403(6)
O(4)-C(17)	1.360(4)
O(4)-C(16)	1.423(4)
O(5)-C(23)	1.446(4)
O(5)-H(5)	0.87(6)
O(6)-C(27)	1.370(4)
O(6)-C(30)	1.431(5)
O(7)-C(32)	1.364(5)
O(7)-C(31)	1.428(8)
O(8)-C(38)	1.462(5)
O(8)-H(8)	0.81(6)
O(9)-C(42)	1.367(5)
O(9)-C(45)	1.428(5)
O(10)-C(47)	1.366(4)
O(10)-C(46)	1.422(5)
O(11)-C(53)	1.454(5)
O(11)-H(11)	0.86(5)
O(12)-C(57)	1.370(4)
O(12)-C(60)	1.428(4)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-C(3)	1.387(5)
C(2)-C(7)	1.388(5)
C(3)-C(4)	1.390(5)
C(3)-H(3)	0.9500
C(4)-C(5)	1.395(6)
C(4)-H(4)	0.9500
C(5)-C(6)	1.398(6)
C(5)-C(8)	1.529(6)
C(6)-C(7)	1.370(6)
C(6)-H(6)	0.9500
C(7)-H(7)	0.9500
C(8)-C(9)	1.562(6)
C(8)-C(8)#1	1.579(8)
C(9)-C(14)	1.377(6)
C(9) - C(10)	1.403(6)
C(10)-C(11)	1.385(6)
C(10)-C(11) C(10)-H(10)	0.9500
	1.397(6)
C(11)- $C(12)$	
C(11)-C(12) C(11)-H(11A)	
C(11)-C(12) C(11)-H(11A) C(12)-C(13)	0.9500 1.387(6)

Table SI-12.	Bond lengt	hs [A] and	l angles [deg]

	0.0500
C(13)-H(13)	0.9500
C(14)-H(14)	0.9500
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(18)	1.389(5)
C(17)-C(22)	1.401(5)
C(18)-C(19)	1.390(5)
C(18)-H(18)	0.9500
C(19)-C(20)	1.387(5)
C(19)-H(19)	0.9500
C(20)-C(21)	1.401(5)
C(20)-C(23)	1.538(5)
C(21)-C(22)	1.375(5)
C(21)-H(21)	0.9500
C(22)-H(22)	0.9500
C(23)-C(24)	1.542(5)
C(23)-C(23)#2	1.566(7)
C(24)-C(29)	1.383(5)
C(24)-C(25)	1.397(6)
C(25)-C(26)	1.389(5)
C(25)-H(25)	0.9500
C(26)-C(27)	1.380(5)
C(26)-H(26)	0.9500
C(27)-C(28)	1.387(6)
C(28)-C(29)	1.397(5)
C(28)-H(28)	0.9500
C(29)-H(29)	0.9500
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800
C(31)-H(31C)	0.9800
C(32)-C(37)	1.387(6)
C(32)-C(33)	1.396(7)
C(33)-C(34)	1.379(7)
C(33)-H(33)	0.9500
C(34)-C(35)	1.387(7)
C(34)-H(34)	0.9500
C(35)-C(36)	1.394(5)
C(35)-C(38)	1.598(7)
C(36)-C(37)	1.393(5)
C(36)-H(36)	0.9500
C(37)-H(37)	0.9500
C(38)-C(39)	1.516(6)
C(38)-C(38)#3	1.589(9)
C(39)-C(44)	1.394(6)

C(39)-C(40)	1.402(8)
C(40)-C(41)	1.345(7)
C(40)-H(40)	0.9500
C(41)-C(42)	1.401(6)
C(41)-H(41)	0.9500
C(42)-C(43)	1.381(6)
C(43)-C(44)	1.383(5)
C(43)-H(43)	0.9500
C(44)-H(44)	0.9500
C(45)-H(45A)	0.9800
C(45)-H(45B)	0.9800
C(45)-H(45C)	0.9800
C(46)-H(46A)	0.9800
C(46)-H(46B)	0.9800
C(46)-H(46C)	0.9800
C(47)-C(48)	1.385(5)
C(47)-C(52)	1.398(5)
C(48)-C(49)	1.393(5)
C(48)-H(48)	0.9500
C(49)-C(50)	1.383(5)
C(49)-H(49)	0.9500
C(50)-C(51)	1.397(6)
C(50)-C(53)	1.555(5)
C(51)-C(52)	1.389(5)
C(51)-H(51)	0.9500
C(52)-H(52)	0.9500
C(53)-C(54)	1.540(5)
C(53)-C(53)#4	1.579(7)
C(54)-C(55)	1.388(6)
C(54)-C(59)	1.398(6)
C(55)-C(56)	1.374(6)
C(55)-H(55)	0.9500
C(56)-C(57)	1.389(5)
C(56)-H(56)	0.9500
C(57)-C(58)	1.393(5)
C(58)-C(59)	1.392(5)
C(58)-H(58)	0.9500
C(59)-H(59)	0.9500
C(60)-H(60A)	0.9800
C(60)-H(60B)	0.9800
C(60)-H(60C)	0.9800
	117 7(2)
C(2)-O(1)-C(1)	117.7(3)
C(8)-O(2)-H(2A)	108(9)
C(8)-O(2)-H(2B)	108(8)
C(12)-O(3)-C(15)	117.0(4)
C(17)-O(4)-C(16)	117.6(3)
C(23)-O(5)-H(5)	110(3)
C(27)-O(6)-C(30)	116.8(3)
C(32)-O(7)-C(31)	116.4(4)
C(38)-O(8)-H(8)	110(5)

C(42)-O(9)-C(45)	117.0(3)
C(47)-O(10)-C(46)	117.0(3)
C(53)-O(11)-H(11)	106(3)
C(57)-O(12)-C(60)	118.1(3)
O(1)-C(1)-H(1A)	109.5
O(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
O(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1R)-C(1)-H(1C)	109.5
	124.3(3)
O(1)-C(2)-C(3) O(1)-C(2)-C(7)	
O(1)-C(2)-C(7)	115.8(3)
C(3)-C(2)-C(7)	119.9(3)
C(2)-C(3)-C(4)	119.6(3)
C(2)-C(3)-H(3)	120.2
C(4)-C(3)-H(3)	120.2
C(3)-C(4)-C(5)	121.2(4)
C(3)-C(4)-H(4)	119.4
C(5)-C(4)-H(4)	119.4
C(4)-C(5)-C(6)	117.6(4)
C(4)-C(5)-C(8)	128.1(4)
C(6)-C(5)-C(8)	114.2(4)
C(7)-C(6)-C(5)	121.7(4)
C(7)-C(6)-H(6)	119.1
C(5)-C(6)-H(6)	119.1
C(6)-C(7)-C(2)	119.9(4)
C(6)-C(7)-H(7)	120.0
C(2)-C(7)-H(7)	120.0
O(2)-C(8)-C(5)	107.8(3)
O(2)-C(8)-C(9)	112.0(3)
C(5)-C(8)-C(9)	108.6(3)
O(2)-C(8)-C(8)#1	106.2(4)
C(5)-C(8)-C(8)#1	113.9(3)
C(9)-C(8)-C(8)#1	108.4(3)
C(14)-C(9)-C(10)	117.1(4)
C(14)-C(9)-C(8)	119.0(4)
C(10)-C(9)-C(8)	123.9(4)
C(11)-C(10)-C(9)	121.8(4)
С(11)-С(10)-Н(10)	119.1
C(9)-C(10)-H(10)	119.1
C(10)-C(11)-C(12)	119.9(4)
C(10)-C(11)-H(11A)	120.1
C(12)-C(11)-H(11A)	120.1
O(3)-C(12)-C(13)	125.0(4)
O(3)-C(12)-C(11)	116.1(4)
C(13)-C(12)-C(11)	118.9(4)
C(12)-C(13)-C(14)	120.2(4)
C(12)-C(13)-C(14) C(12)-C(13)-H(13)	120.2(4) 119.9
C(14)-C(13)-H(13) C(0) C(14) C(13)	119.9 122.2(4)
C(9)-C(14)-C(13) C(9)-C(14)-H(14)	122.2(4)
C(9)-C(14)-H(14)	118.9

	110.0
C(13)-C(14)-H(14)	118.9
O(3)-C(15)-H(15A)	109.5
O(3)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
O(3)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
O(4)-C(16)-H(16A)	109.5
O(4)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
O(4)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
O(4)-C(17)-C(18)	124.9(3)
O(4)-C(17)-C(22)	115.6(3)
C(18)-C(17)-C(22)	119.5(3)
C(18)-C(17)-C(22) C(19)-C(18)-C(17)	119.3(3)
	. ,
C(19)-C(18)-H(18)	120.3
C(17)-C(18)-H(18)	120.3
C(18)-C(19)-C(20)	122.3(3)
C(18)-C(19)-H(19)	118.8
C(20)-C(19)-H(19)	118.8
C(19)-C(20)-C(21)	117.1(3)
C(19)-C(20)-C(23)	126.8(3)
C(21)-C(20)-C(23)	116.1(3)
C(22)-C(21)-C(20)	121.9(3)
C(22)-C(21)-H(21)	119.1
C(20)-C(21)-H(21)	119.1
C(21)-C(22)-C(17)	119.9(3)
C(21)-C(22)-H(22)	120.0
C(17)-C(22)-H(22)	120.0
O(5)-C(23)-C(20)	110.6(3)
O(5)-C(23)-C(24)	108.7(3)
C(20)-C(23)-C(24)	109.2(3)
O(5)-C(23)-C(23)#2	104.0(4)
C(20)-C(23)-C(23)#2	114.5(3)
C(24)-C(23)-C(23)#2	109.5(2)
C(29)-C(24)-C(25)	117.0(4)
C(29)-C(24)-C(23)	120.3(3)
C(25)-C(24)-C(23)	122.7(3)
C(26)-C(25)-C(24)	121.5(3)
C(26)-C(25)-H(25)	119.3
C(24)-C(25)-H(25)	119.3
C(27)-C(26)-C(25)	120.2(4)
C(27)-C(26)-H(26)	120.2(4)
C(25)-C(26)-H(26)	119.9
O(6)-C(27)-C(26) O(6)-C(27)-C(28)	116.7(3) 123.6(3)
O(6)-C(27)-C(28)	123.6(3)
C(26)-C(27)-C(28)	119.8(3)
C(27)-C(28)-C(29)	119.0(4)
C(27)-C(28)-H(28)	120.5

C(29)-C(28)-H(28)	120.5
C(24)-C(29)-C(28)	122.5(4)
C(24)-C(29)-H(29)	118.8
C(28)-C(29)-H(29)	118.8
O(6)-C(30)-H(30A)	109.5
O(6)-C(30)-H(30B)	109.5
H(30A)-C(30)-H(30B)	109.5
O(6)-C(30)-H(30C)	109.5
H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5
O(7)-C(31)-H(31A)	109.5
O(7)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31B)	109.5
O(7)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
O(7)-C(32)-C(37)	124.7(4)
O(7)-C(32)-C(33)	116.3(4)
C(37)-C(32)-C(33)	118.9(4)
C(34)-C(33)-C(32)	120.9(4)
C(34)-C(33)-H(33)	119.5
C(32)-C(33)-H(33)	119.5
C(33)-C(34)-C(35)	121.6(4)
C(33)-C(34)-H(34)	119.2
C(35)-C(34)-H(34)	119.2
C(34)-C(35)-C(36)	116.5(4)
C(34)-C(35)-C(38)	124.3(4)
C(36)-C(35)-C(38)	119.0(4)
C(37)-C(36)-C(35)	123.2(4)
C(37)-C(36)-H(36)	118.4
C(35)-C(36)-H(36)	118.4
C(32)-C(37)-C(36)	118.8(4)
C(32)-C(37)-H(37)	120.6
C(36)-C(37)-H(37)	120.6
O(8)-C(38)-C(39)	111.3(4)
O(8)-C(38)-C(38)#3	105.2(4)
C(39)-C(38)-C(38)#3	111.6(3)
O(8)-C(38)-C(35)	112.4(4)
C(39)-C(38)-C(35)	108.5(4)
C(38)#3-C(38)-C(35)	108.0(3)
C(44)-C(39)-C(40)	118.0(4)
C(44)- $C(39)$ - $C(38)$	127.7(5)
C(40)-C(39)-C(38)	114.1(4)
C(40)-C(39)-C(38) C(41)-C(40)-C(39)	114.1(4)
C(41)-C(40)-H(40) C(30) $C(40)$ $H(40)$	119.3
C(39)-C(40)-H(40) C(40)-C(41)-C(42)	119.3 120.3(4)
C(40)- $C(41)$ - $C(42)$	120.3(4)
C(40)- $C(41)$ - $H(41)$	119.9
C(42)-C(41)-H(41)	119.9
O(9)-C(42)-C(43)	125.1(4)
O(9)-C(42)-C(41)	115.1(4)

C(43)-C(42)-C(41)	119.8(4)
C(42)-C(43)-C(44)	119.6(4)
C(42)-C(43)-H(43)	120.2
C(44)-C(43)-H(43)	120.2
C(43)-C(44)-C(39)	120.9(4)
C(43)-C(44)-H(44)	119.5
C(39)-C(44)-H(44)	119.5
O(9)-C(45)-H(45A)	109.5
O(9)-C(45)-H(45B)	109.5
H(45A)-C(45)-H(45B)	109.5
O(9)-C(45)-H(45C)	109.5
	109.5
H(45A)-C(45)-H(45C)	
H(45B)-C(45)-H(45C)	109.5
O(10)-C(46)-H(46A)	109.5
O(10)-C(46)-H(46B)	109.5
H(46A)-C(46)-H(46B)	109.5
O(10)-C(46)-H(46C)	109.5
H(46A)-C(46)-H(46C)	109.5
H(46B)-C(46)-H(46C)	109.5
O(10)-C(47)-C(48)	124.8(3)
O(10)-C(47)-C(52)	115.6(3)
C(48)-C(47)-C(52)	119.6(3)
C(47)-C(48)-C(49)	119.6(3)
C(47)-C(48)-H(48)	120.2
C(49)-C(48)-H(48)	120.2
C(50)-C(49)-C(48)	121.9(3)
C(50)-C(49)-H(49)	119.1
C(48)-C(49)-H(49)	119.1
C(49)-C(50)-C(51)	117.7(3)
C(49)-C(50)-C(53)	119.6(3)
C(51)-C(50)-C(53)	122.6(3)
C(52)-C(51)-C(50)	121.4(3)
C(52)-C(51)-H(51)	119.3
C(50)-C(51)-H(51)	119.3
C(51)-C(52)-C(47)	119.6(3)
C(51)-C(52)-H(52)	120.2
C(47)-C(52)-H(52)	120.2
O(11)-C(53)-C(54)	112.1(3)
O(11)-C(53)-C(50)	110.4(3)
C(54)-C(53)-C(50)	108.4(3)
O(11)-C(53)-C(53)#4	102.3(4)
C(54)-C(53)-C(53)#4	113.4(2)
C(50)-C(53)-C(53)#4	110.1(3)
C(55)-C(54)-C(59)	117.7(4)
C(55)-C(54)-C(53)	116.8(3)
C(59)-C(54)-C(53) C(59)-C(54)-C(53)	125.5(4)
C(56)-C(55)-C(54)	123.3(4) 121.3(4)
C(56)-C(55)-H(55)	121.3(4) 119.4
C(54)-C(55)-H(55)	119.4 119.4
	119.4 120.4(4)
C(55)-C(56)-C(57) C(55)-C(56)-H(56)	120.4(4) 119.8
C(<i>33</i>)-C(30)-H(30)	117.0

C(57)-C(56)-H(56)	119.8
O(12)-C(57)-C(56)	115.5(3)
O(12)-C(57)-C(58)	124.5(3)
C(56)-C(57)-C(58)	120.1(3)
C(59)-C(58)-C(57)	118.4(3)
C(59)-C(58)-H(58)	120.8
C(57)-C(58)-H(58)	120.8
C(58)-C(59)-C(54)	122.1(4)
C(58)-C(59)-H(59)	119.0
C(54)-C(59)-H(59)	119.0
O(12)-C(60)-H(60A)	109.5
O(12)-C(60)-H(60B)	109.5
H(60A)-C(60)-H(60B)	109.5
O(12)-C(60)-H(60C)	109.5
H(60A)-C(60)-H(60C)	109.5
H(60B)-C(60)-H(60C)	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+1,z #2 -x+1,-y+1,z #3 -x+1,-y+2,z #4 -x+2,-y+2,z

Table SI-13. Anisotropic displacement parameters (A^2 x 10^3)

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
D(1)	25(1)	33(2)	22(1)	-4(1)	1(1)	2(1)
D(2)	34(2)	26(1)	33(2)	-3(1)	0(1)	-14(1)
D(3)	40(2)	60(2)	25(2)	15(2)	2(1)	9(2)
D(4)	31(1)	22(1)	23(1)	-2(1)	-5(1)	1(1)
D(5)	23(1)	22(1)	27(1)	5(1)	4(1)	6(1)
D(6)	28(1)	47(2)	20(1)	4(1)	3(1)	5(1)
D(7)	79(3)	36(2)	46(2)	24(2)	31(2)	23(2)
D (8)	38(2)	38(2)	32(2)	16(1)	-15(1)	-23(1)
0(9)	21(1)	48(2)	35(2)	4(1)	1(1)	-4(1)
D (10)	22(1)	39(2)	23(1)	8(1)	5(1)	1(1)
(11)	24(1)	18(1)	25(1)	4(1)	2(1)	8(1)
0(12)	38(2)	22(1)	21(1)	-4(1)	-6(1)	3(1)
2(1)	37(2)	22(2)	22(2)	-3(2)	0(2)	5(2)
C(2)	23(2)	19(2)	18(2)	2(1)	0(1)	3(1)
2(3)	22(2)	18(2)	26(2)	-3(1)	-3(2)	-2(1)
C(4)	24(2)	20(2)	33(2)	3(2)	-1(2)	5(2)
(5)	33(2)	29(2)	21(2)	1(2)	-4(2)	16(2)
(6)	30(2)	33(2)	26(2)	-8(2)	-10(2)	13(2)
(7)	25(2)	26(2)	28(2)	-3(2)	-6(2)	4(2)
(8)	32(2)	29(2)	38(2)	-1(2)	-3(2)	2(2)
(9)	29(2)	39(2)	24(2)	-7(2)	-2(2)	21(2)
(10)	22(2)	40(2)	28(2)	-15(2)	-8(2)	13(2)
(11)	19(2)	31(2)	37(2)	-5(2)	1(2)	2(2)
(12)	21(2)	37(2)	21(2)	2(2)	3(1)	6(2)
(13)	25(2)	33(2)	23(2)	-9(2)	-3(2)	6(2)
(14)	31(2)	27(2)	32(2)	-5(2)	2(2)	9(2)
(15)	43(3)	93(4)	23(2)	10(3)	-4(2)	-1(3)
(16)	23(2)	24(2)	22(2)	0(1)	-4(1)	1(2)
(17)	19(2)	18(2)	19(2)	1(1)	2(1)	1(1)
(18)	20(2)	20(2)	21(2)	3(1)	1(1)	0(1)
(19)	26(2)	19(2)	21(2)	4(1)	-1(2)	-5(1)
(20)	21(2)	29(2)	17(2)	4(1)	1(1)	-7(2)
(21)	28(2)	27(2)	22(2)	8(2)	-1(2)	2(2)
2(22)	29(2)	17(2)	25(2)	2(1)	1(2)	3(2)
2(23)	21(2)	23(2)	23(2)	1(2)	-1(1)	2(1)
(24)	28(2)	18(2)	22(2)	2(1)	-4(2)	-4(2)
2(25)	28(2)	24(2)	22(2)	2(2)	-6(2)	0(2)
2(26)	25(2)	25(2)	25(2)	2(2)	-2(2)	3(2)
2(27)	30(2)	18(2)	19(2)	1(1)	2(2)	6(2)
2(28)	28(2)	21(2)	20(2)	1(1)	-2(2)	4(2)
2(29)	27(2)	18(2)	21(2)	2(1)	-2(2)	0(1)
2(30)	36(2)	55(3)	17(2)	10(2)	3(2)	9(2)
2(31)	58(3)	85(4)	51(3)	47(3)	24(3)	46(3)
(32)	33(2)	25(2)	41(2)	10(2)	19(2)	9(2)

C(33)	35(2)	24(2)	70(3)	-17(2)	23(2)	-7(2)
C(34)	26(2)	31(2)	60(3)	-23(2)	-8(2)	7(2)
C(35)	36(2)	33(2)	43(2)	-18(2)	-17(2)	20(2)
C(36)	33(2)	20(2)	27(2)	-4(2)	-8(2)	8(2)
C(37)	24(2)	23(2)	26(2)	2(2)	1(2)	3(2)
C(38)	39(3)	33(2)	41(2)	-3(2)	-3(2)	0(2)
C(39)	61(3)	32(2)	37(2)	-15(2)	-20(2)	23(2)
C(40)	50(3)	29(2)	61(3)	-19(2)	-37(3)	17(2)
C(41)	34(2)	24(2)	60(3)	-7(2)	-24(2)	2(2)
C(42)	30(2)	21(2)	31(2)	5(2)	-7(2)	1(2)
C(43)	30(2)	16(2)	22(2)	0(1)	-5(2)	-2(1)
C(44)	43(2)	18(2)	23(2)	-1(1)	-4(2)	9(2)
C(45)	32(2)	39(2)	25(2)	2(2)	4(2)	1(2)
C(46)	33(2)	39(2)	26(2)	12(2)	6(2)	2(2)
C(47)	22(2)	16(2)	19(2)	-3(1)	3(1)	0(1)
C(48)	25(2)	19(2)	14(2)	0(1)	-1(1)	2(1)
C(49)	24(2)	18(2)	18(2)	-2(1)	0(1)	-4(1)
C(50)	30(2)	20(2)	21(2)	3(1)	-3(2)	-7(2)
C(51)	28(2)	20(2)	24(2)	5(2)	-6(2)	1(2)
C(52)	22(2)	19(2)	27(2)	1(2)	-2(2)	2(1)
C(53)	24(2)	23(2)	24(2)	1(2)	1(2)	0(2)
C(54)	25(2)	31(2)	21(2)	5(2)	1(2)	-10(2)
C(55)	24(2)	30(2)	23(2)	9(2)	-2(2)	-3(2)
C(56)	25(2)	25(2)	26(2)	1(2)	2(2)	1(2)
C(57)	21(2)	24(2)	16(2)	-3(1)	1(1)	-1(1)
C(58)	24(2)	22(2)	19(2)	0(1)	1(1)	2(2)
C(59)	27(2)	25(2)	22(2)	-2(1)	2(2)	-6(2)
C(60)	27(2)	26(2)	20(2)	-2(2)	-7(2)	0(2)

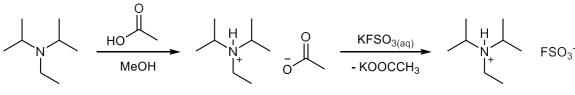
	X	У	Z	U(eq)
H(2A)	9530(50)	3920(60)	8270(60)	46
H(2B)	9290(70)	4020(70)	7960(40)	46
H(5)	4240(30)	6310(30)	4820(30)	36
H(8)	5760(40)	10910(40)	7370(30)	54
H(11)	10690(30)	8680(30)	640(30)	34
H(1A)	8814	6619	11592	41
H(1B)	7989	7134	11745	41
H(1C)	8631	7421	11126	41
H(3)	9565	6494	10559	26
H(4)	10226	5926	9540	31
H(6)	7996	5230	8734	36
H(7)	7339	5784	9743	31
H(10)	9578	6694	7992	36
H(11A)	9176	7381	6936	35
H(13)	8424	5252	6044	32
H(14)	8863	4576	7092	36
H(15A)	8375	6078	4966	79
H(15B)	7796	6866	4922	79
H(15C)	7585	6158	5494	79
H(16A)	6765	6215	8114	35
H(16B)	7505	6860	8180	35
H(16C)	7600	6091	7650	35
H(18)	6620	5363	7066	25
H(19)	5893	4764	6102	23
H(1))	5430	6966	5232	31
H(22)	6134	7578	6190	29
H(22) H(25)	6689	5527	4476	29
H(26)	7288	5903	3364	30
H(28)	5009	6390	2538	28
H(28) H(29)	3009 4419	6001	3655	28 26
. ,	5679	6276	1499	20 54
H(30A)				
H(30B)	6455	6776	1186	54
H(30C)	5839	7187	1767	54
H(31A)	7351	8364	9744	97 07
H(31B)	7075	7642	10280	97
H(31C)	6577	8482	10286	97 52
H(33)	5612	7418	8251	52
H(34)	5245	8218	7261	47
H(36)	6065	10191	8335	32
H(37)	6500	9393	9318	29
H(40)	6934	9651	6474	56
H(41)	7432	9100	5412	47
H(43)	5091	8497	4795	28
H(44)	4592	9010	5902	34
H(45A)	5881	7621	4042	48
H(45B)	6468	7954	3399	48
H(45C)	5709	8494	3687	48

Table SI-14. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3)

H(46A)	8747	7473	3339	49
H(46B)	7971	7635	3870	49
H(46C)	8726	8266	3845	49
H(48)	9622	8529	2915	23
H(49)	10363	9087	1937	24
H(51)	8231	9462	828	29
H(52)	7472	8955	1817	27
H(55)	9730	8051	99	31
H(56)	9083	7507	-921	30
H(58)	8375	9758	-1571	26
H(59)	9005	10292	-520	29
H(60A)	7460	8940	-2248	36
H(60B)	7729	8322	-2883	36
H(60C)	8307	9083	-2691	36

Table SI-15. Torsion angles [deg]

C(1)-O(1)-C(2)-C(3)	8.2(5)
C(1)-O(1)-C(2)-C(7)	-172.8(3)
O(1)-C(2)-C(3)-C(4)	178.2(3)
C(7)-C(2)-C(3)-C(4)	-0.8(6)
C(2)-C(3)-C(4)-C(5)	0.1(6)
C(3)-C(4)-C(5)-C(6)	0.7(6)
C(3)-C(4)-C(5)-C(8)	-175.8(4)
C(4)-C(5)-C(6)-C(7)	-0.9(6)
C(8)-C(5)-C(6)-C(7)	176.1(4)
C(5)-C(6)-C(7)-C(2)	0.3(6)
O(1)-C(2)-C(7)-C(6)	-178.5(3)
C(3)-C(2)-C(7)-C(6)	0.6(6)
C(4)-C(5)-C(8)-O(2)	125.9(4)
C(6)-C(5)-C(8)-O(2)	-50.7(5)
C(4)-C(5)-C(8)-C(9)	-112.5(4)
C(6)-C(5)-C(8)-C(9)	70.9(5)
C(4)-C(5)-C(8)-C(8)#1	8.3(7)
C(6)-C(5)-C(8)-C(8)#1	-168.3(4)
O(2)-C(8)-C(9)-C(14)	-14.0(5)
C(5)-C(8)-C(9)-C(14)	-133.0(4)
C(8)#1-C(8)-C(9)-C(14)	102.9(5)
O(2)-C(8)-C(9)-C(10)	163.6(4)
C(5)-C(8)-C(9)-C(10)	44.6(5)
C(8)#1-C(8)-C(9)-C(10)	-79.6(5)
C(14)-C(9)-C(10)-C(11)	-0.9(6)
C(8)-C(9)-C(10)-C(11)	-178.5(4)
C(9)-C(10)-C(11)-C(12)	0.8(6)
C(15)-O(3)-C(12)-C(13)	11.4(6)
C(15)-O(3)-C(12)-C(11)	-167.6(4)
C(10)-C(11)-C(12)-O(3)	179.2(3)
C(10)-C(11)-C(12)-C(13)	0.2(6)
O(3)-C(12)-C(13)-C(14)	-180.0(4)
C(11)-C(12)-C(13)-C(14)	-1.0(6)
C(10)-C(9)-C(14)-C(13)	0.0(6)
C(8)-C(9)-C(14)-C(13)	177.7(4)
C(12)-C(13)-C(14)-C(9)	1.0(6)
C(16)-O(4)-C(17)-C(18)	-3.1(5)
C(16)-O(4)-C(17)-C(22)	177.5(3)
O(4)-C(17)-C(18)-C(19)	-179.6(3)
C(22)-C(17)-C(18)-C(19)	-0.2(5)
C(17)-C(18)-C(19)-C(20)	0.1(6)
C(18)-C(19)-C(20)-C(21)	0.4(6)
C(18)-C(19)-C(20)-C(23)	-178.3(3)
C(19)-C(20)-C(21)-C(22)	-0.8(6)
C(23)-C(20)-C(21)-C(22)	178.0(3)
C(20)-C(21)-C(22)-C(17)	0.8(6)
O(4)-C(17)-C(22)-C(21)	179.3(3)
C(18)-C(17)-C(22)-C(21)	-0.3(5)

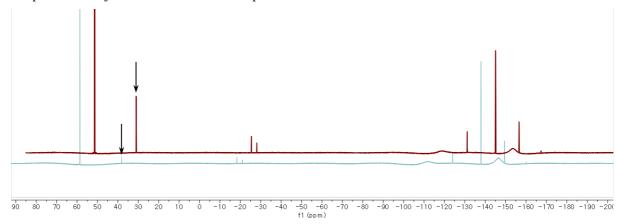

C(21)-C(20)-C(23)-O(5)	-59.5(4)
C(19)-C(20)-C(23)-C(24)	-121.0(4)
C(21)-C(20)-C(23)-C(24)	60.2(4)
C(19)-C(20)-C(23)-C(23)#2	2.2(6)
C(21)-C(20)-C(23)-C(23)#2	-176.6(4)
O(5)-C(23)-C(24)-C(29)	-19.2(5)
C(20)-C(23)-C(24)-C(29)	-140.0(4)
C(23)#2-C(23)-C(24)-C(29)	93.9(4)
O(5)-C(23)-C(24)-C(25)	162.9(3)
C(20)-C(23)-C(24)-C(25)	42.0(5)
C(23)#2-C(23)-C(24)-C(25)	-84.1(5)
C(29)-C(24)-C(25)-C(26)	0.6(6)
C(23)-C(24)-C(25)-C(26)	178.7(3)
C(24)-C(25)-C(26)-C(27)	-0.3(6)
C(30)-O(6)-C(27)-C(26)	-177.5(4)
C(30)-O(6)-C(27)-C(28)	2.8(6)
C(25)-C(26)-C(27)-O(6)	-179.6(3)
C(25)-C(26)-C(27)-C(28)	0.1(6)
O(6)-C(27)-C(28)-C(29)	179.3(3)
C(26)-C(27)-C(28)-C(29)	-0.4(6)
C(25)-C(24)-C(29)-C(28)	-0.9(6)
C(23)-C(24)-C(29)-C(28)	-179.0(3)
C(27)-C(28)-C(29)-C(24)	0.8(6)
C(31)-O(7)-C(32)-C(37)	-14.1(6)
C(31)-O(7)-C(32)-C(33)	167.8(4)
O(7)-C(32)-C(33)-C(34)	-178.7(4)
C(37)-C(32)-C(33)-C(34)	3.0(6)
C(32)-C(33)-C(34)-C(35)	-1.7(7)
C(33)-C(34)-C(35)-C(36)	-1.2(7)
C(33)-C(34)-C(35)-C(38)	173.1(4)
C(34)-C(35)-C(36)-C(37)	2.9(7)
C(38)-C(35)-C(36)-C(37)	-171.7(4)
O(7)-C(32)-C(37)-C(36)	-179.5(4)
C(33)-C(32)-C(37)-C(36)	-1.3(6)
C(35)-C(36)-C(37)-C(32)	-1.7(6)
C(34)-C(35)-C(38)-O(8)	-158.9(4)
C(36)-C(35)-C(38)-O(8)	15.3(6)
C(34)-C(35)-C(38)-C(39)	-35.5(6)
C(36)-C(35)-C(38)-C(39)	138.7(4)
C(34)-C(35)-C(38)-C(38)#3	85.6(5)
C(36)-C(35)-C(38)-C(38)#3	-100.2(5)
O(8)-C(38)-C(39)-C(44)	-133.6(5)
C(38)#3-C(38)-C(39)-C(44)	-16.5(7)
C(35)-C(38)-C(39)-C(44)	102.3(5)
O(8)-C(38)-C(39)-C(40)	41.6(5)
C(38)#3-C(38)-C(39)-C(40)	158.7(5)
C(35)-C(38)-C(39)-C(40)	-82.5(5)
C(44)-C(39)-C(40)-C(41)	1.5(7)
C(38)-C(39)-C(40)-C(41)	-174.2(4)
C(39)-C(40)-C(41)-C(42)	0.8(7)
C(45)-O(9)-C(42)-C(43)	-1.4(6)

C(45)-O(9)-C(42)-C(41)	179.0(4)
C(40)-C(41)-C(42)-O(9)	177.9(4)
C(40)-C(41)-C(42)-C(43)	-1.7(6)
O(9)-C(42)-C(43)-C(44)	-179.3(3)
C(41)-C(42)-C(43)-C(44)	0.2(6)
C(42)-C(43)-C(44)-C(39)	2.2(6)
C(40)-C(39)-C(44)-C(43)	-3.0(6)
C(38)-C(39)-C(44)-C(43)	172.0(4)
C(46)-O(10)-C(47)-C(48)	-9.8(5)
C(46)-O(10)-C(47)-C(52)	169.2(3)
O(10)-C(47)-C(48)-C(49)	177.0(3)
C(52)-C(47)-C(48)-C(49)	-2.0(5)
C(47)-C(48)-C(49)-C(50)	-2.0(5)
C(48)-C(49)-C(50)-C(51)	4.4(5)
C(48)-C(49)-C(50)-C(53)	-171.0(3)
C(49)-C(50)-C(51)-C(52)	-3.1(6)
C(53)-C(50)-C(51)-C(52)	172.2(3)
C(50)-C(51)-C(52)-C(47)	-0.7(6)
O(10)-C(47)-C(52)-C(51)	-175.8(3)
C(48)-C(47)-C(52)-C(51)	3.3(5)
C(49)-C(50)-C(53)-O(11)	19.0(5)
C(51)-C(50)-C(53)-O(11)	-156.2(3)
C(49)-C(50)-C(53)-C(54)	142.2(4)
C(51)-C(50)-C(53)-C(54)	-33.0(5)
C(49)-C(50)-C(53)-C(53)#4	-93.2(4)
C(51)-C(50)-C(53)-C(53)#4	91.6(4)
O(11)-C(53)-C(54)-C(55)	49.6(4)
C(50)-C(53)-C(54)-C(55)	-72.5(4)
C(53)#4-C(53)-C(54)-C(55)	164.8(4)
O(11)-C(53)-C(54)-C(59)	-131.7(4)
C(50)-C(53)-C(54)-C(59)	106.1(4)
C(53)#4-C(53)-C(54)-C(59)	-16.5(6)
C(59)-C(54)-C(55)-C(56)	1.9(6)
C(53)-C(54)-C(55)-C(56)	-179.3(3)
C(54)-C(55)-C(56)-C(57)	0.9(6)
C(60)-O(12)-C(57)-C(56)	177.3(3)
C(60)-O(12)-C(57)-C(58)	-2.7(5)
C(55)-C(56)-C(57)-O(12)	177.0(3)
C(55)-C(56)-C(57)-C(58)	-3.0(6)
O(12)-C(57)-C(58)-C(59)	-177.9(3)
C(56)-C(57)-C(58)-C(59)	2.1(5)
C(57)-C(58)-C(59)-C(54)	0.8(6)
C(55)-C(54)-C(59)-C(58)	-2.8(6)
C(53)-C(54)-C(59)-C(58)	178.6(3)

Symmetry transformations used to generate equivalent atoms:#1 -x+2,-y+1,z#2 -x+1,-y+1,z#3 -x+1,-y+2,z#4 -x+2,-y+2,z

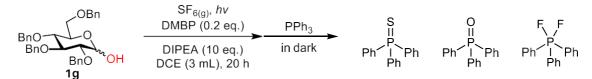
d. Determination of SF₆ Decomposition Side Products. Validation of FSO₃⁻

Synthesis of [DIPEA-H⁺][FSO₃⁻]

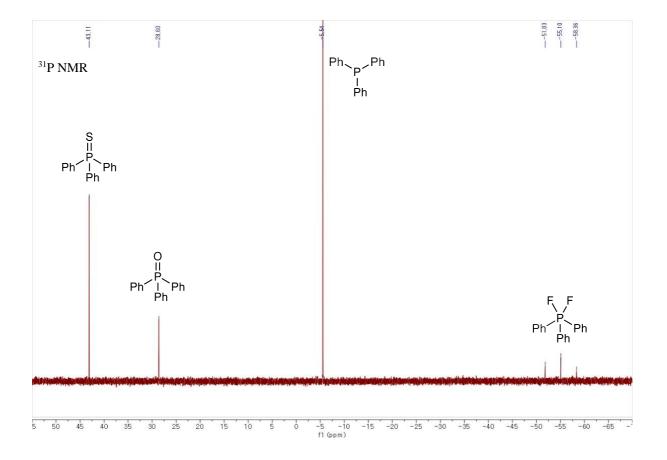


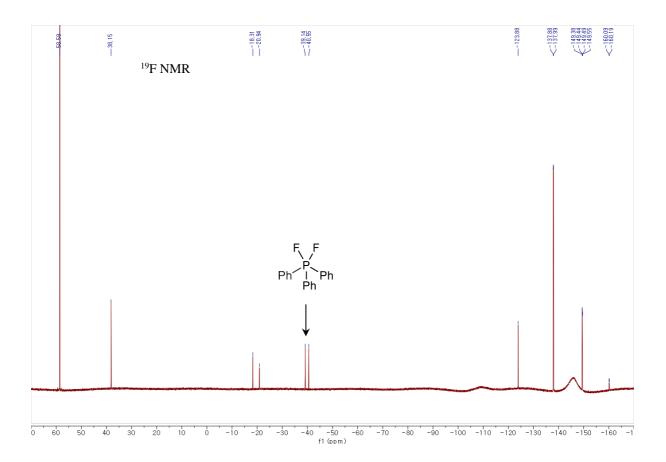
In a clean vial, DIPEA (2.0 mmol, 1 equiv.) was dissolved in methanol (1 mL). After adding acetic acid (2.0 mmol, 1 equiv.), the mixture was vigorously shaken and then concentrated *in vacuo*. The dried residue was then dissolved in 20 mL of DCM and transferred into a separatory funnel. After adding an aqueous solution of KSO₃F prepared from commercially available salt (1.8 mmol in 20 mL of H₂O), the separatory funnel was vigorously shaken. The resulting organic layer was then dried with NaSO₄ and concentrated *in vacuo* to give [DIPEA-H⁺][SO₃F⁻] as white solid. ¹⁹F NMR (471 MHz, CDCl₃) δ 38.52; HRMS (ESI⁻) (m/z): [M]⁻

calcd for [SFO₃⁻] 98.9552, found 98.9564.

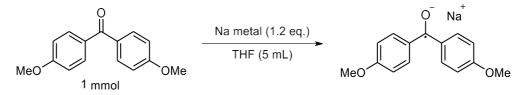

[DIPEA-H⁺][FSO₃⁻] Addition Experiment

Substrate **1g** was fluorinated under the standard reaction condition and after removing the light source analyzed by HRMS to contain molecular ion $[SO_3F^-]$ with m/z =98.9552 Da (ESI⁻). An aliquot (0.2 mL) of the crude reaction was taken out, followed by addition of [DIPEA-H⁺][FSO₃⁻] solution from above (2 mg in 0.5 mL CDCl₃). The reaction was then stirred in dark for 5 minutes, and another aliquot (0.2 mL) of sample was taken out. Both samples were subjected to ¹⁹F NMR and compared.

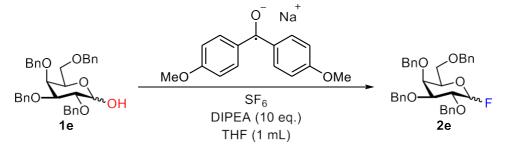


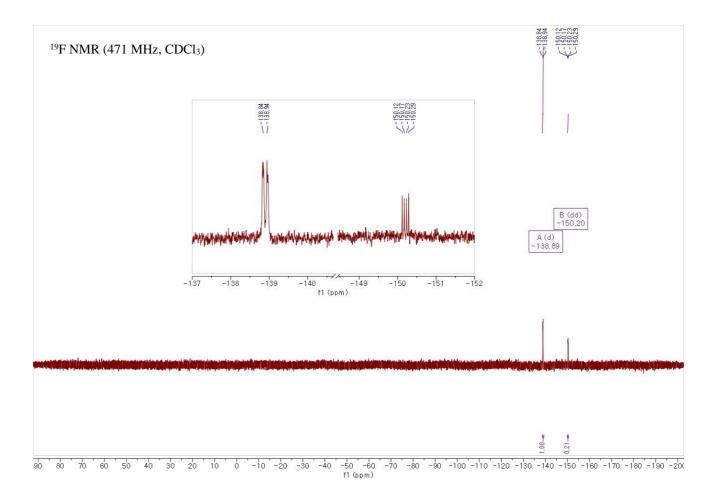

After the addition of $[DIPEA-H^+][FSO_3^-]$, the intensity of the peak at 38.15 ppm was significantly enhanced, which verifies the formation of FSO_3^- as side product.

e. PPh₃ Quenching Experiment

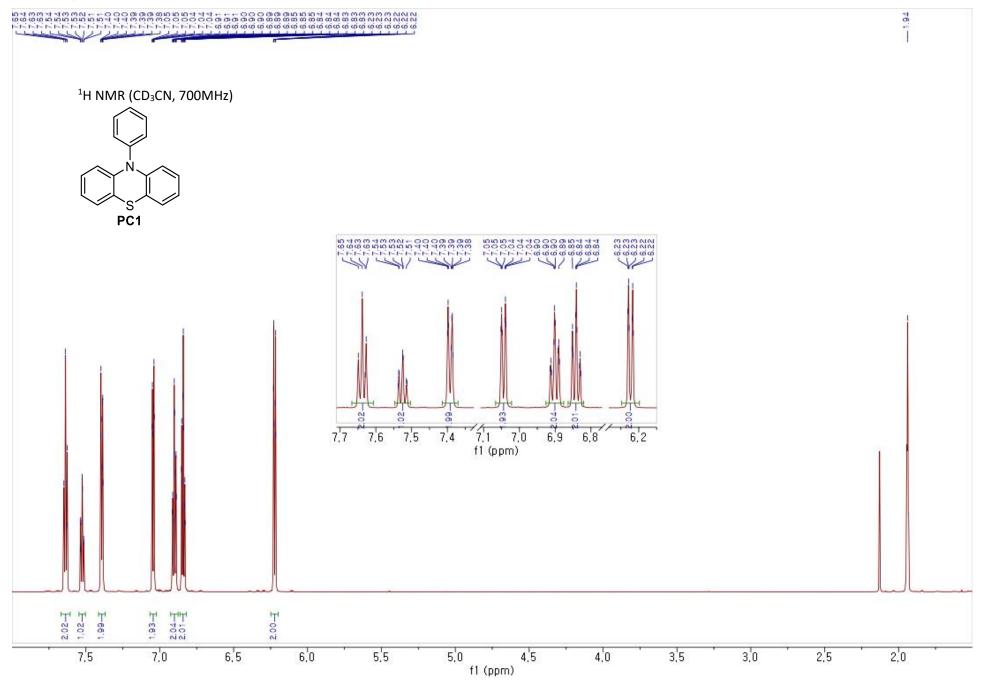

Substrate **1g** was subjected to a standard reaction. After removing the light source, an aliquot of crude reaction was taken out, and then PPh₃ solution (0.1 mmol in 0.5 mL of CDCl₃) was injected into the reaction vial. The mixture was stirred in dark, and samples were taken out after 3 hours and after 23 hours. All samples were subjected to ¹⁹F and ³¹P NMR experiments. Formation of Ph₃P=S, and Ph₃PF₂ (as well as Ph₃P=O) was confirmed by the direct comparison of the resultant and published spectral data.

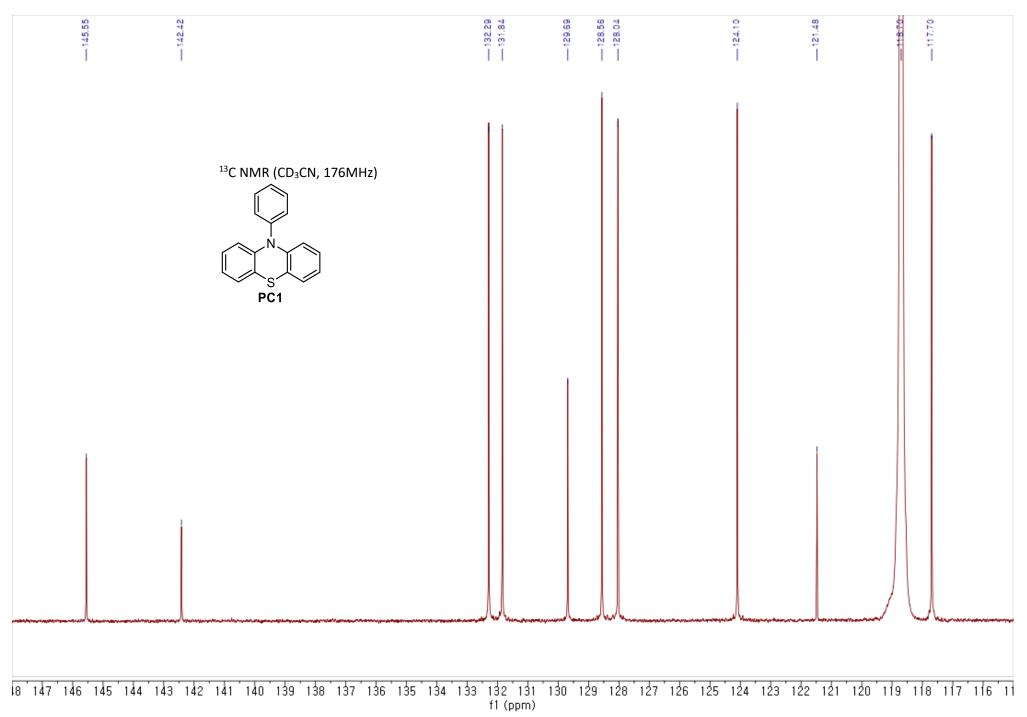
f. Ketyl Radical Experiment

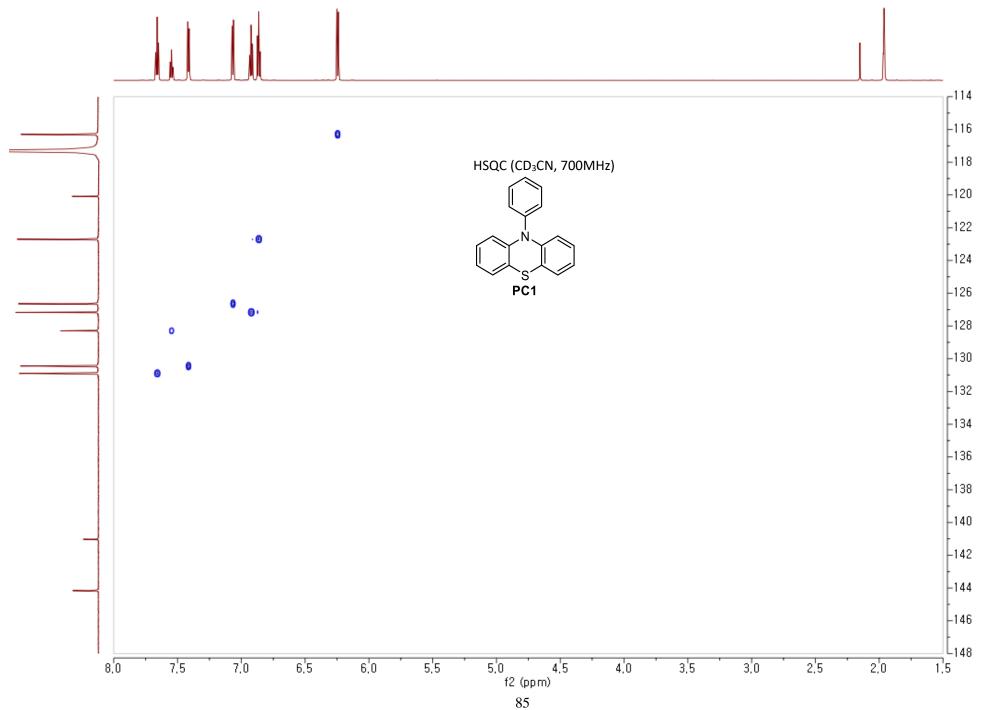

Synthesis of Ketyl Radical Solution

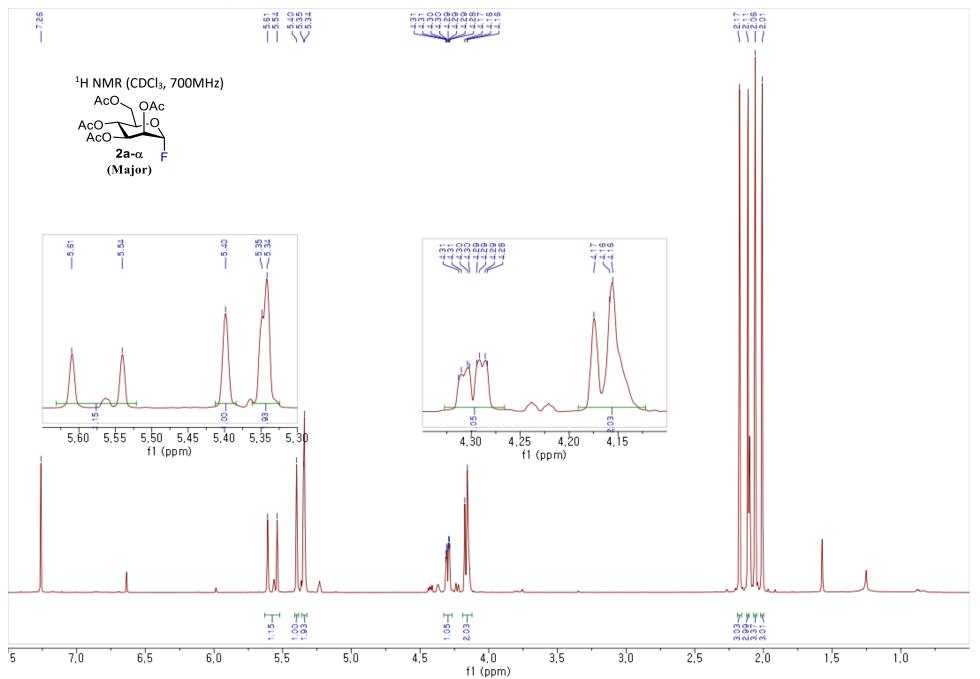

Into an oven dried 2 dram vial, 4,4'-dimethoxybenzophenone (1.0 mmol, 1 equiv.) and sodium metal (1.2 mmol, 1.2 equiv.) were added. The vial was sealed and connected to high vacuum. After drying the content in the vial for 10 minutes, the vial was disconnected from the vacuum line, and dry THF (5 mL) was injected to the vial. The mixture was stirred for 1 hour to give a deep blue solution.

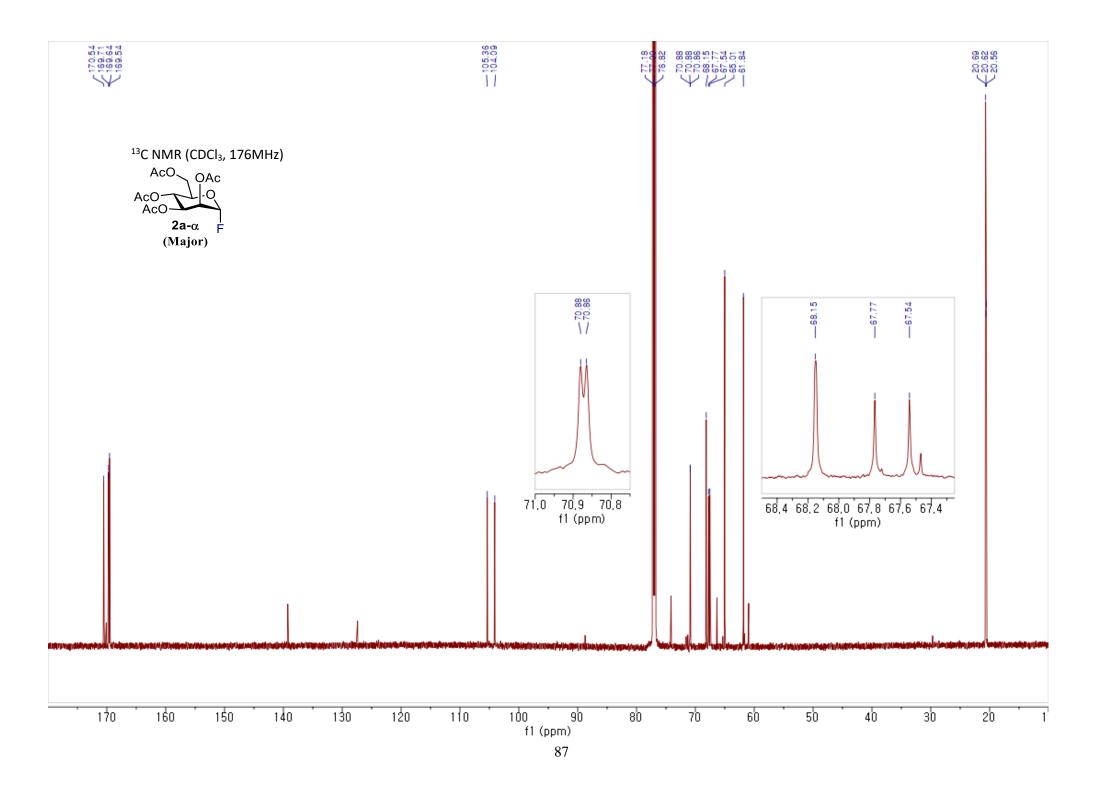
Fluorination of Glycoside with the Ketyl Radical Solution

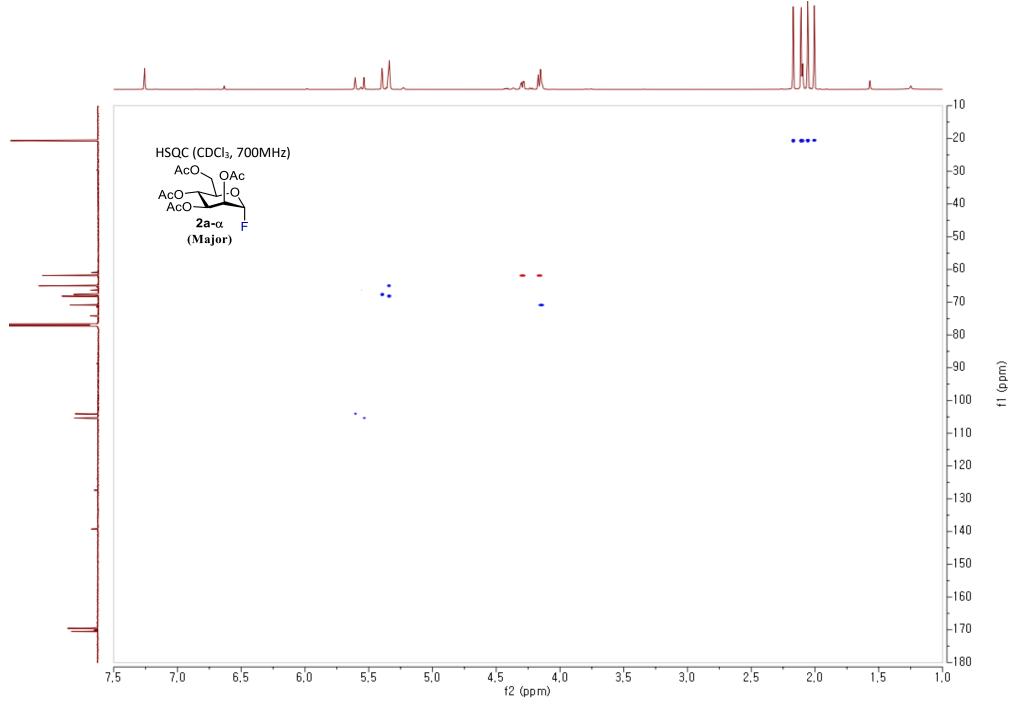


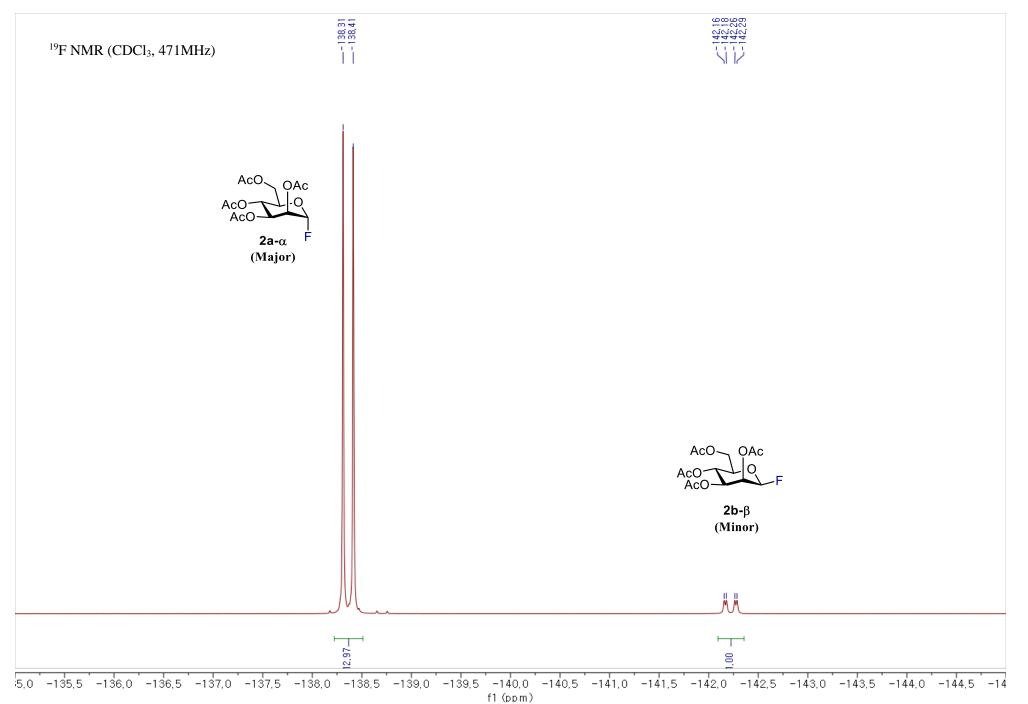

Into an oven dried 1 dram vial, 2,3,4,6-tetrakis-O-(phenylmethyl)-D-galactopyranose **1e** (0.1 mmol, 1.0 equiv.) was added and sealed. The vial was connected to the vacuum line and the content was dried for 10 min. After disconnecting the vial, DIPEA (1.0 mmol,10 equiv.) and dry THF (1 mL) were added and stirred until the mixture became homogeneous. A balloon containing SF₆ was then plugged into the vial and the solution was sparged.

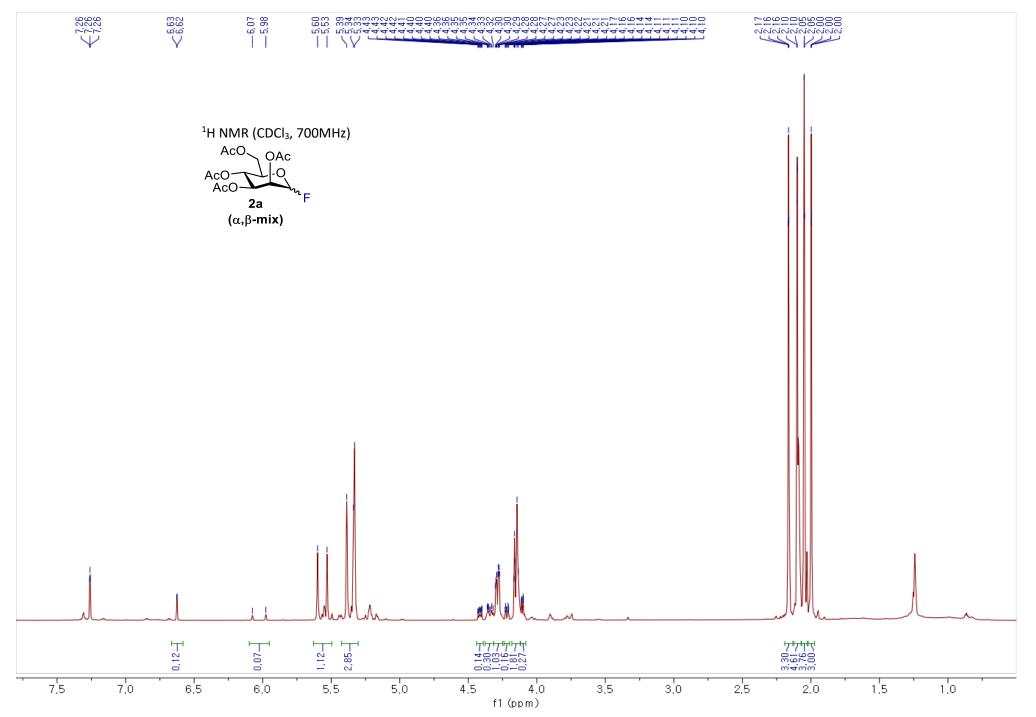

Into the 2 mL of the ketyl radical solution prepared before, a balloon containing SF₆ was plugged followed by the addition of 1 mL mixture containing **1e**. The reaction mixture was stirred in dark for 20 h and concentrated *in vacuo*. The crude mixture was then purified by FCC (SiO₂, 30% EtOAc in hexaness) to yield **2e** in 1% yield (~0.5 mg).

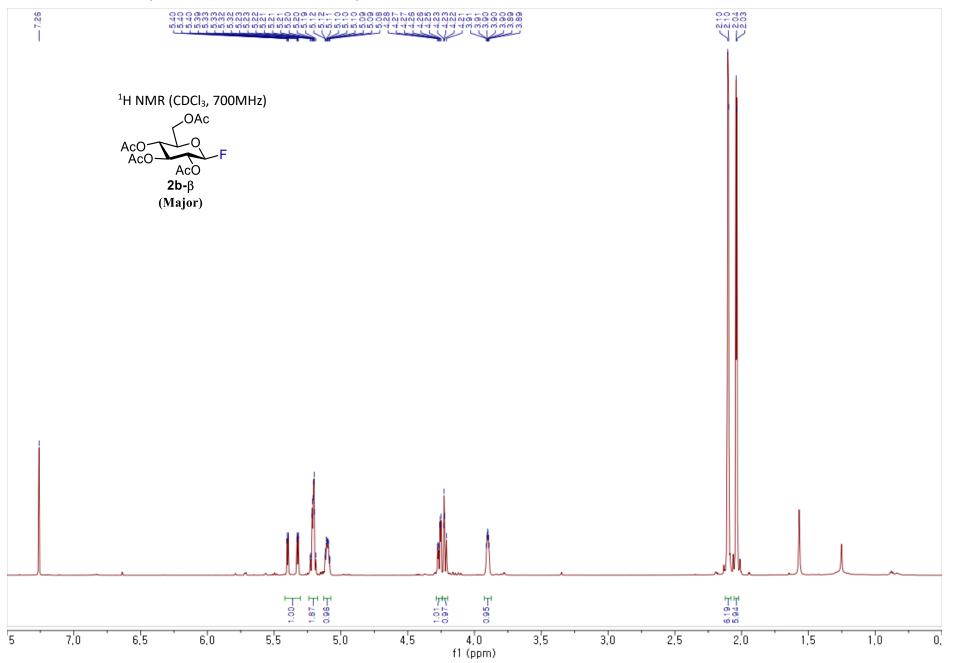

N-Phenylphenothiazine (PC1)

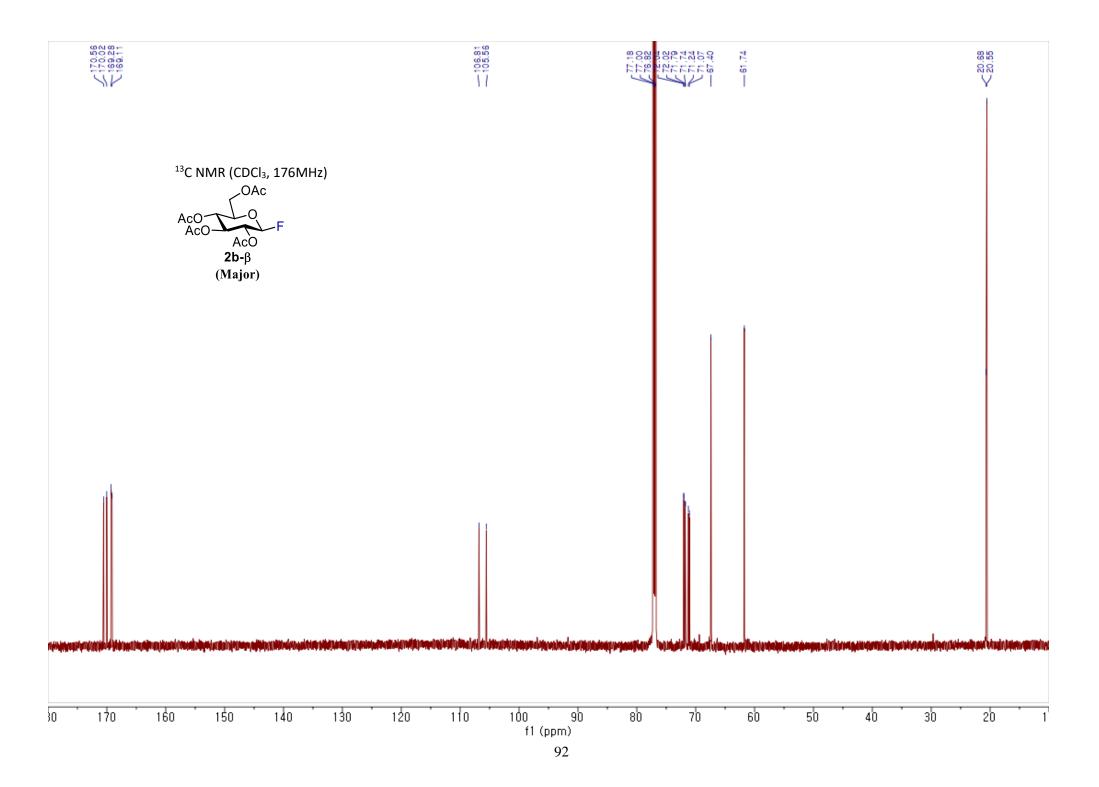


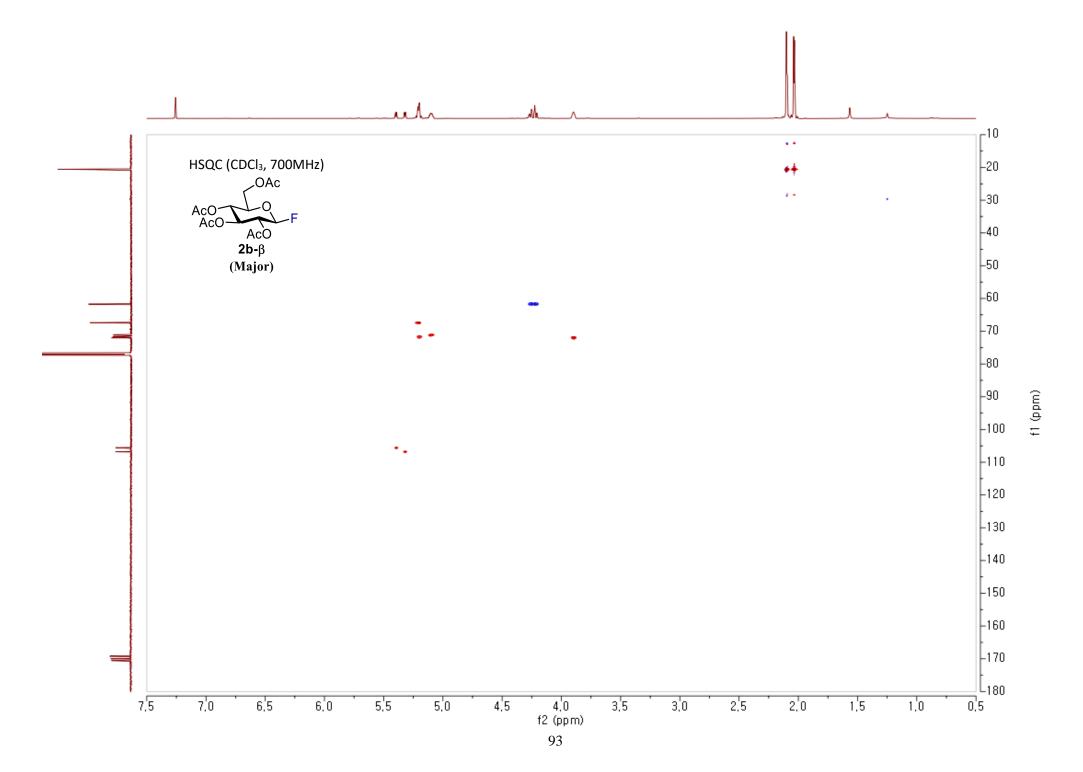


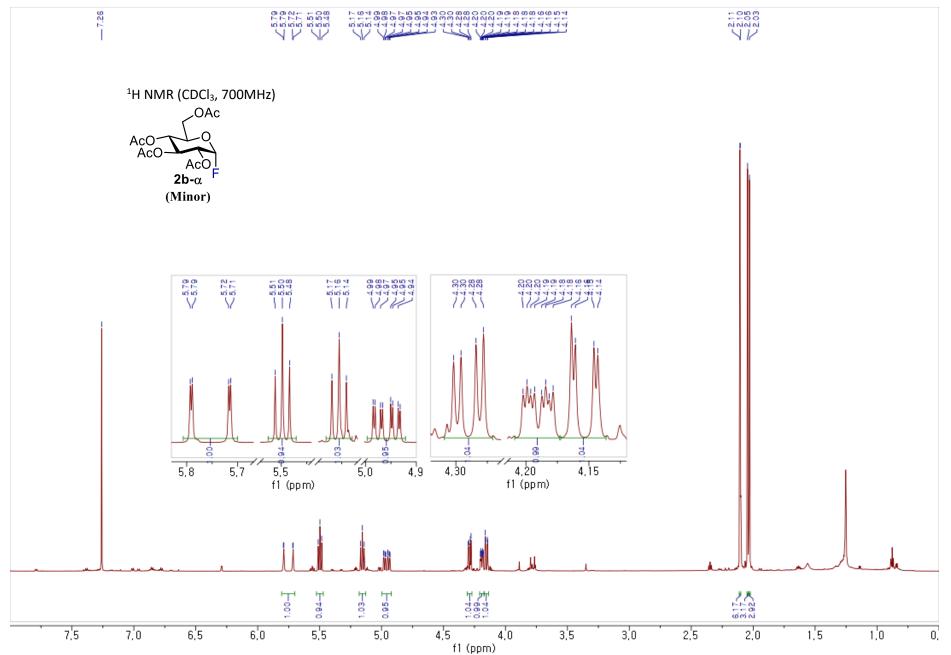

f1 (ppm)

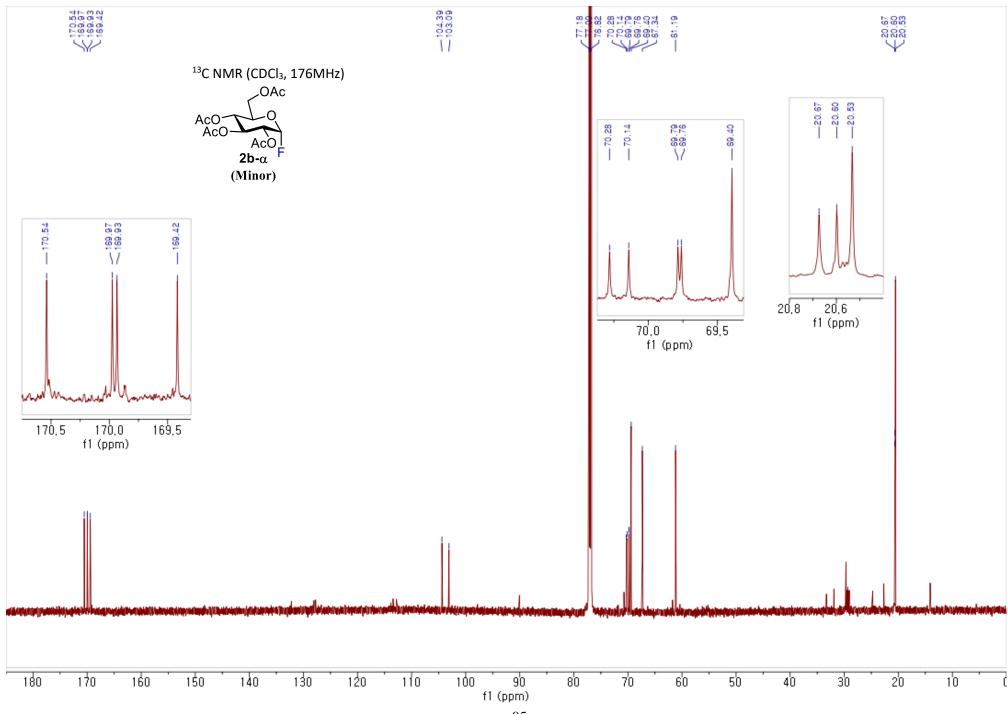

2,3,4,6-Tetra-*O*-acetyl-α-D-mannopyranosyl fluoride (2a-α, Major diastereomer)

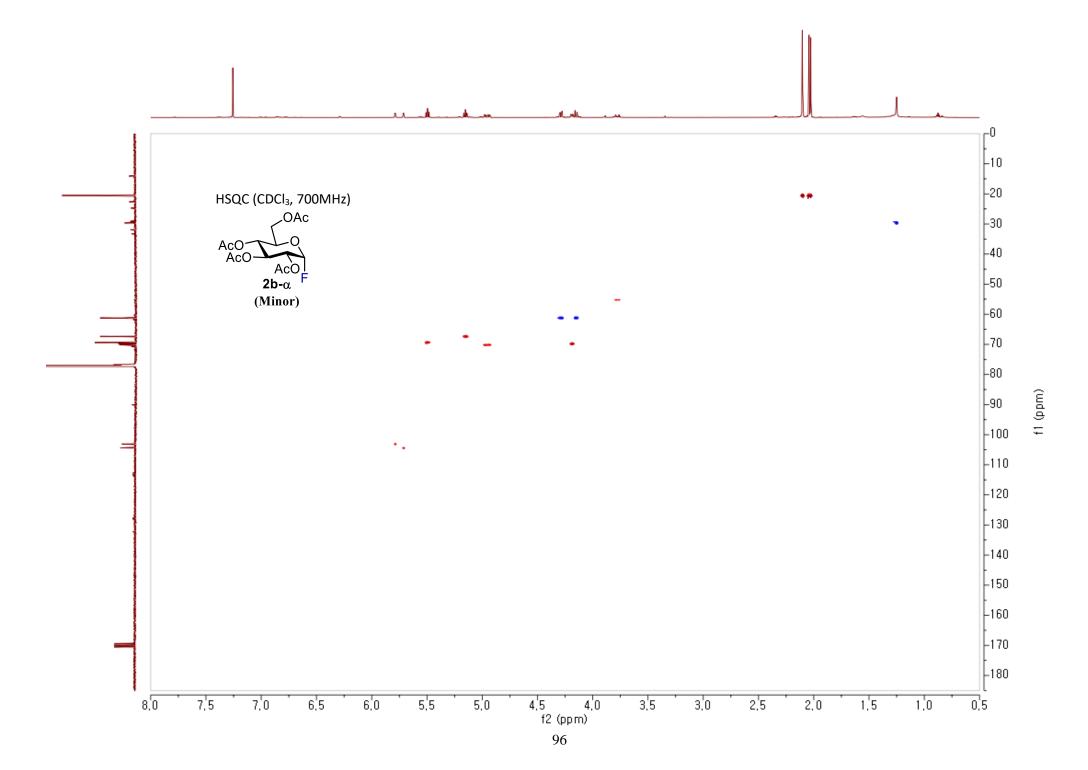




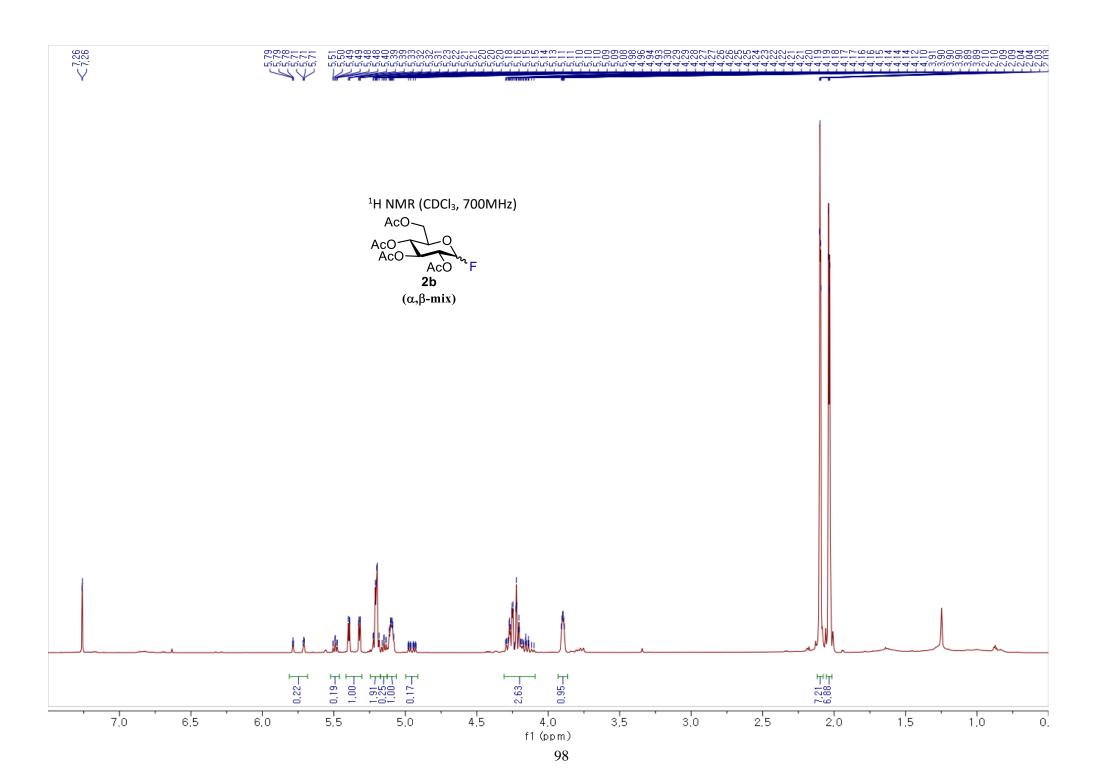

^{. .}

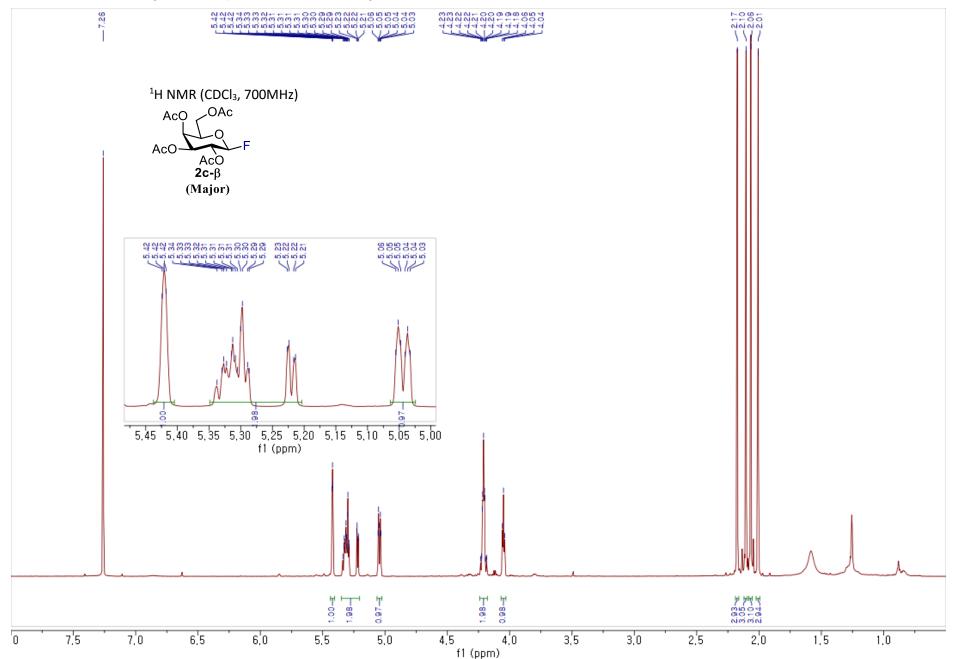

2,3,4,6-Tetra-*O*-acetyl-β-D-glucopyranosyl fluoride (2b-β, Major diastereomer)

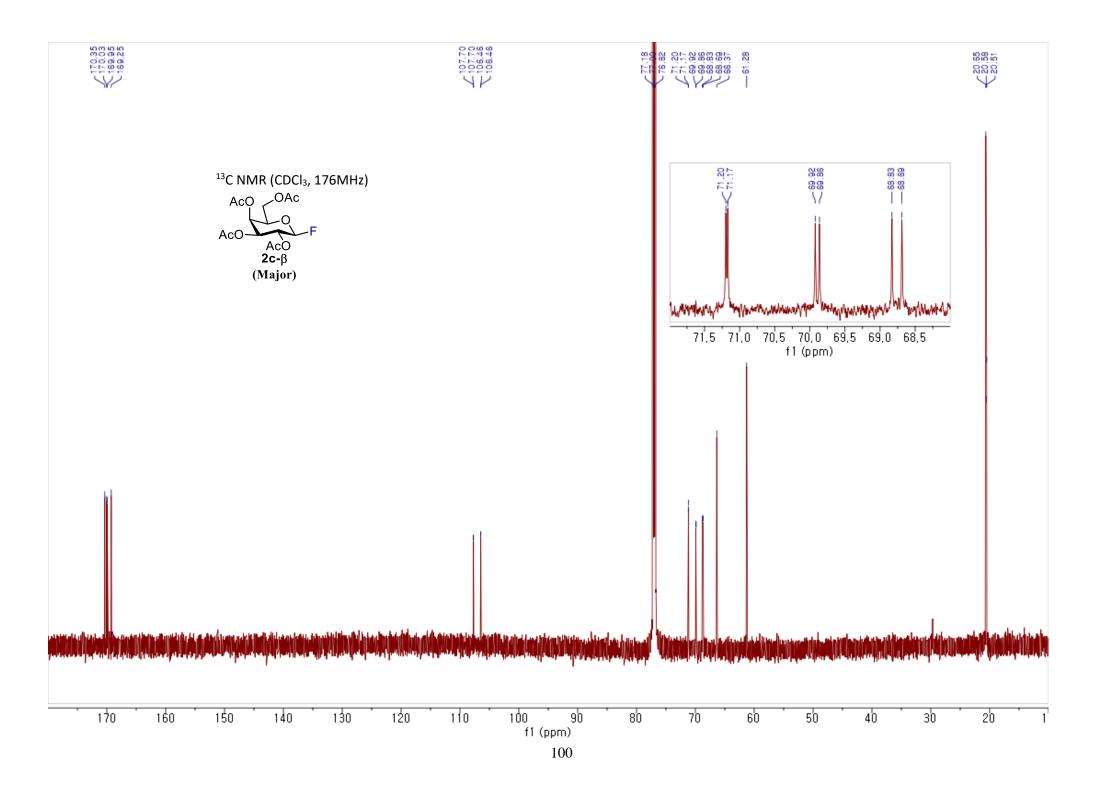


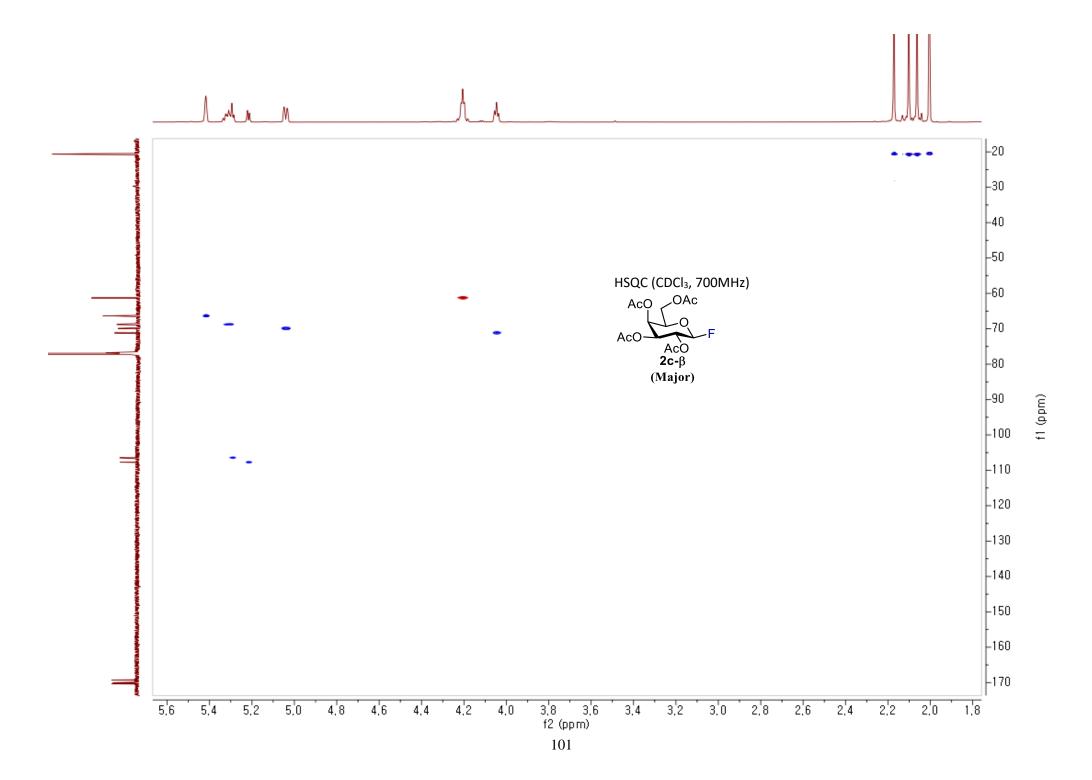


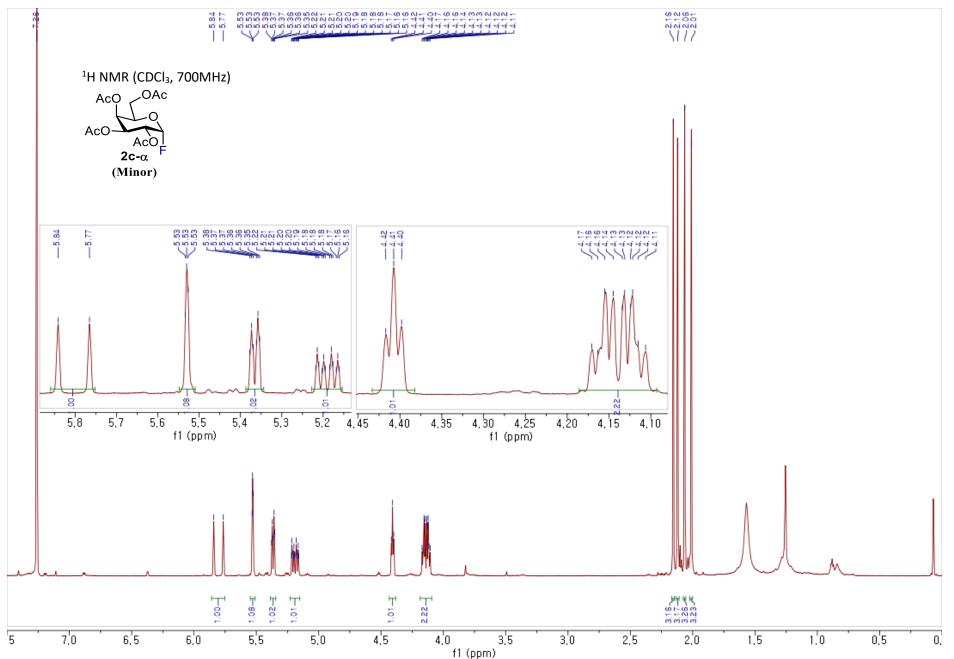


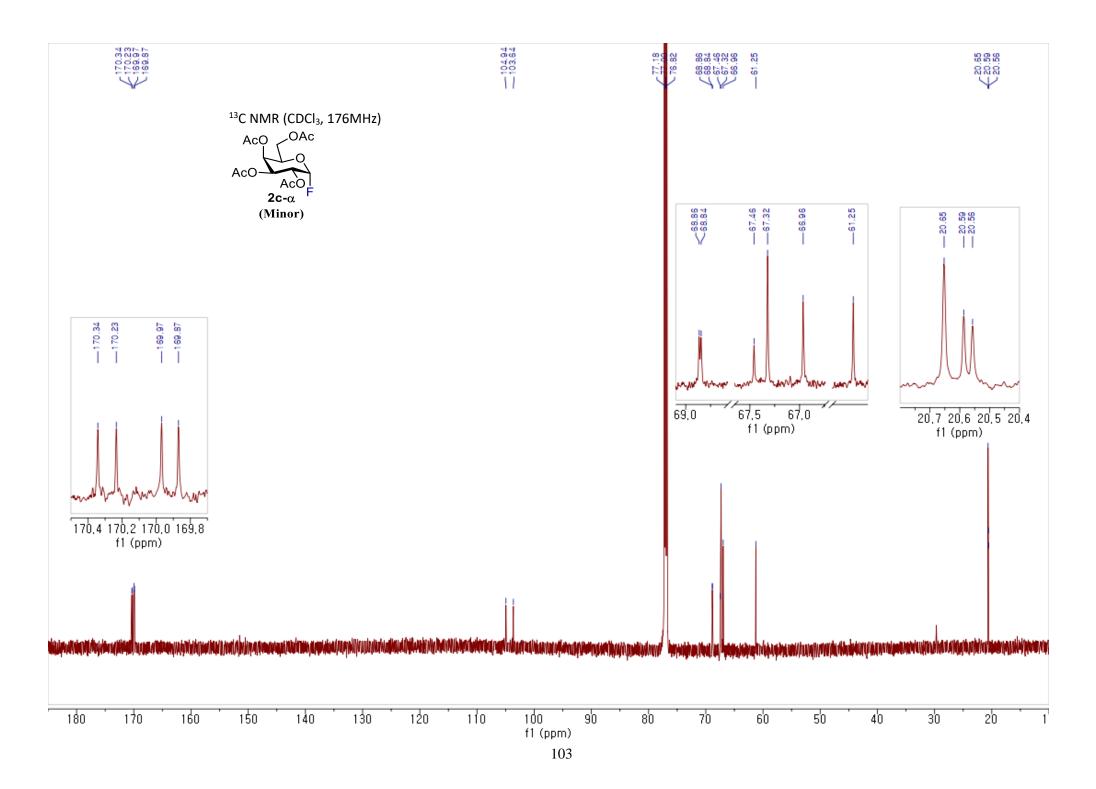

2,3,4,6-Tetra-*O*-acetyl-α-D-glucopyranosyl fluoride (2b-α, Minor diastereomer)

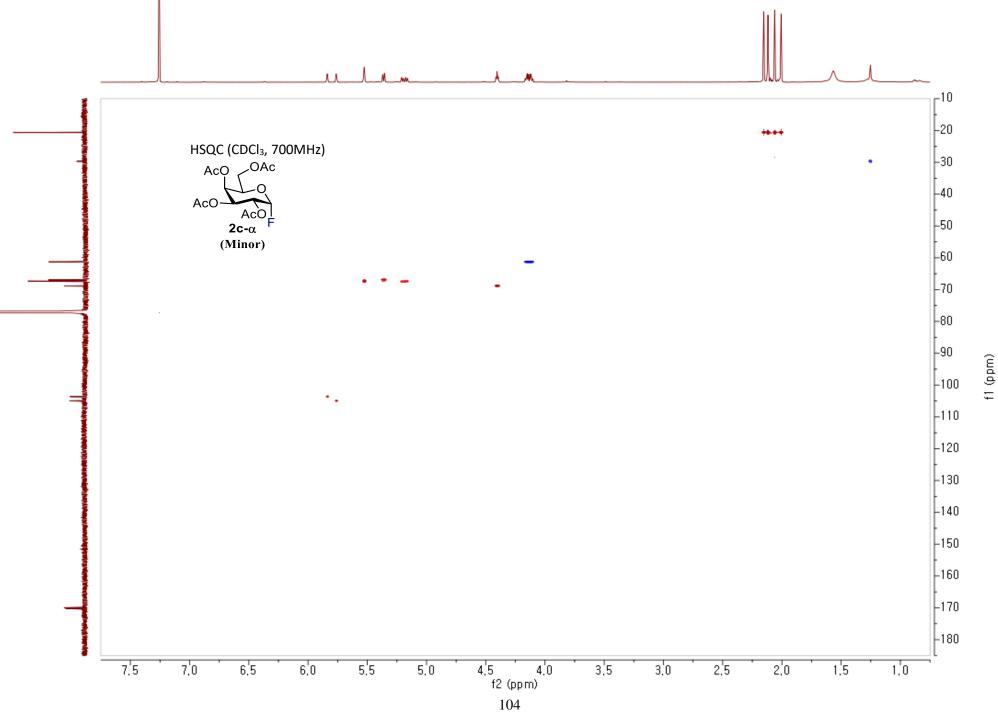


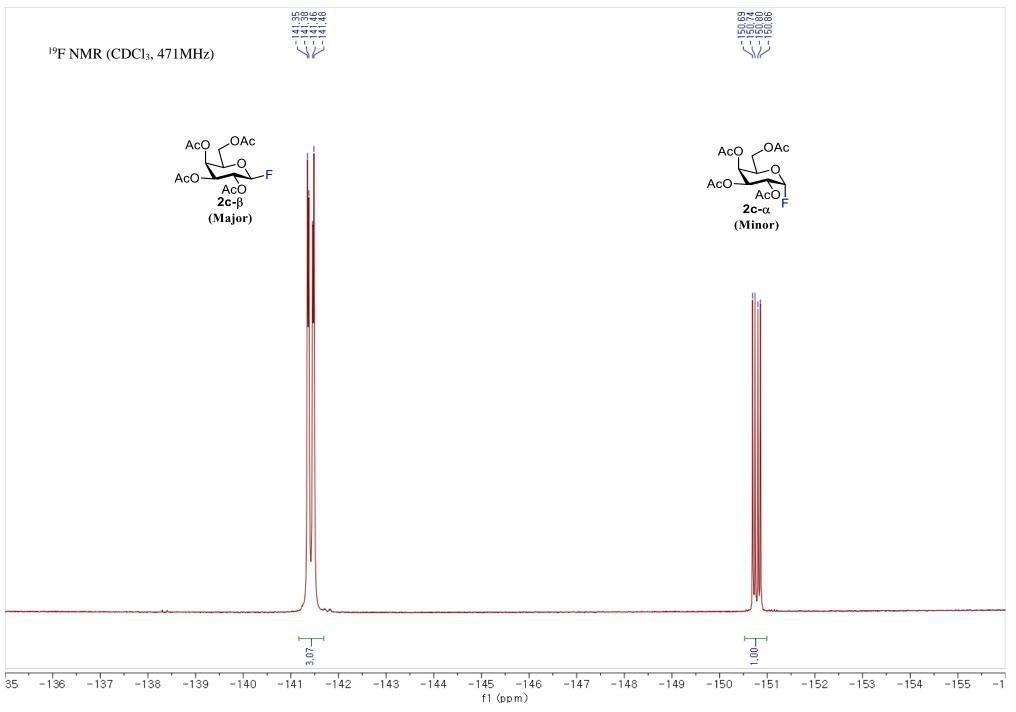


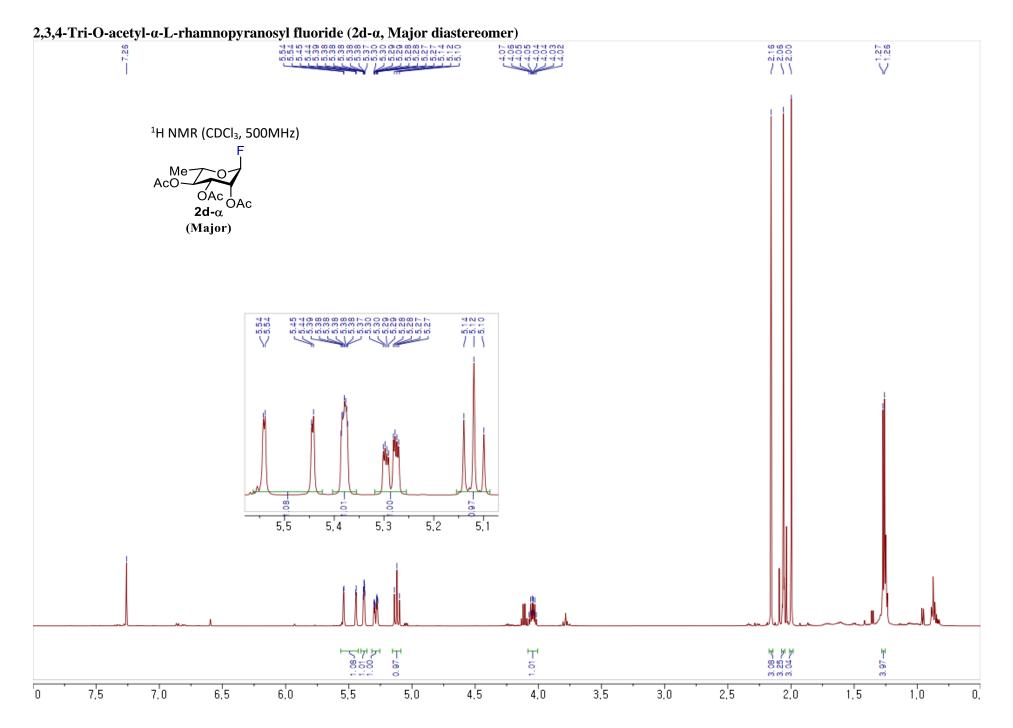


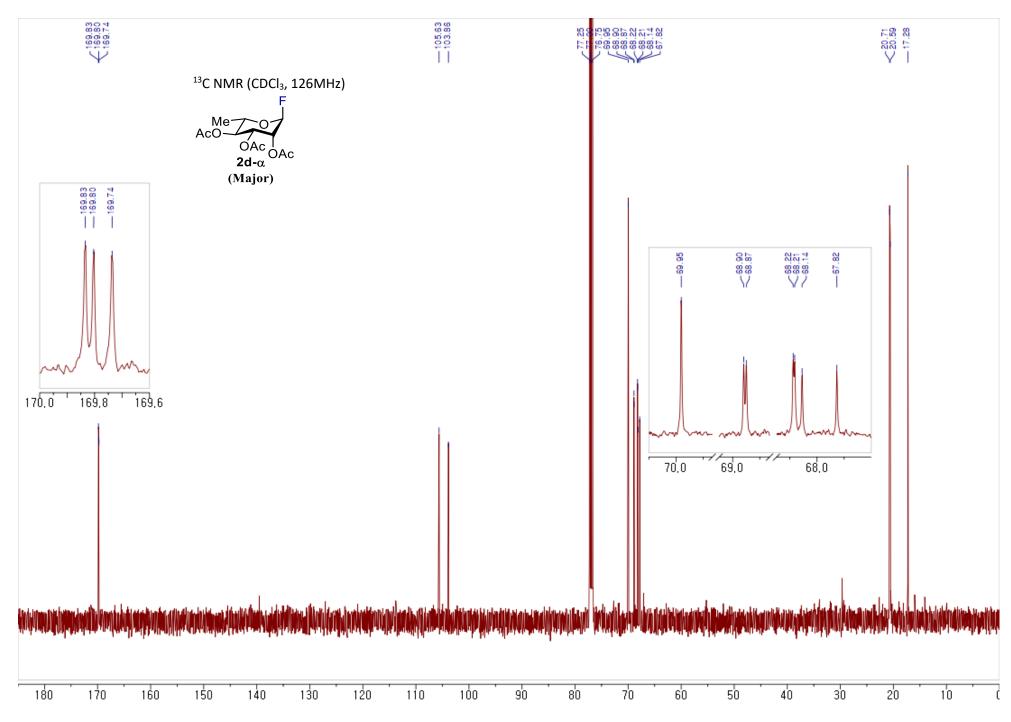


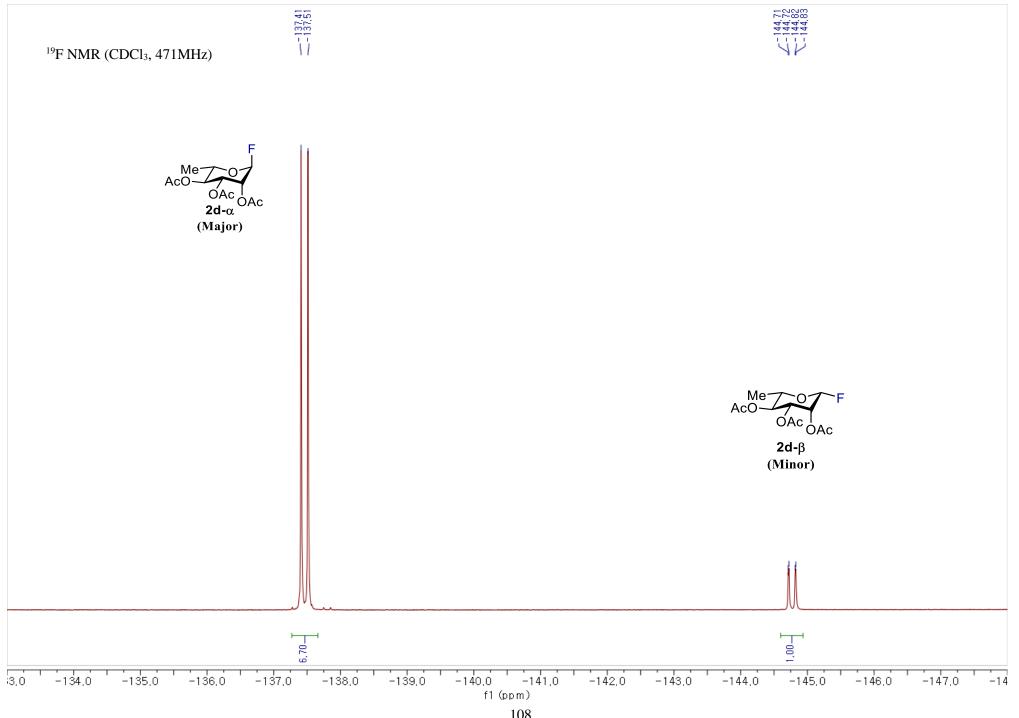

2,3,4,6-Tetra-*O*-acetyl-β-D-galactopyranosyl fluoride (2c-β, Major diastereomer)

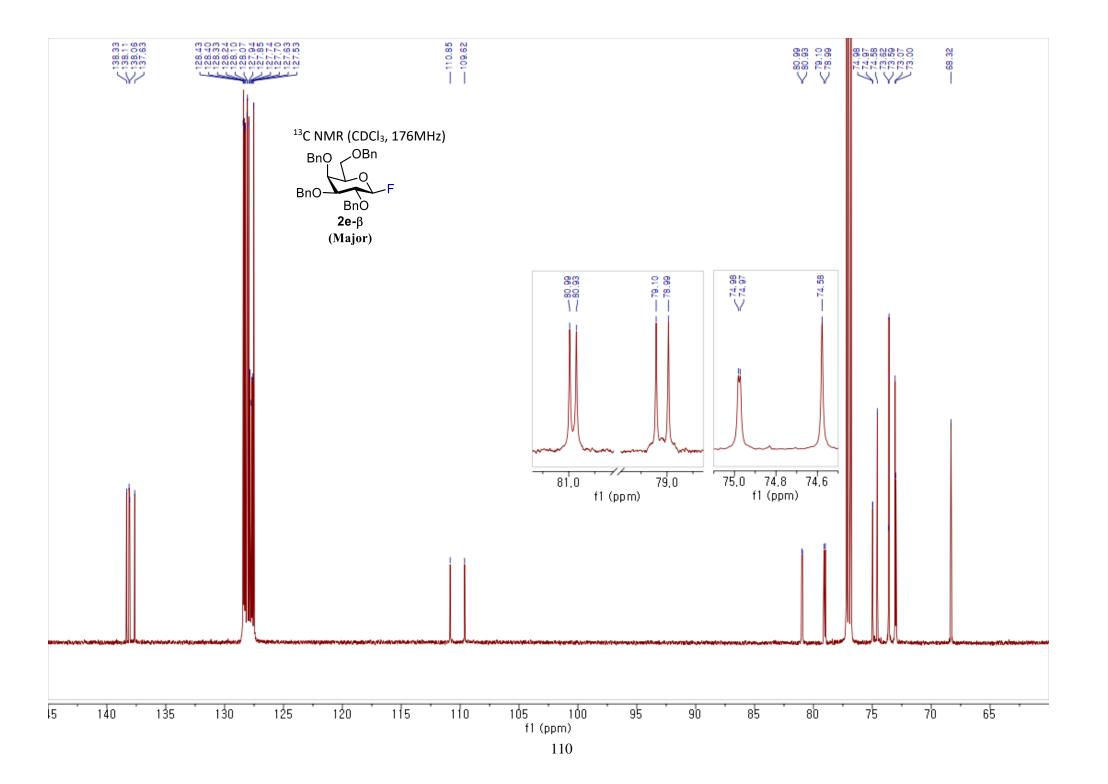


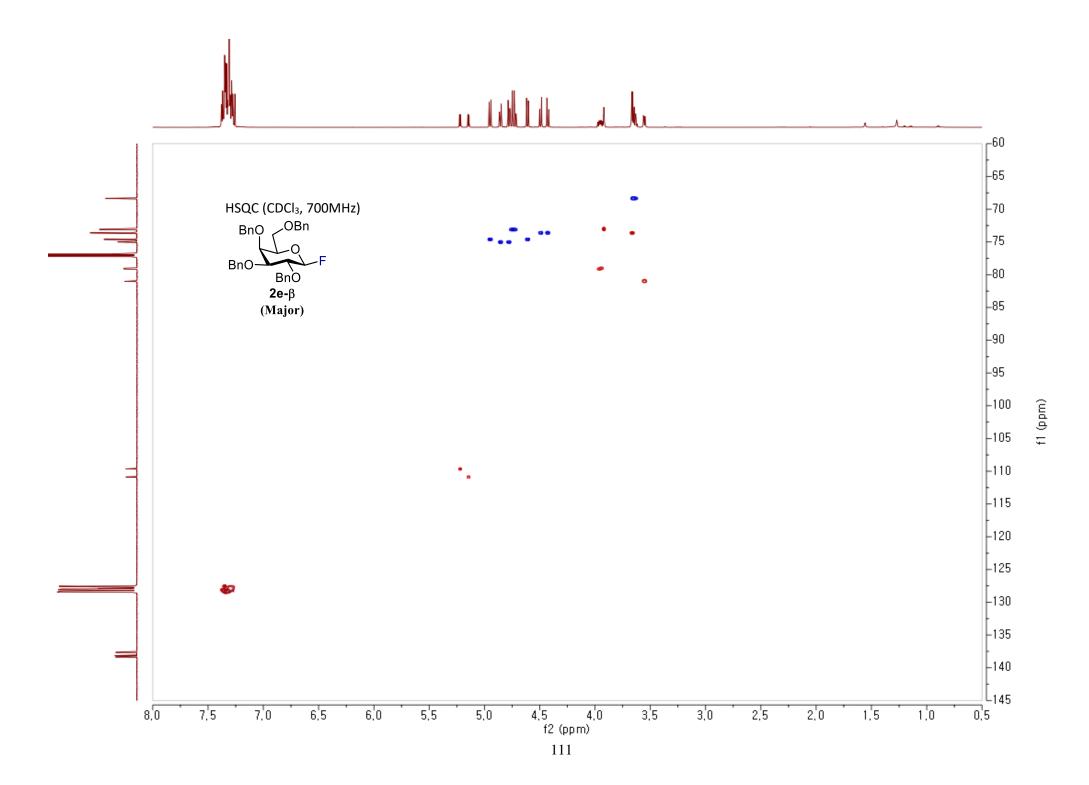




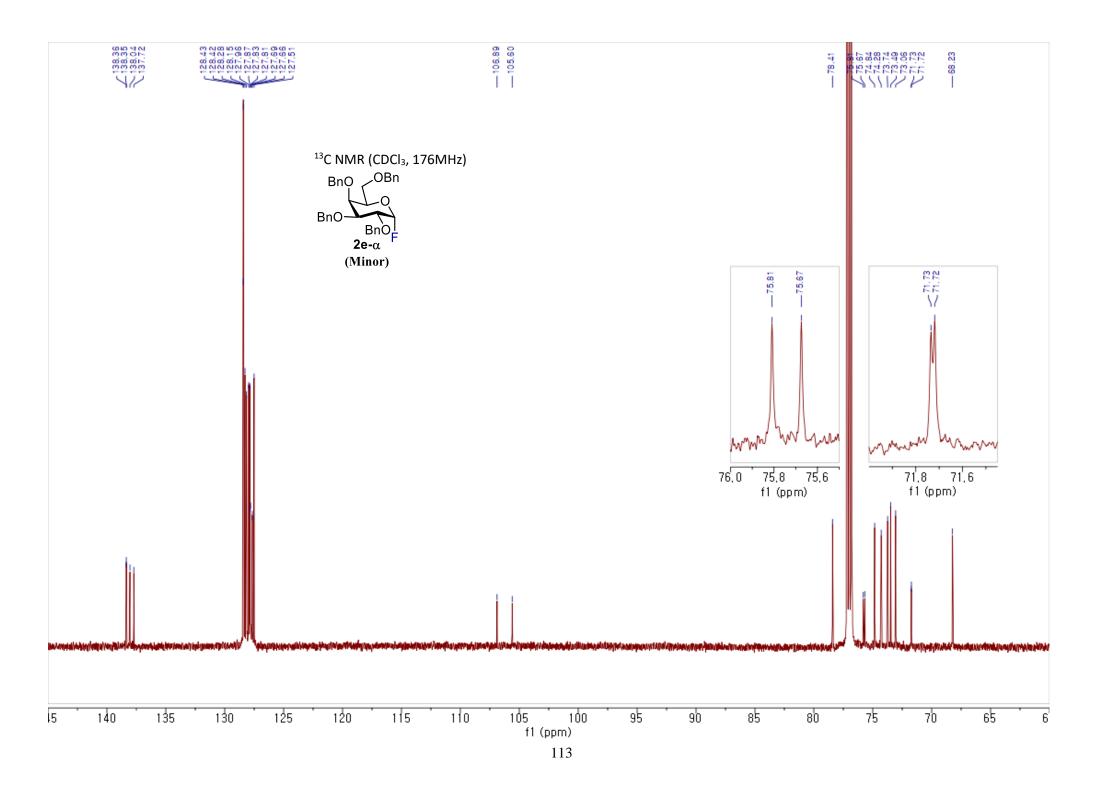

2,3,4,6-Tetra-*O*-acetyl-α-D-galactopyranosyl fluoride (2c-α, Minor diastereomer)

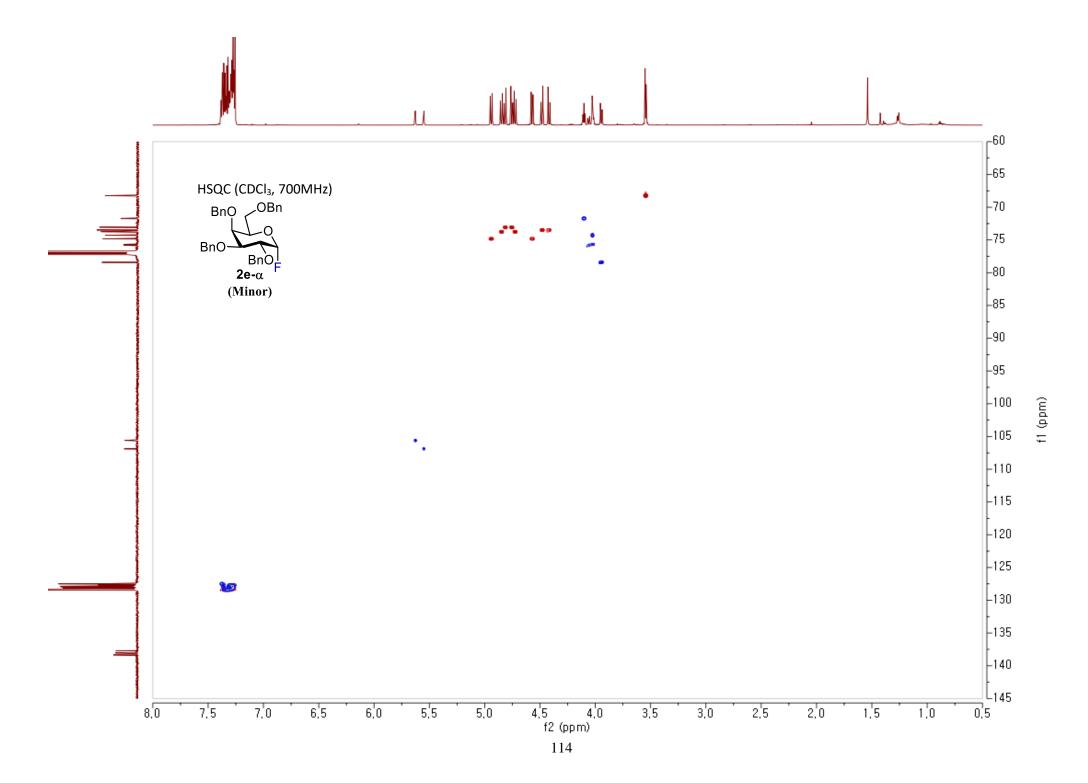


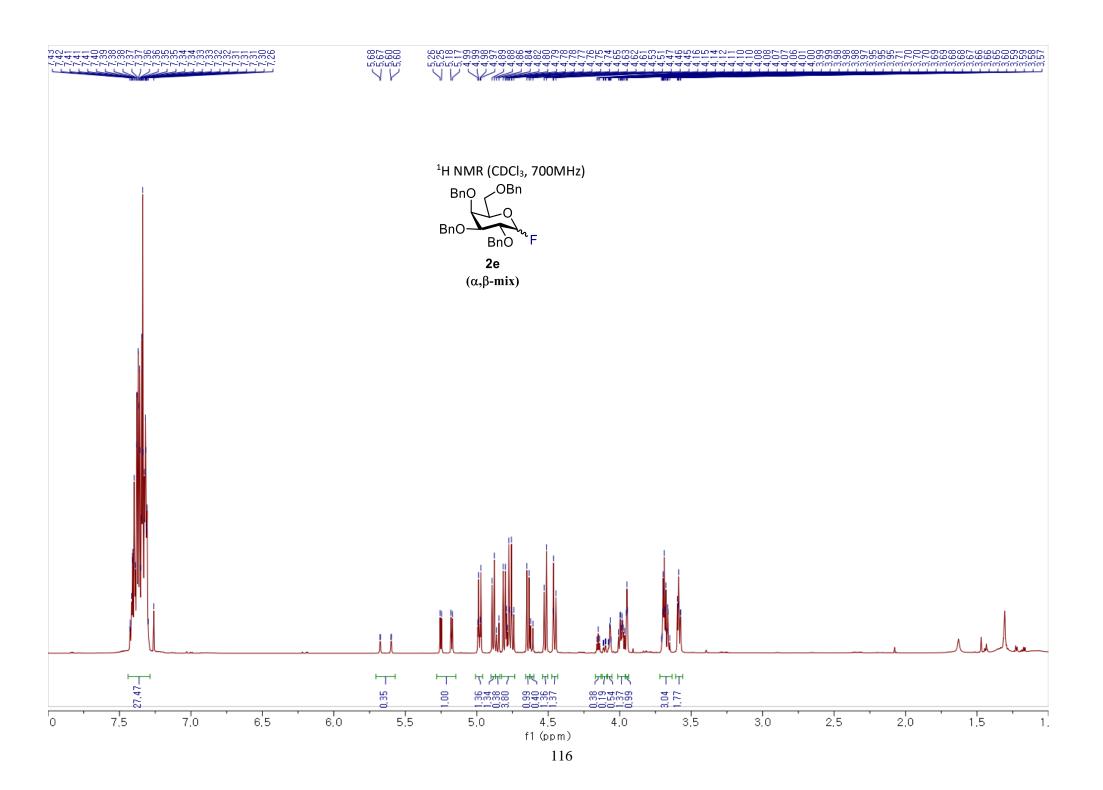


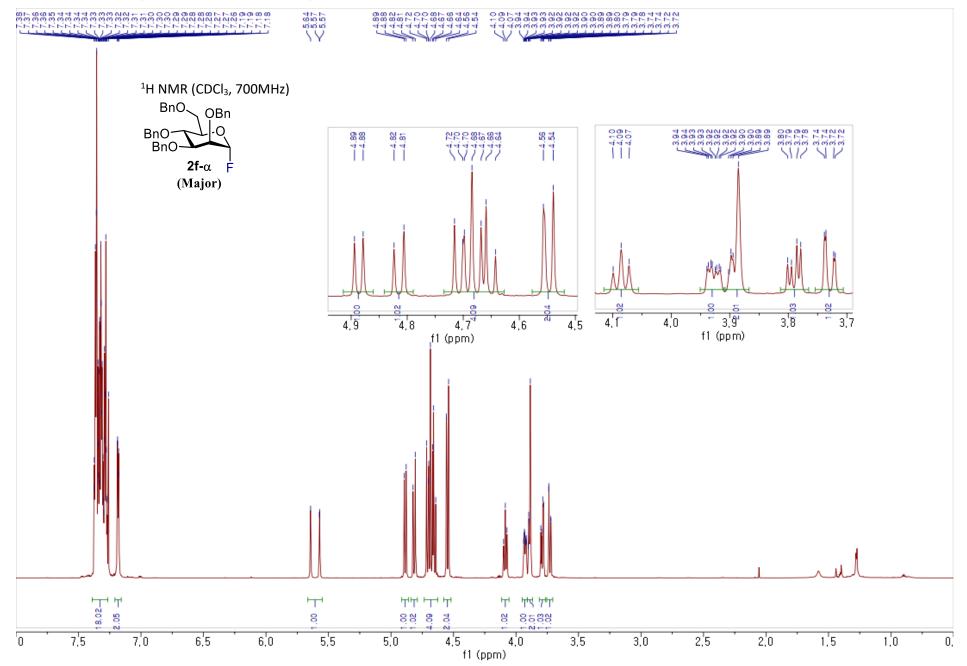


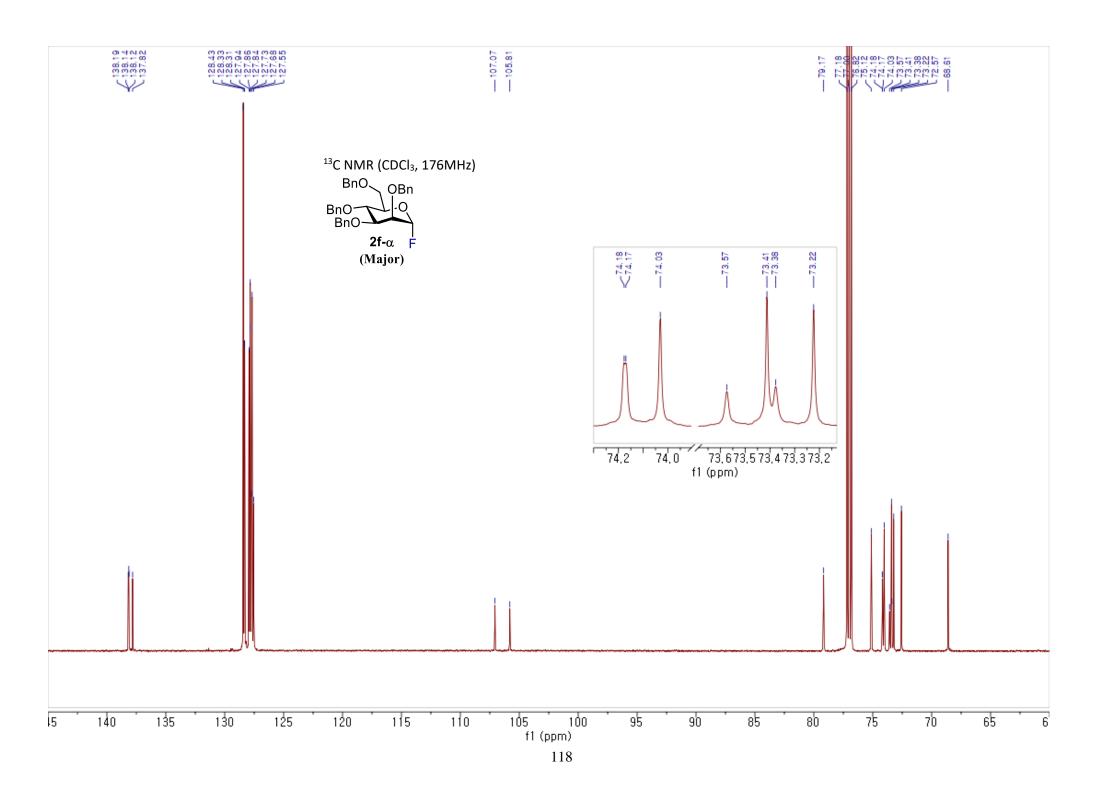
CONTRACTOR () CONTRAC VV VV ¹H NMR (CDCl₃, 700MHz) ,OBn BnO BnO BnÒ 82888888888888888 **2e-**β (Major) Ŵ 3,90 3,70 3,65 f1 (ppm) 3,95 3,55 4,00 3,60 3,50 *** ሣ ሥሥ Ч 575 9.36 Ч 8 883 228 8.0 83 o.i 7,5 6,0 7,0 6,5 5,5 4,0 3,5 3,0 2,5 2,0 1,5 5,0 4,5 1,0 0 0, f1 (ppm)

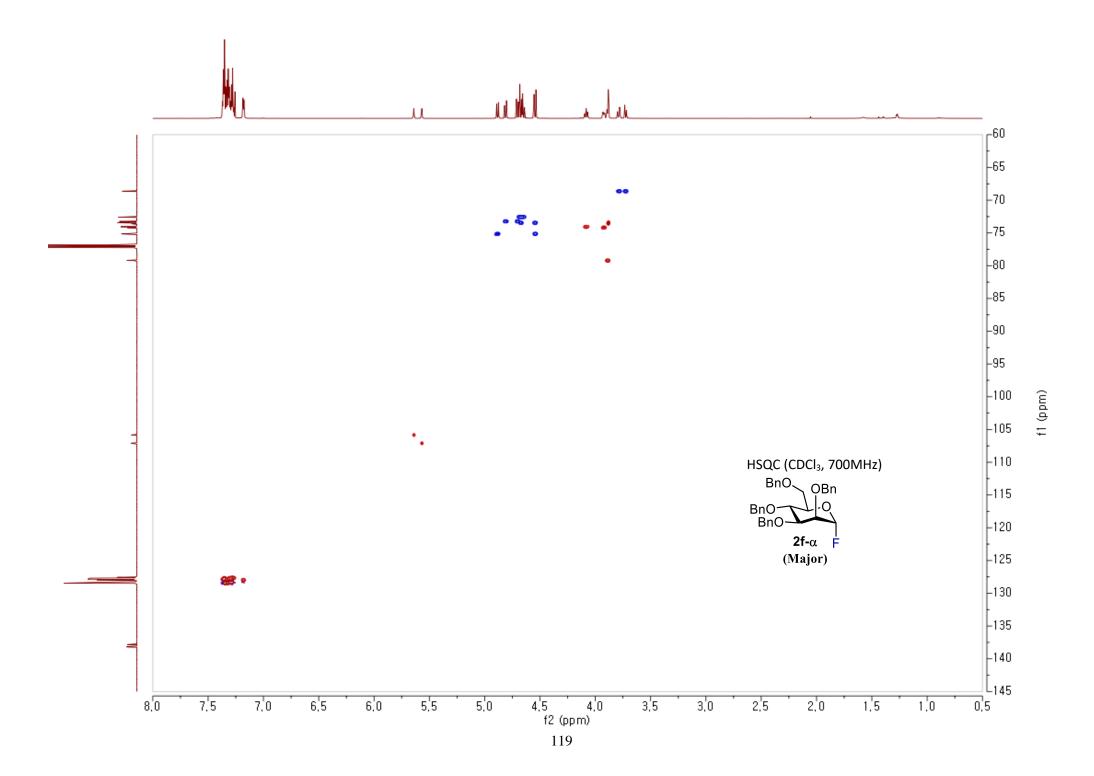

2,3,4,6-Tetrakis-*O*-(phenylmethyl)-β-D-galactopyranosyl fluoride (2e-β, Major diastereomer)

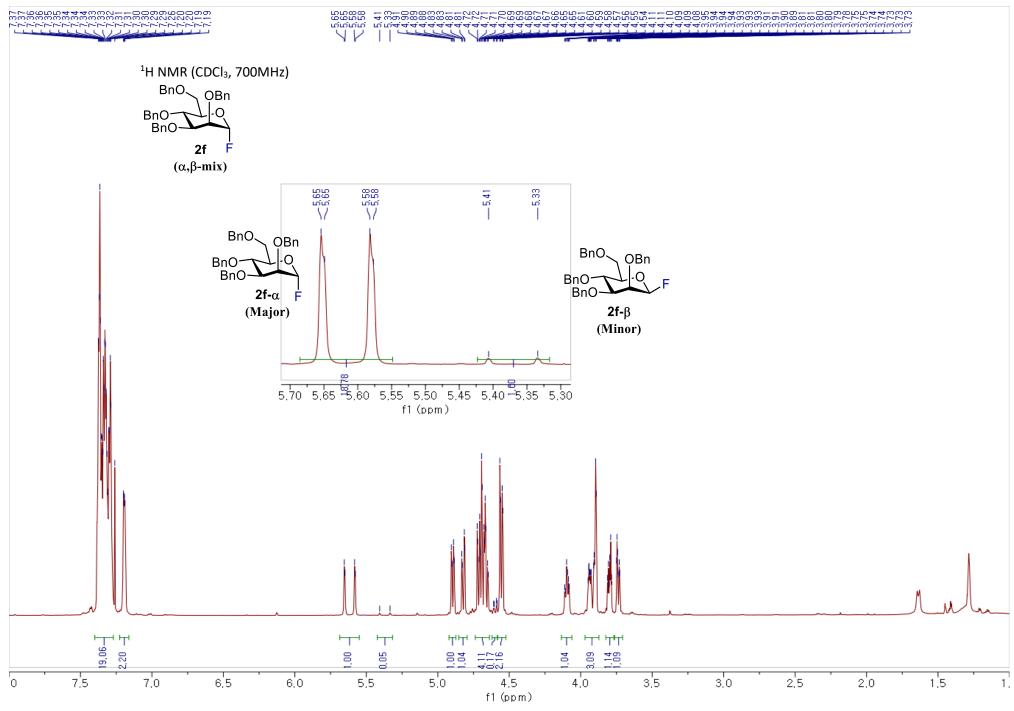



¹H NMR (CDCl₃, 700MHz) ∠OBn BnO BnO BnÖ **2e-**α 55558 77 \7 95556 (Minor) 111 1717 8 8 4,15 4,10 4,05 4,00 3,95 3,90 f1 (ppm) Ļ ペヤヤ ተ ታታ *** ተ 4 2.09 8 968 ទទទ 888 ä 0.01 7,5 6,5 5,5 3,5 3,0 7,0 4,0 2,5 2,0 1,5 6,0 5,0 4,5 1,0 0, f1 (ppm)

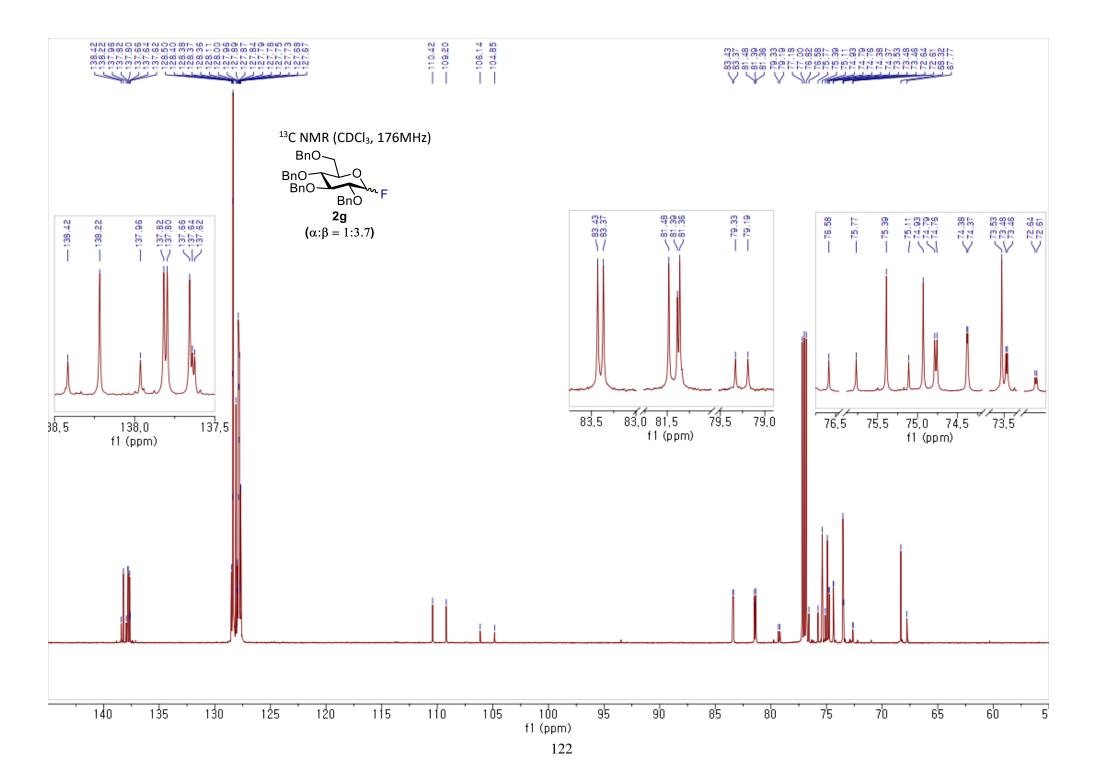

2,3,4,6-Tetrakis-*O*-(phenylmethyl)-α-D-galactopyranosyl fluoride (2e-α, Minor diastereomer)

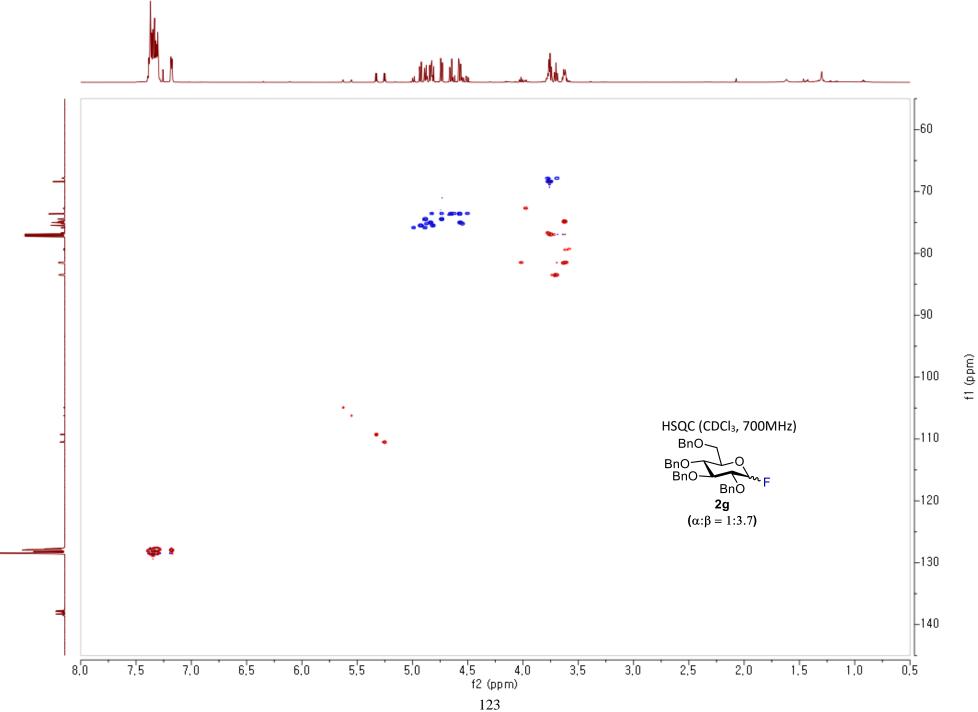


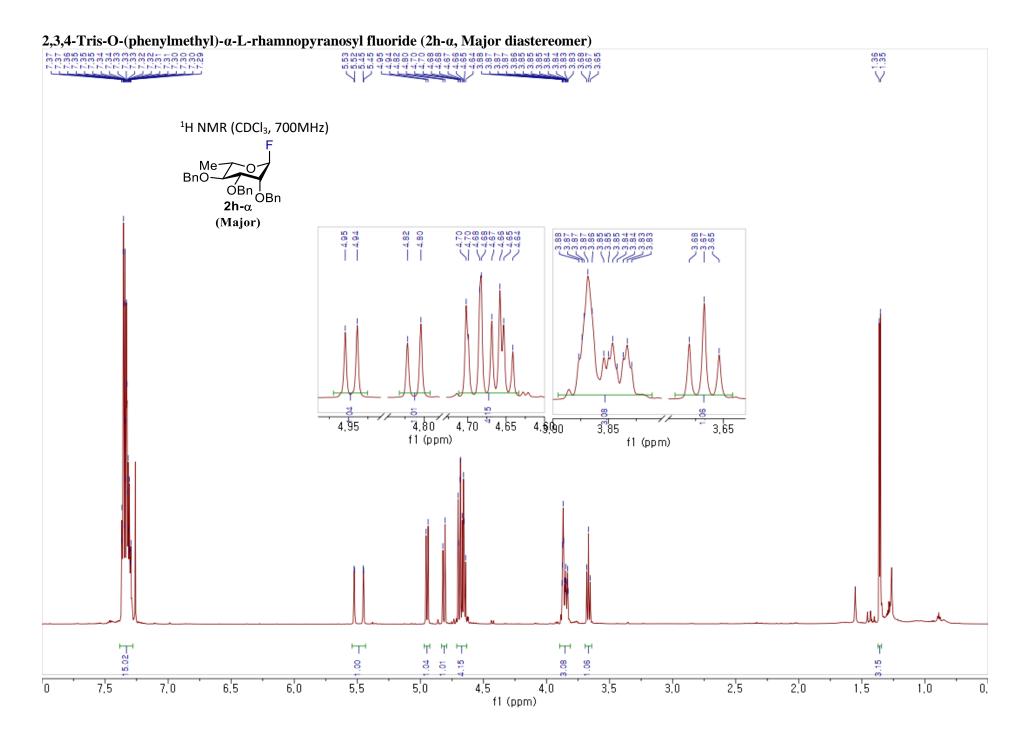




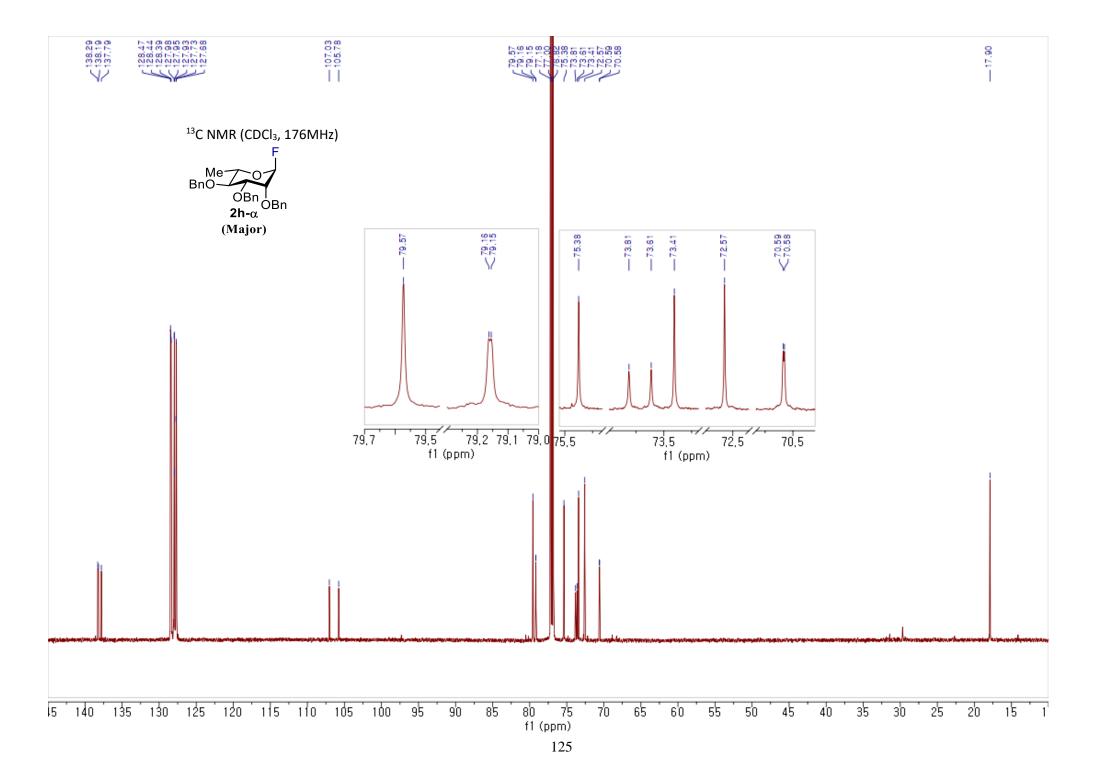
2,3,4,6-Tetrakis-*O*-(phenylmethyl)-α-D-Mannopyranosyl fluoride (2f-α, Major diastereomer)

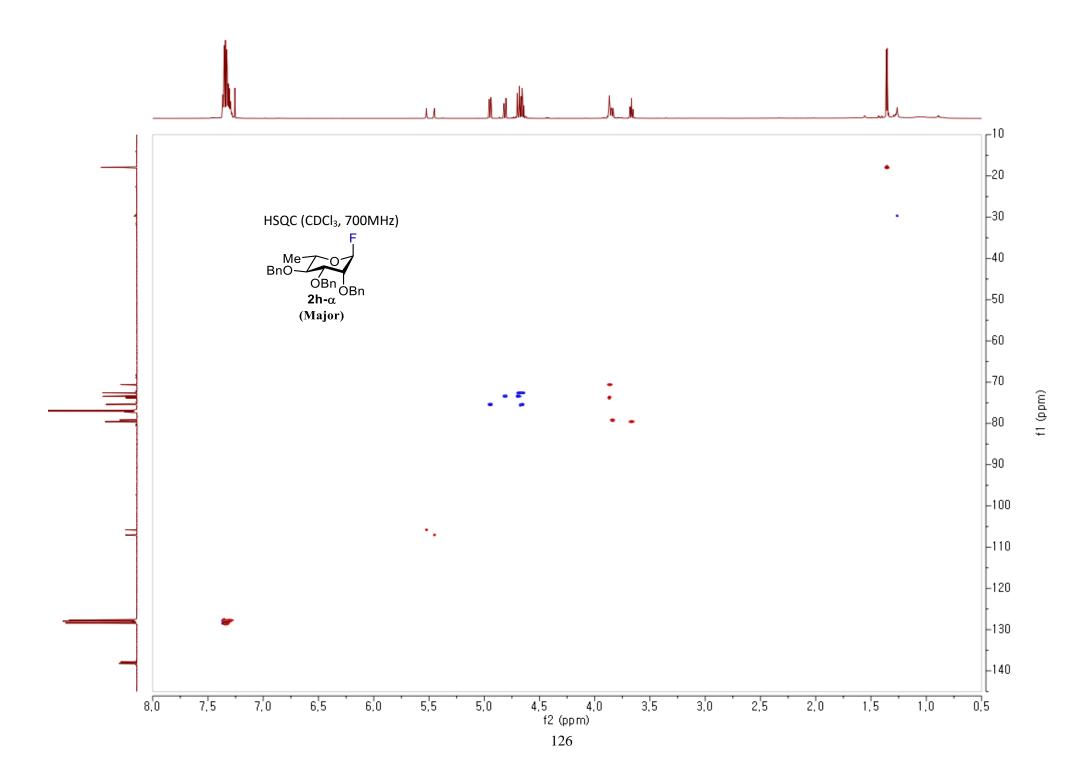


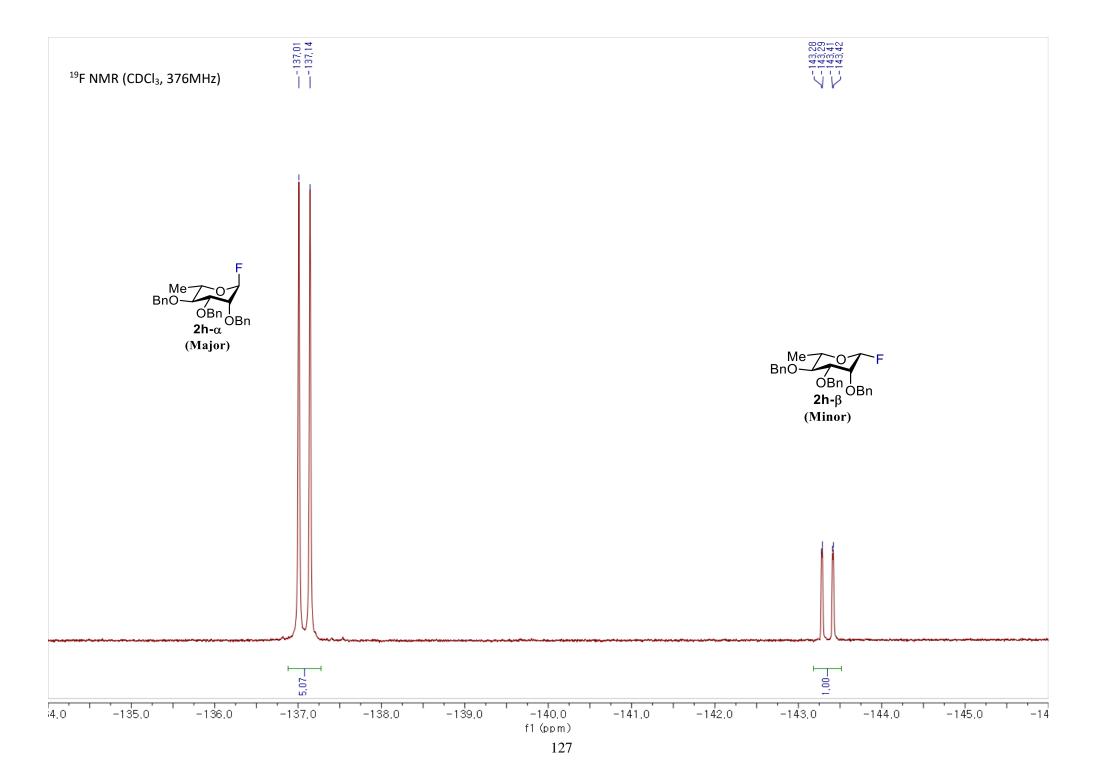


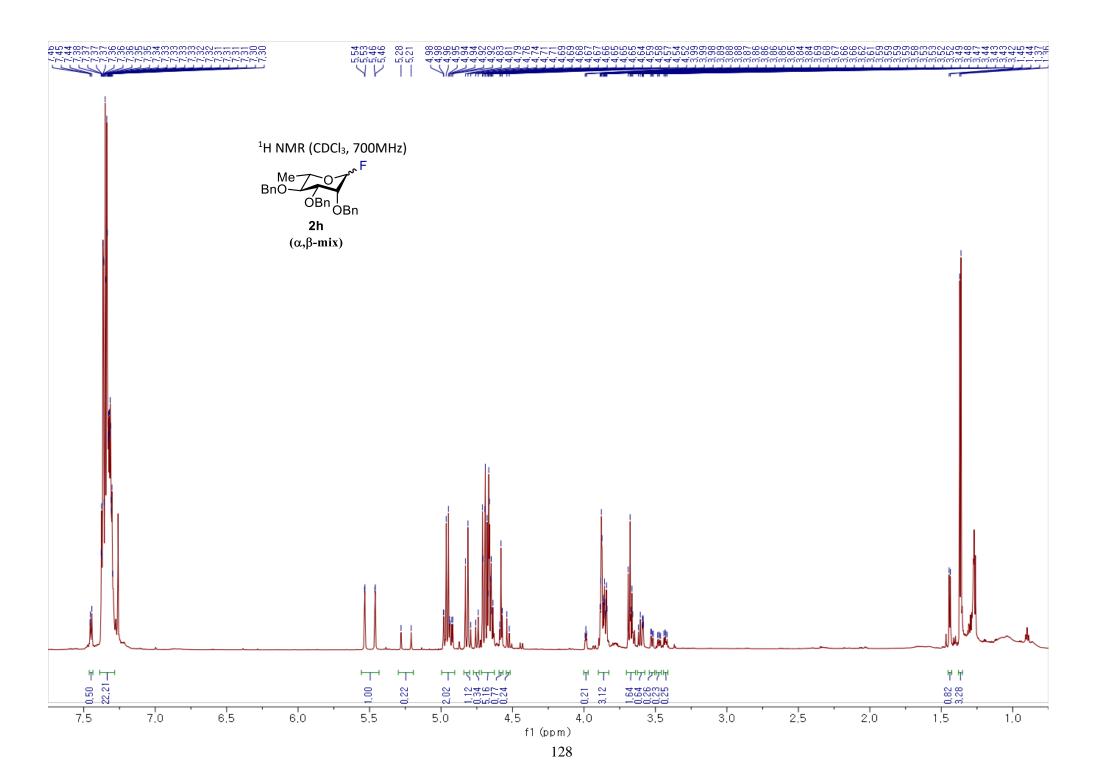


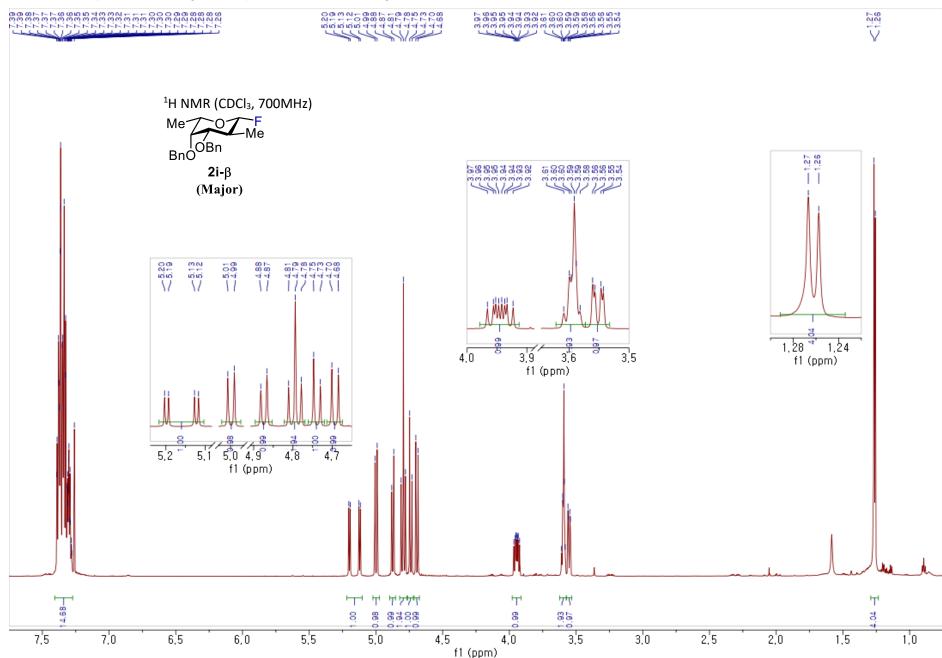
2,3,4,6-Tetrakis-*O*-(**phenylmethyl**)-**D**-glucopyranosyl fluoride (2g, Isolated as α : β = 1 : 3.7) ¹H NMR (CDCl₃, 700MHz) BnO-4446.000 892888899 BnO-BnOνF BnÒ 2g $(\alpha:\beta = 1:3.7)$ 5.26 38 88 8 8 a - 4,6 ŝ ເດເດ × 4.8 11 11 7.96 0-35 5.0 Ę. 3,60 4.7 ⁷³,75 3,70 4,9 3,80 3,65 f1 (ppm) f1 (ppm) 5,65 5,60 5,55 5,35 5,30 5,25 f1 (ppm) APPLE REPORT 74 500 ۲ ч 4 24.20-3.93 8 8 88 2 0---0-00 00 7,5 7,0 6,5 4,5 2,5 2,0 1,5 5,5 5,0 3,0 1,0 6,0 4,0 3,5 0,

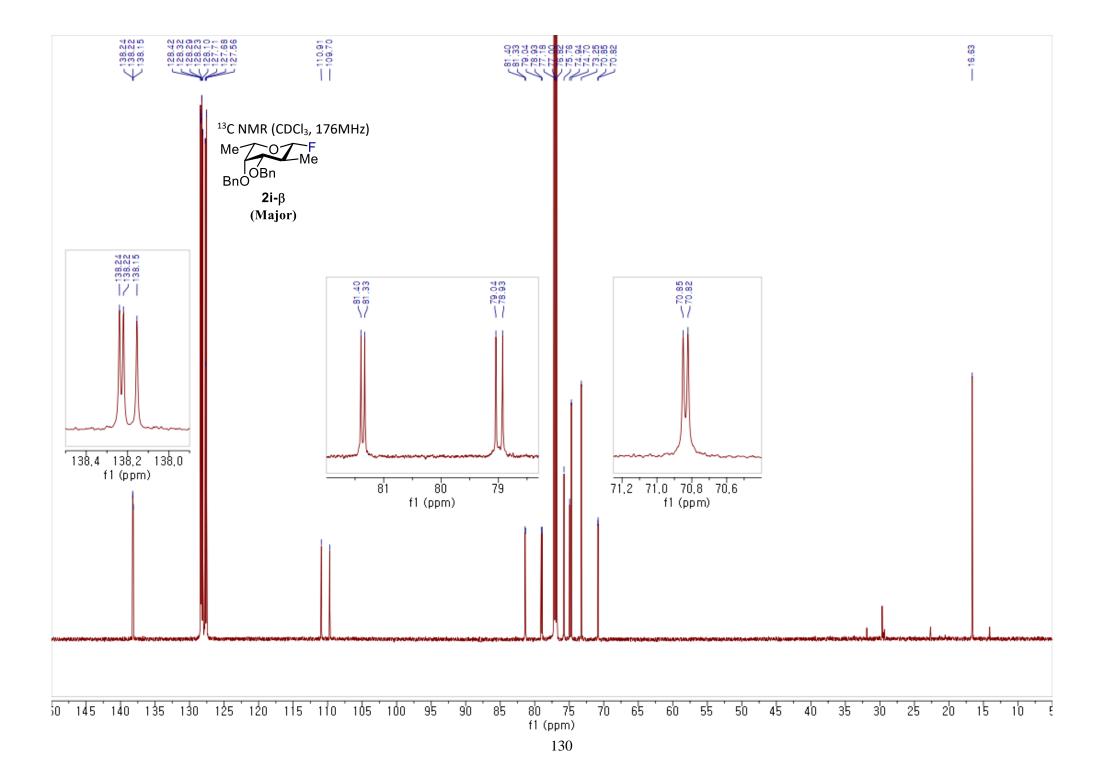

f1 (ppm)

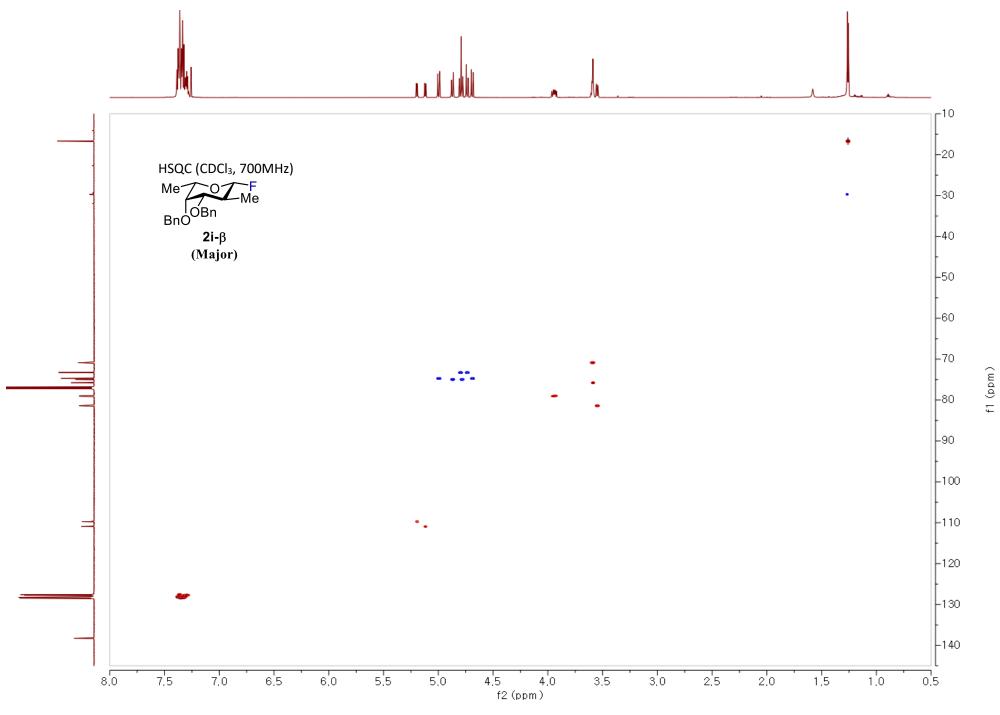


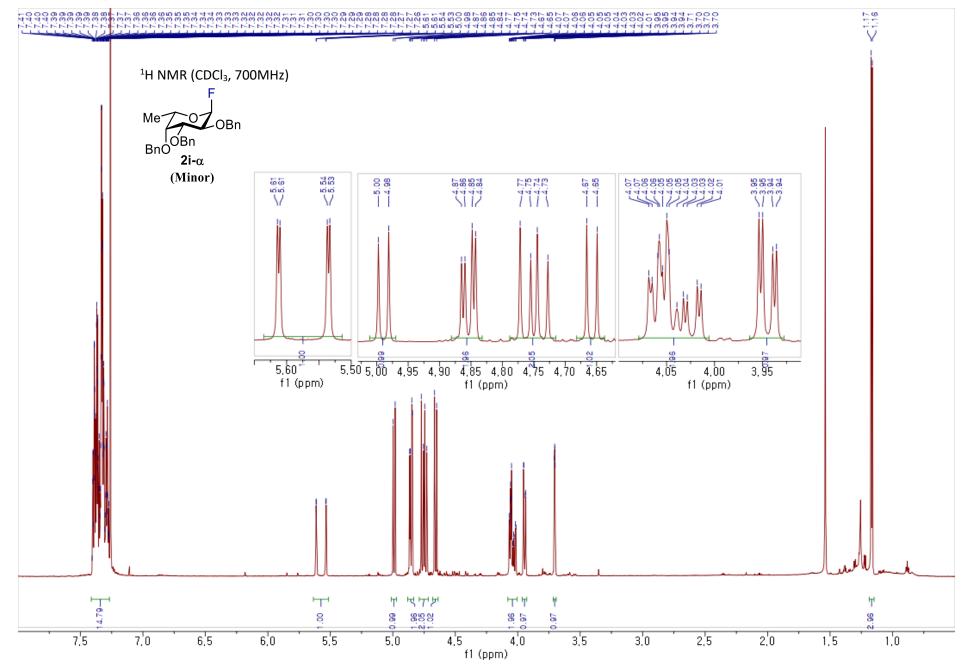


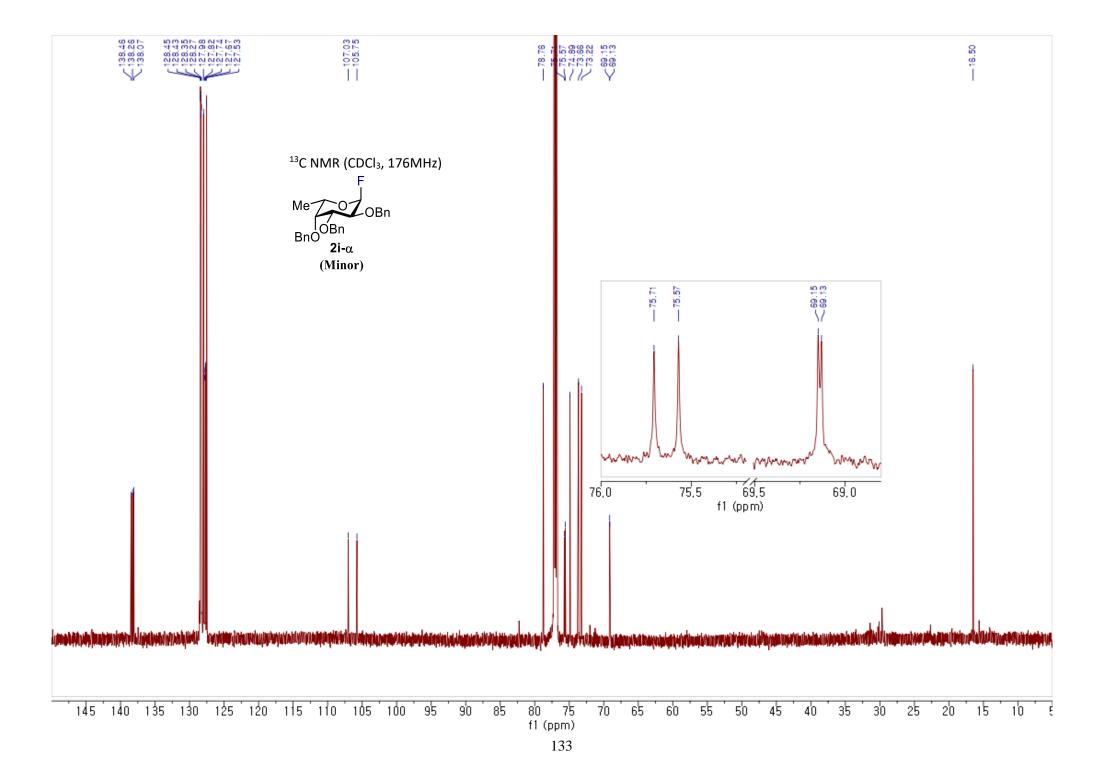


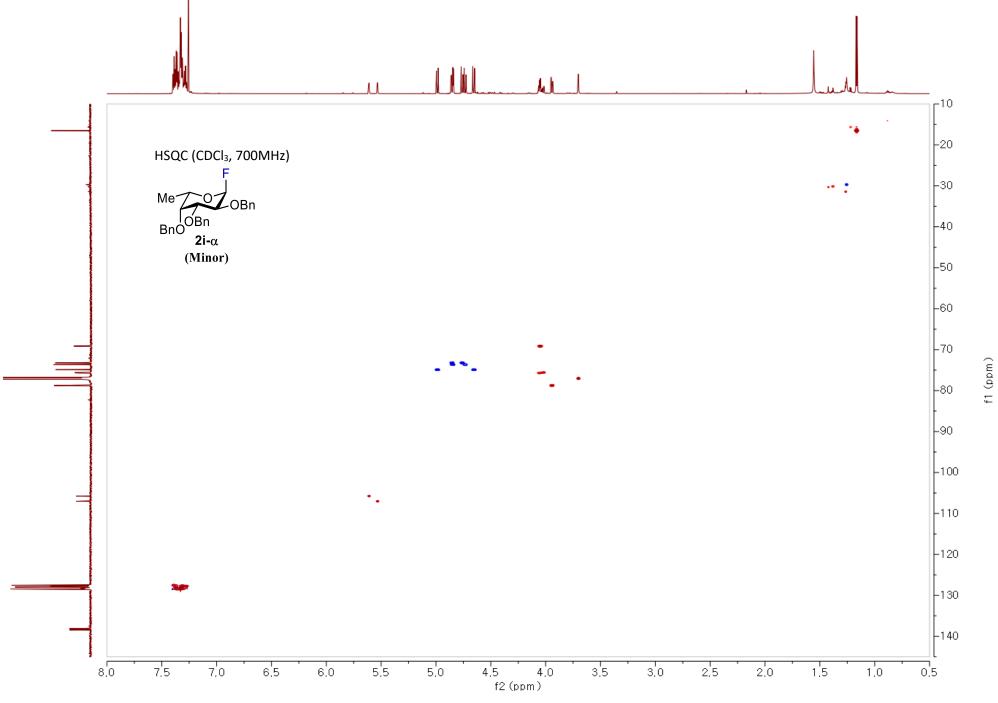


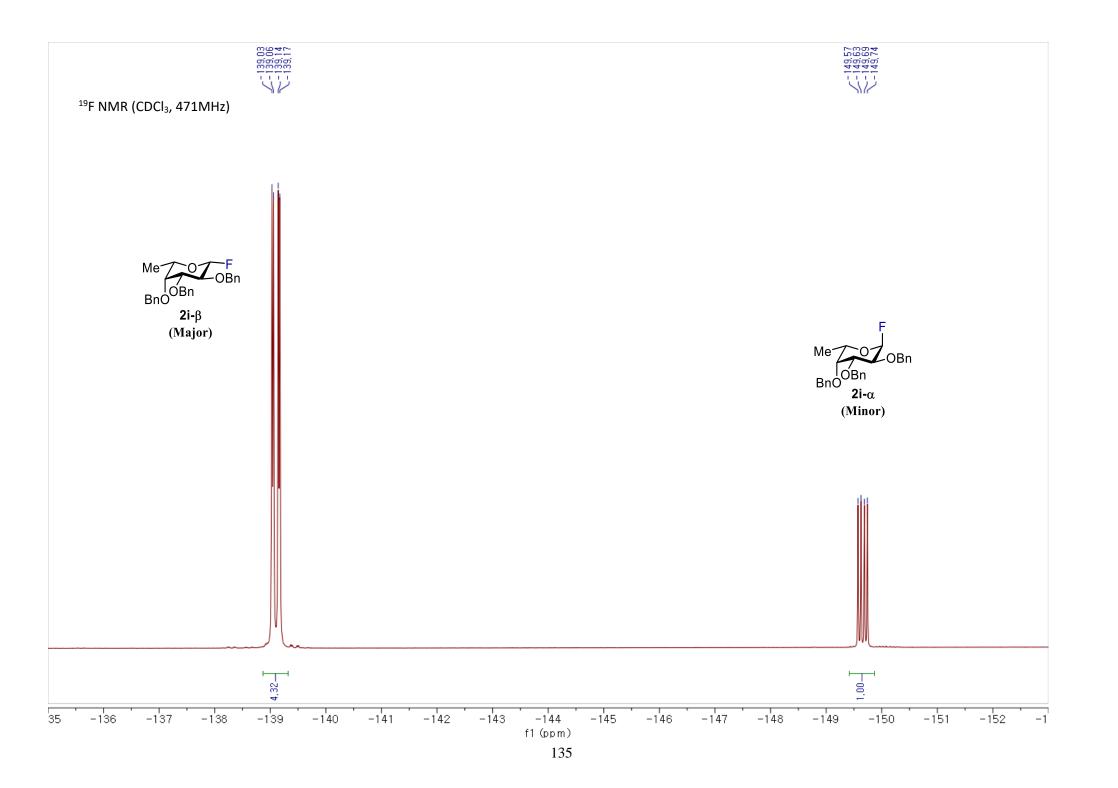


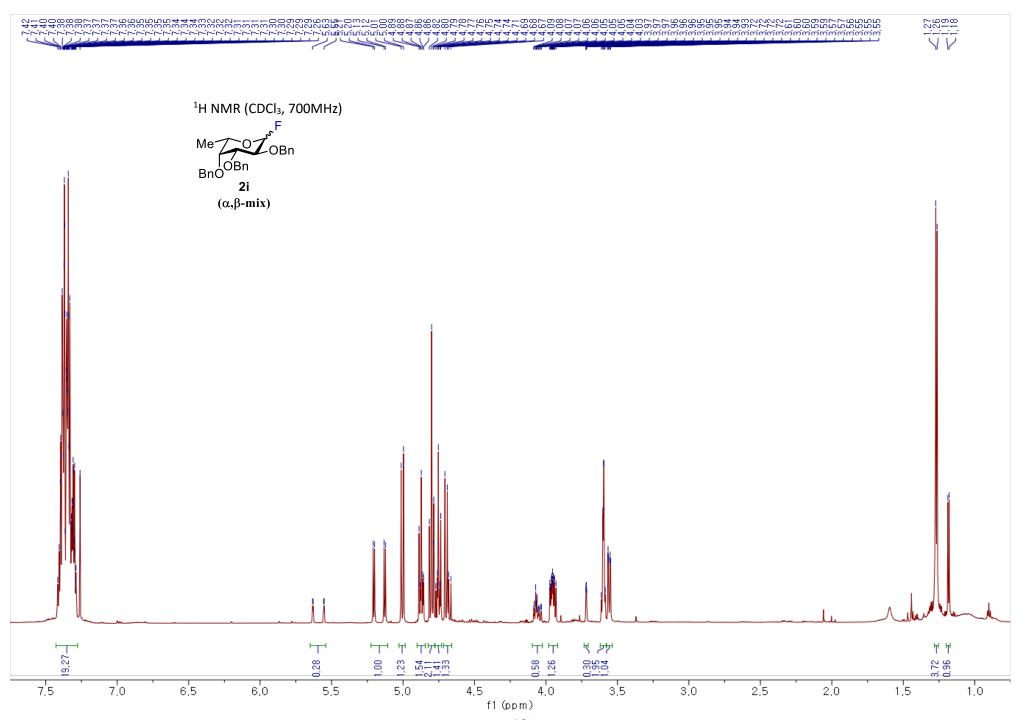


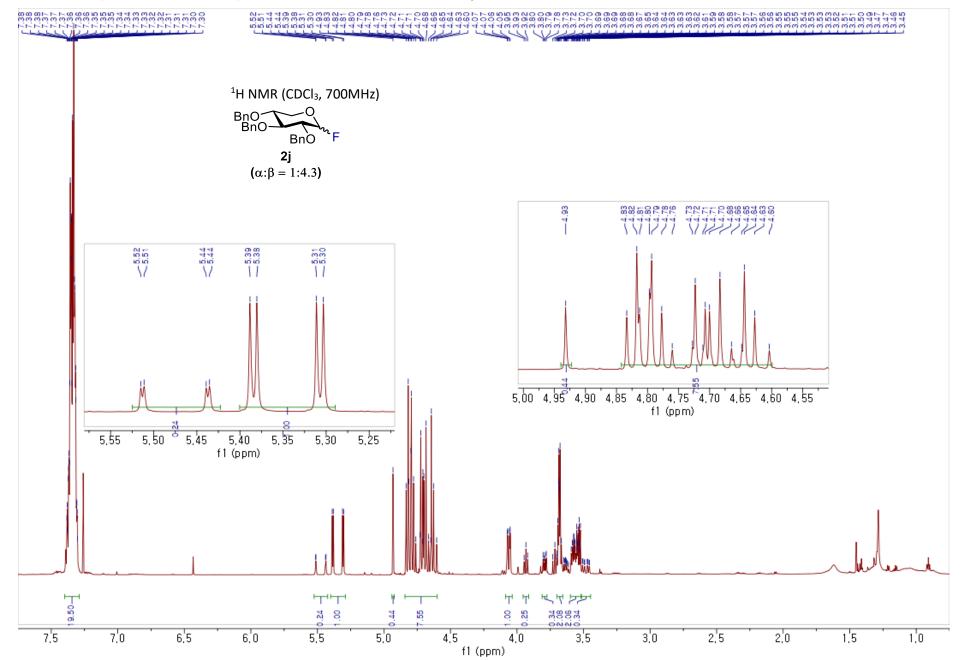


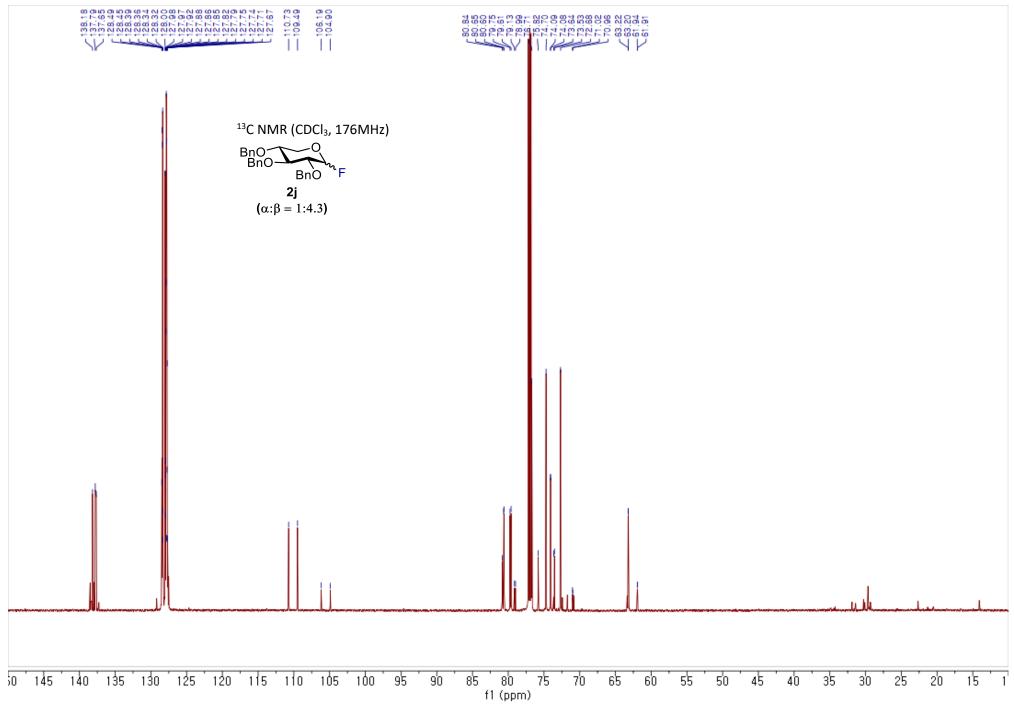

2,3,4-Tris-O-(phenylmethyl)-β-L-fucopyranosyl fluoride (2i-β, Major diastereomer)

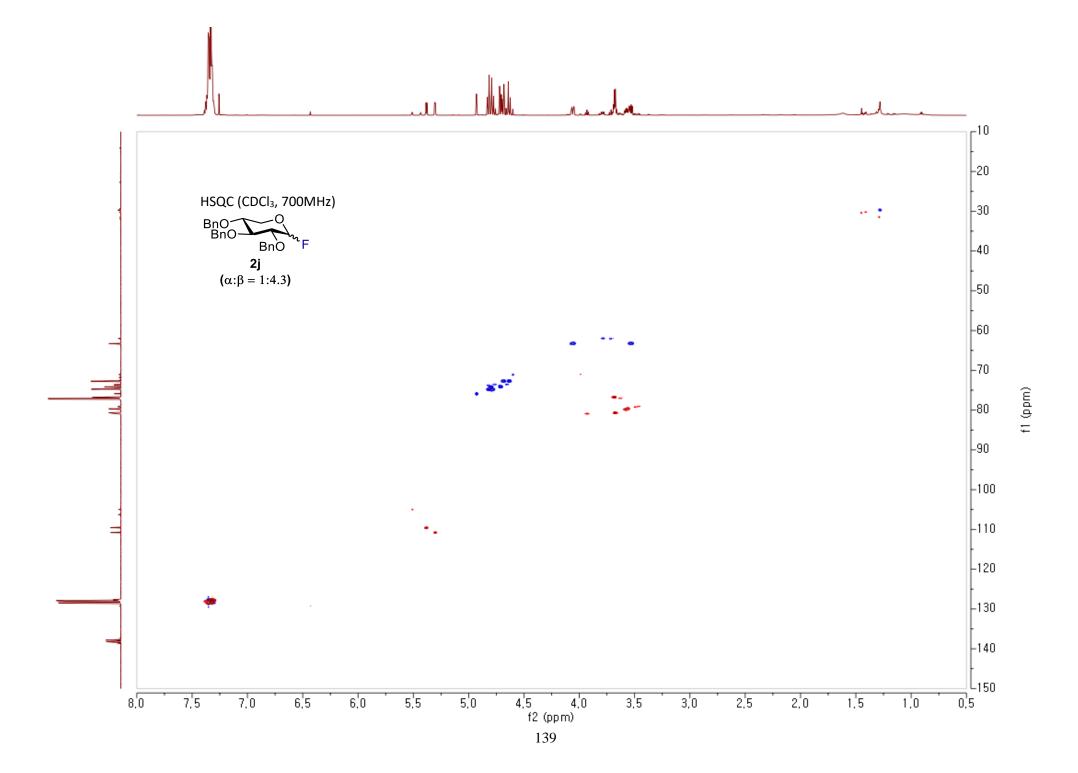


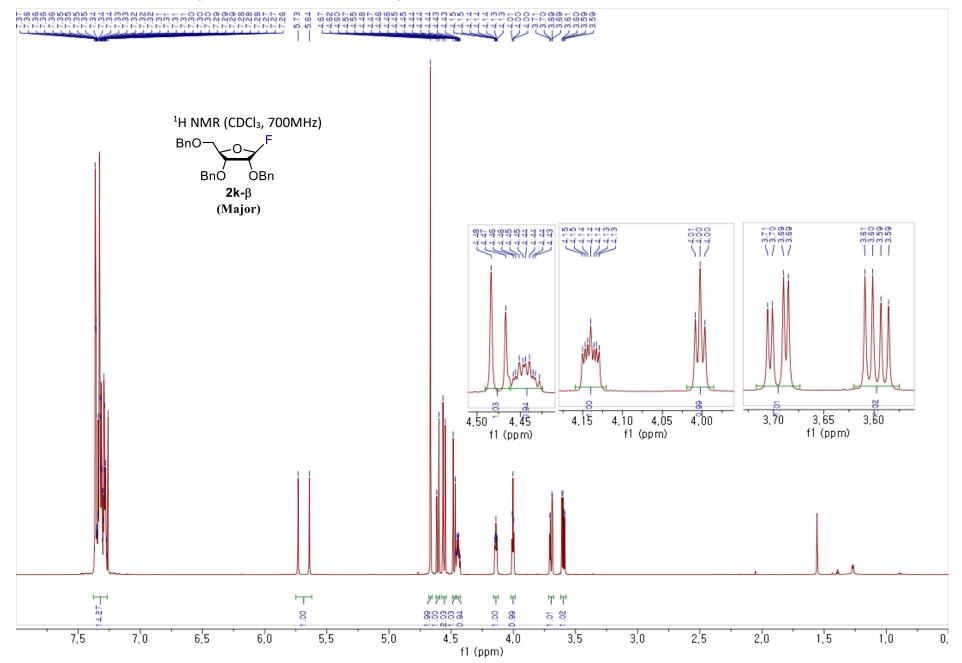

2,3,4-Tris-O-(phenylmethyl)-α-L-fucopyranosyl fluoride (2i-α, Minor diastereomer)

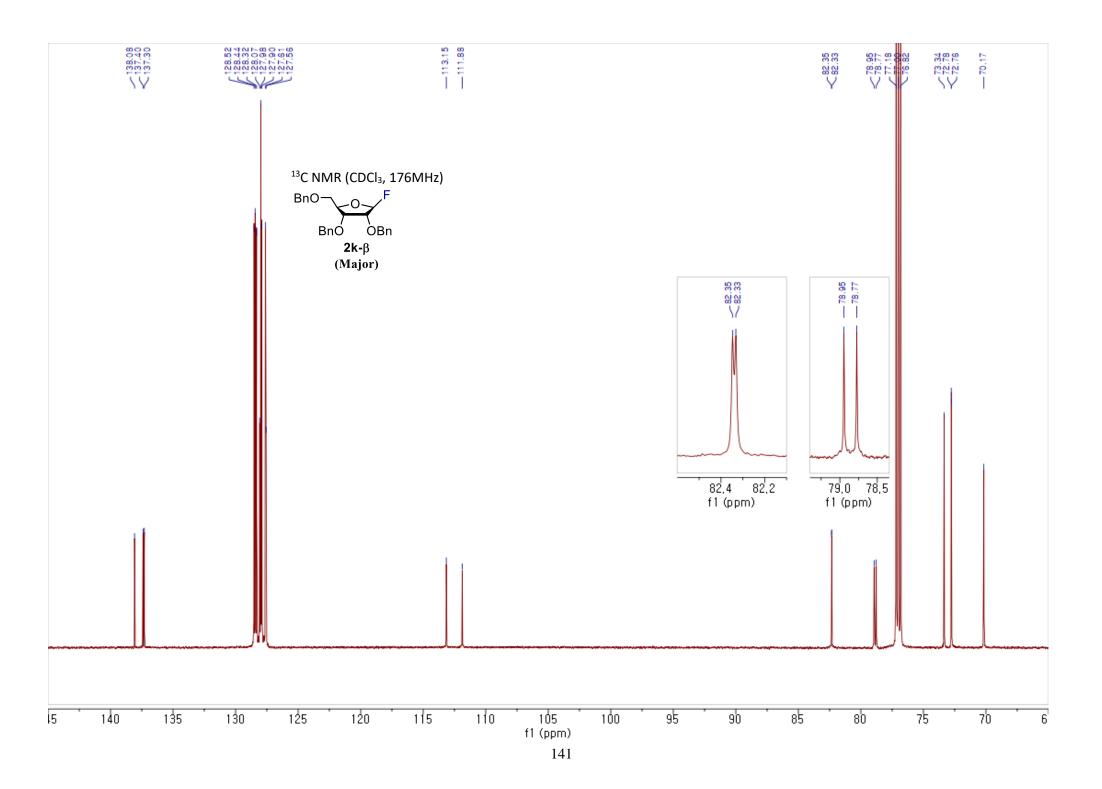


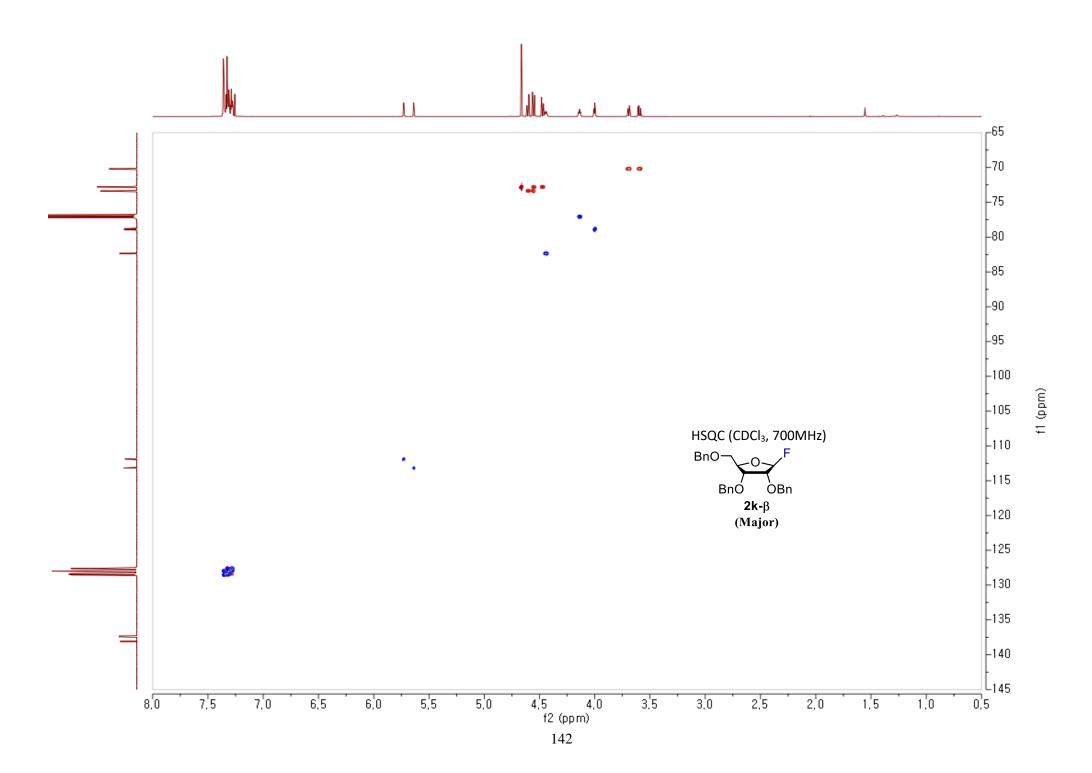


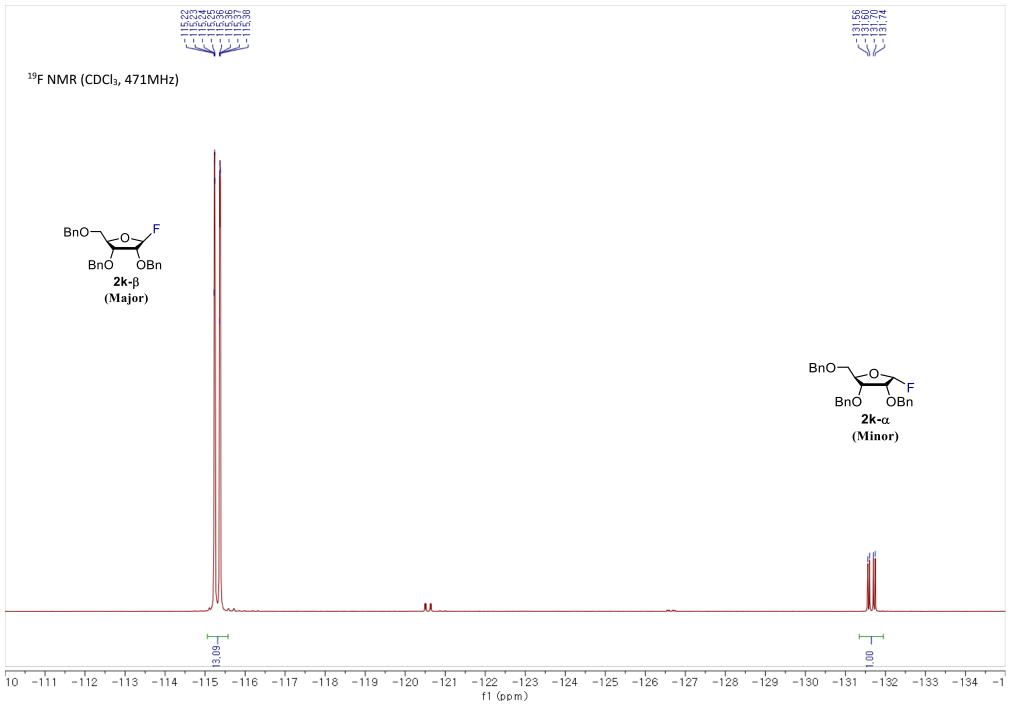


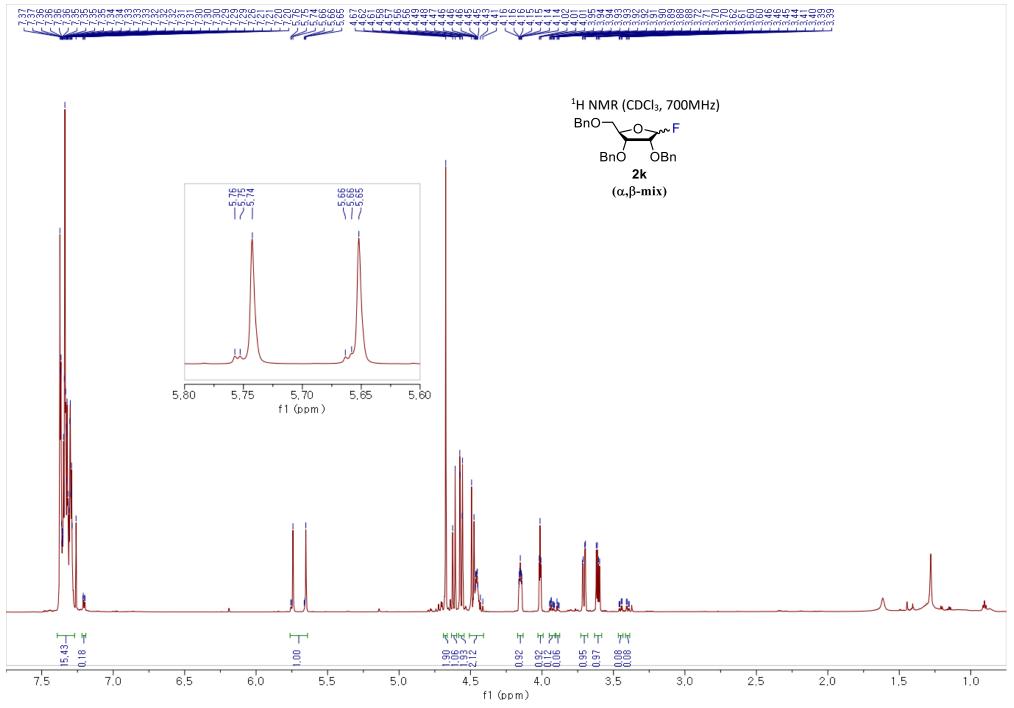


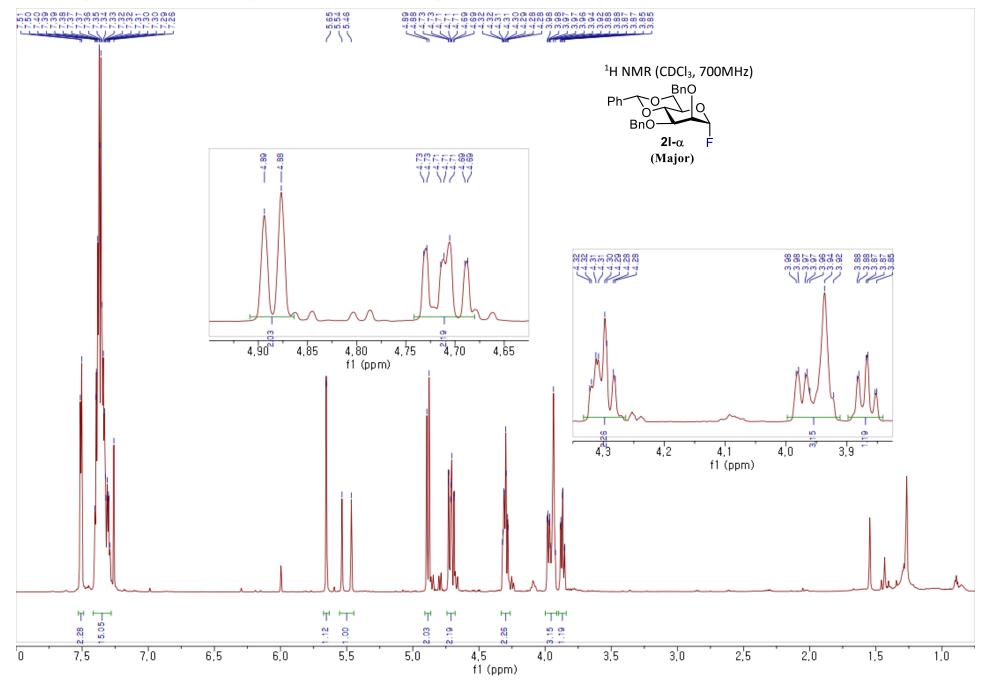


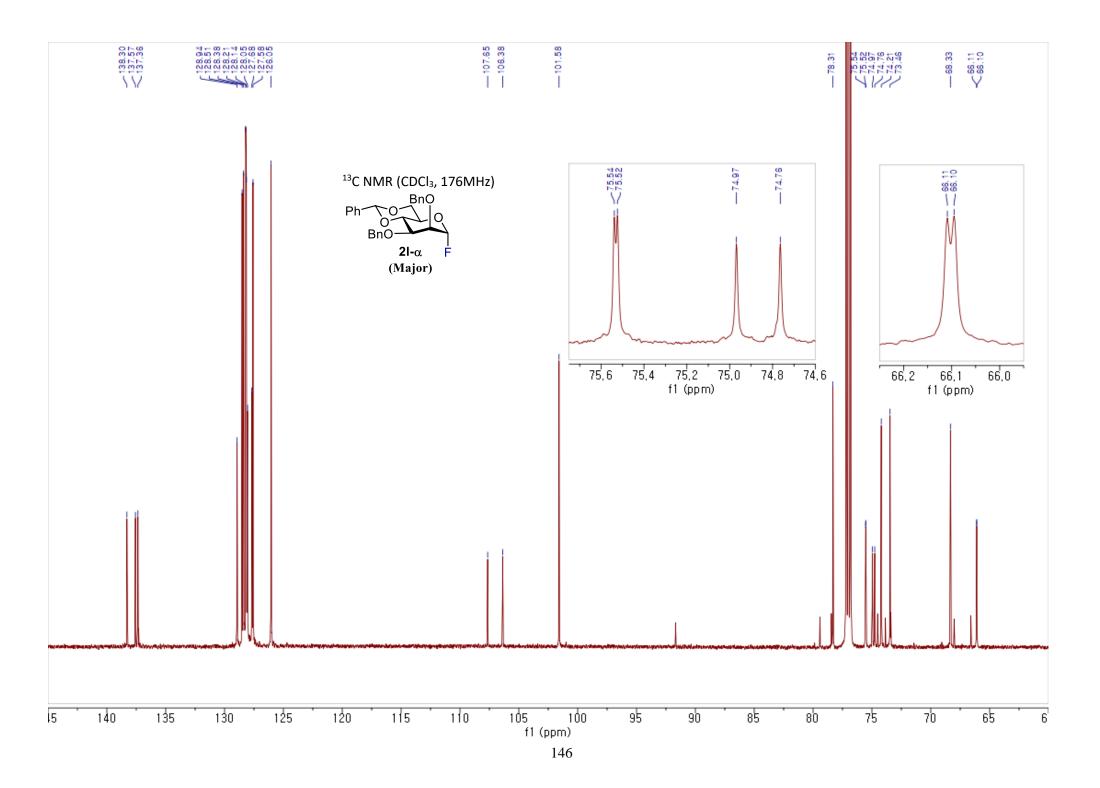

2,3,4-tris-O-(phenylmethyl)-D-xylopyranosyl fluoride (2j, Isolated as α : β = 1 : 4.3 mixture)

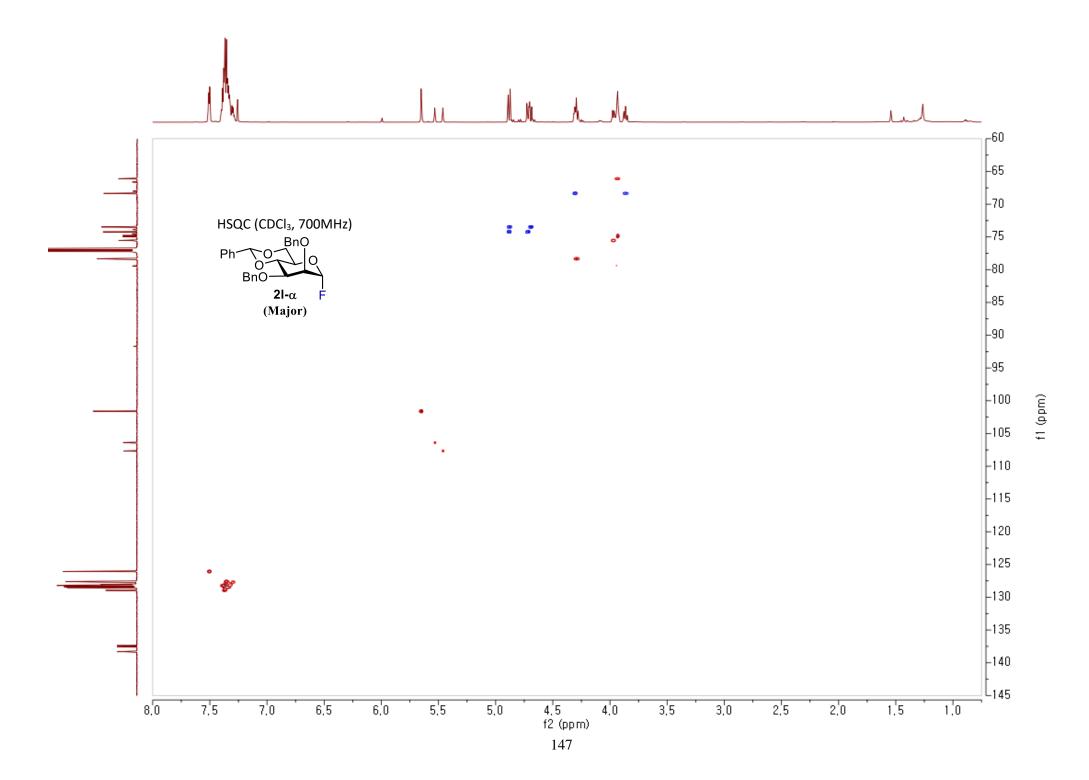


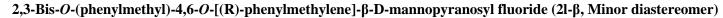


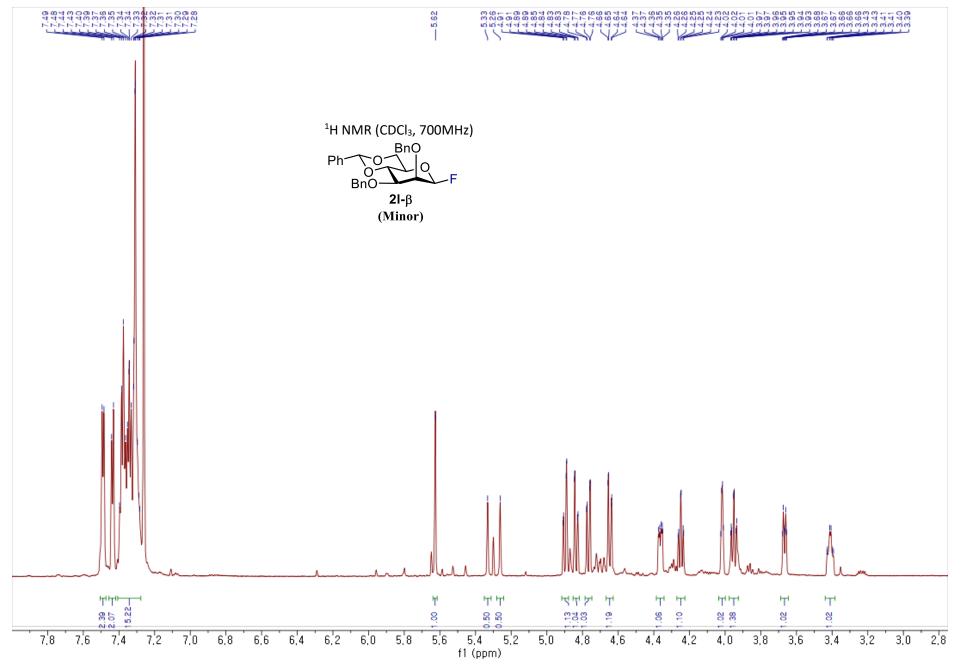

2,3,5-Tris-O-(phenylmethyl)-β-D-ribofuranosyl fluoride (2k- β, Major diastereomer)

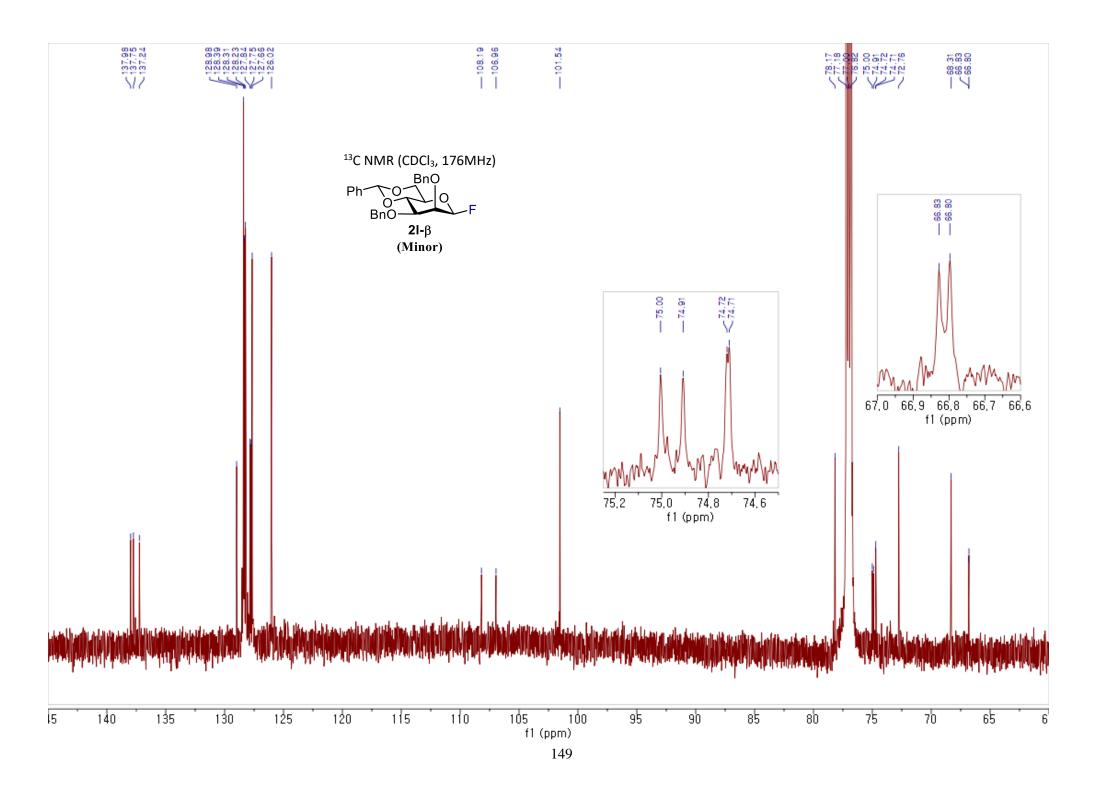


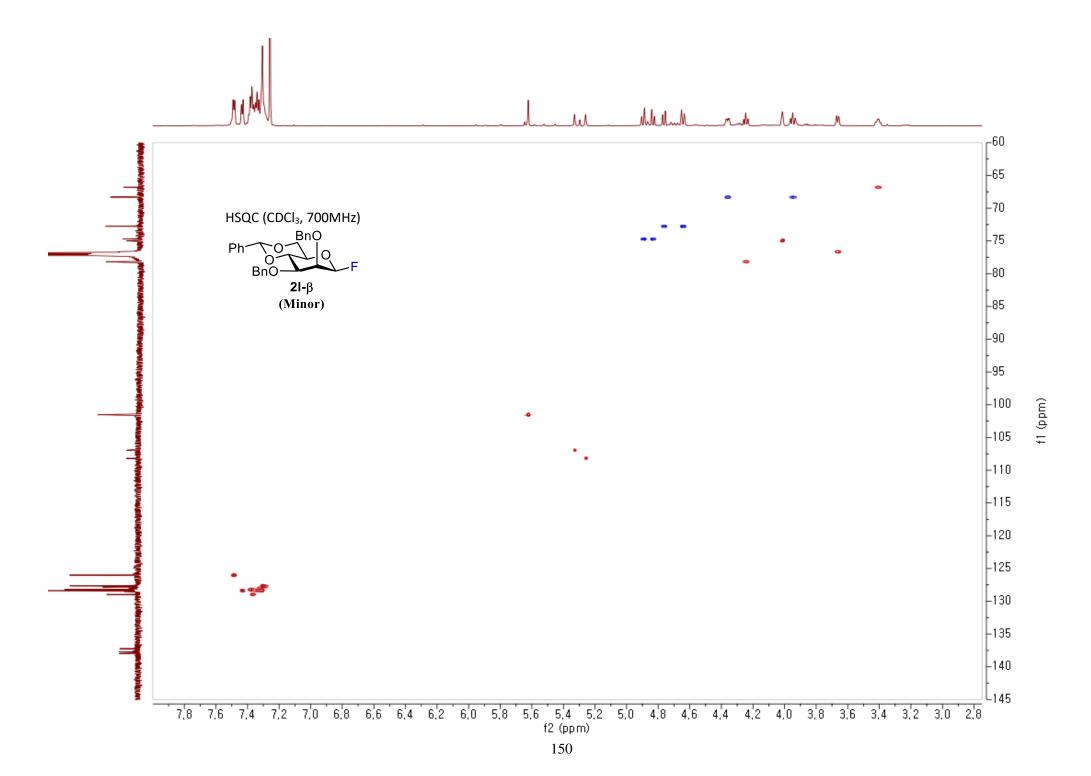


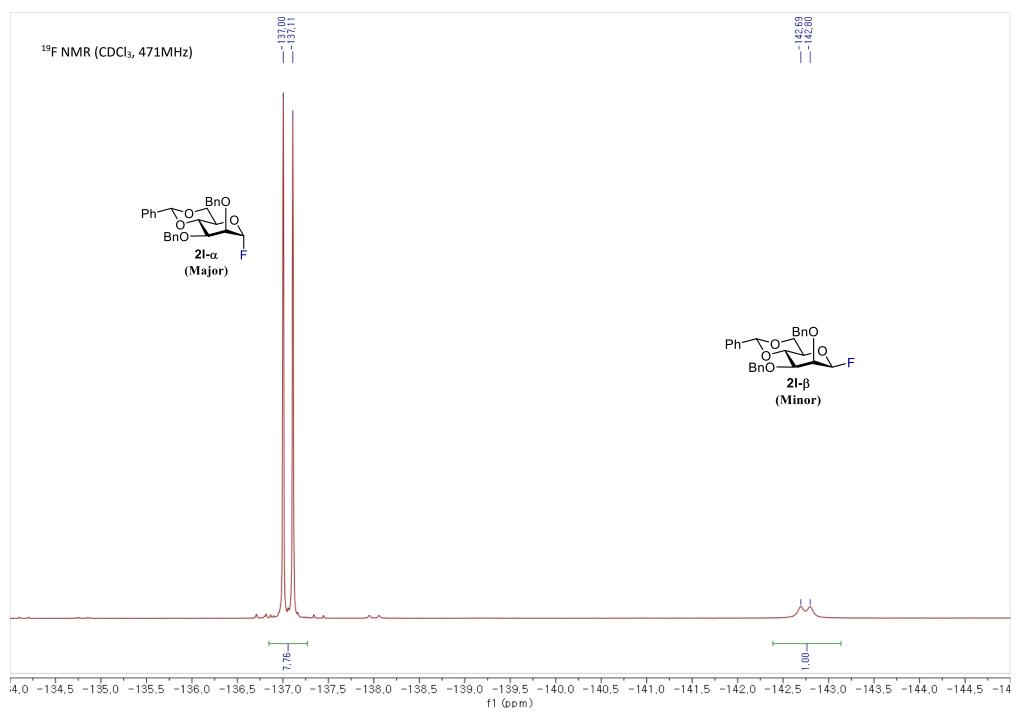


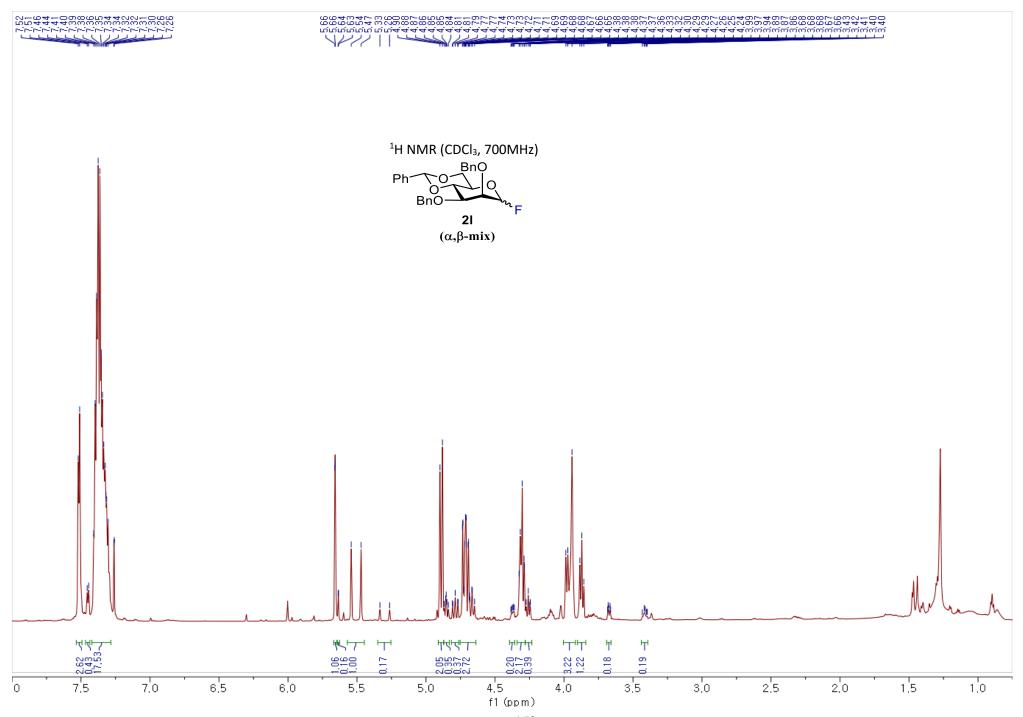


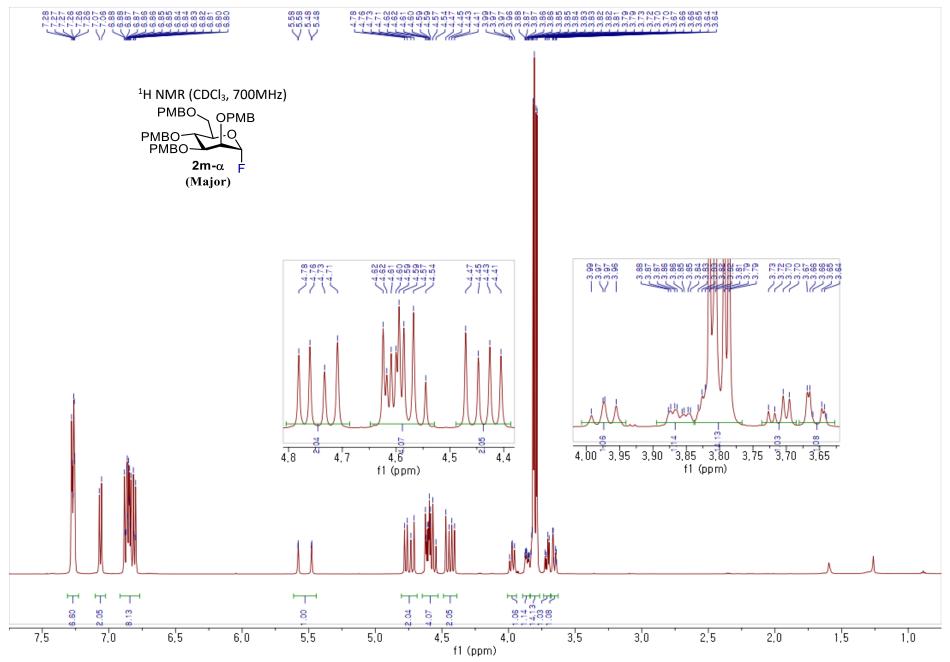


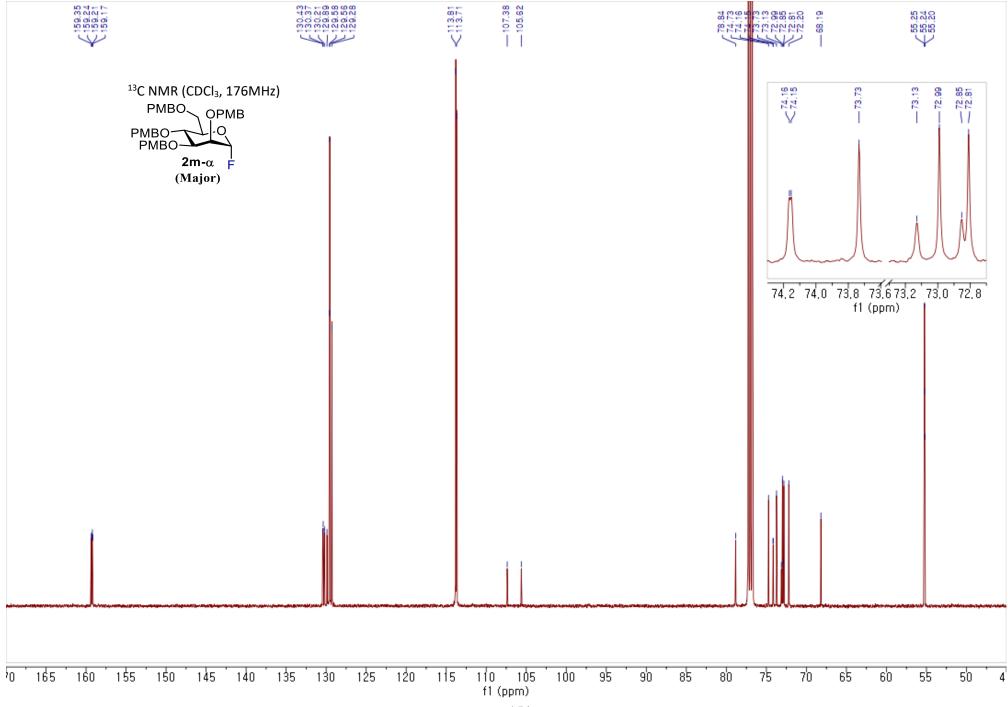

2,3-Bis-*O*-(phenylmethyl)-4,6-*O*-[(R)-phenylmethylene]-α-D-mannopyranosyl fluoride (21-α, Major diastereomer)

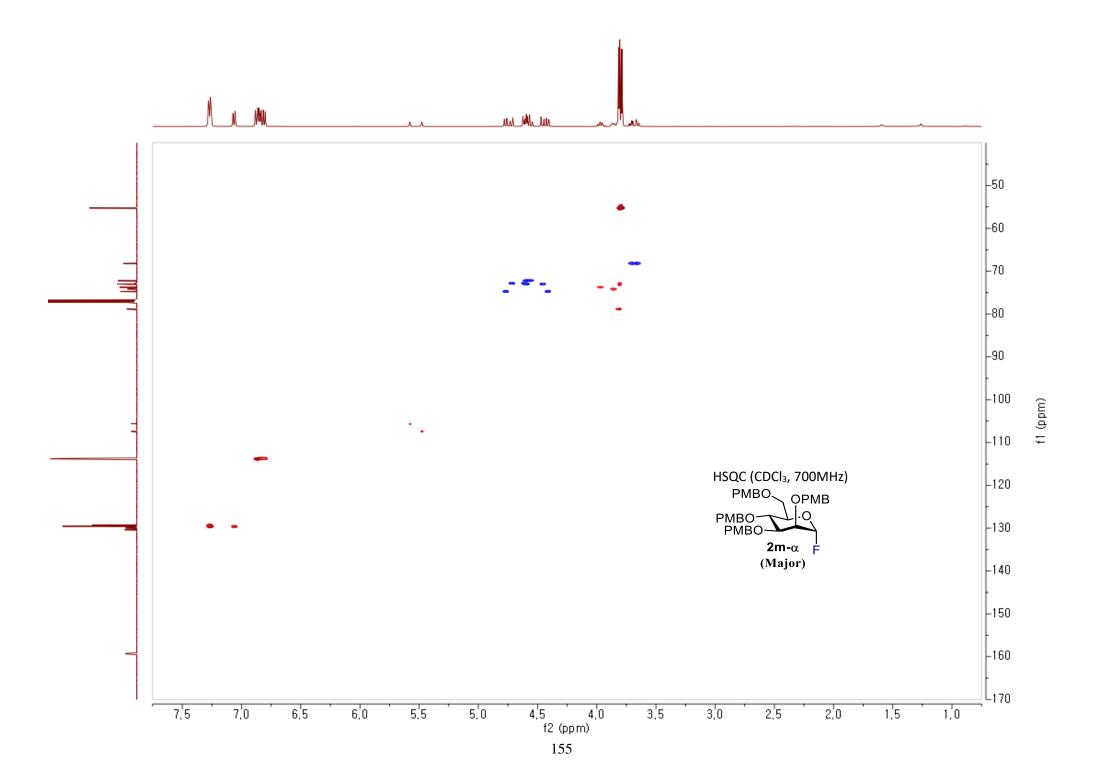


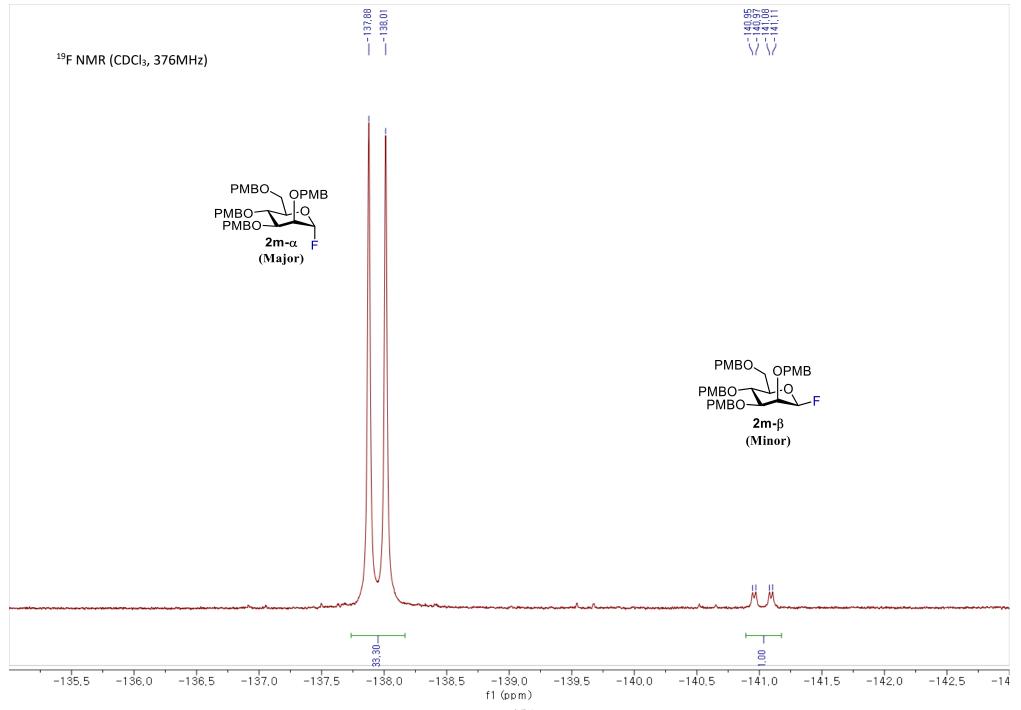


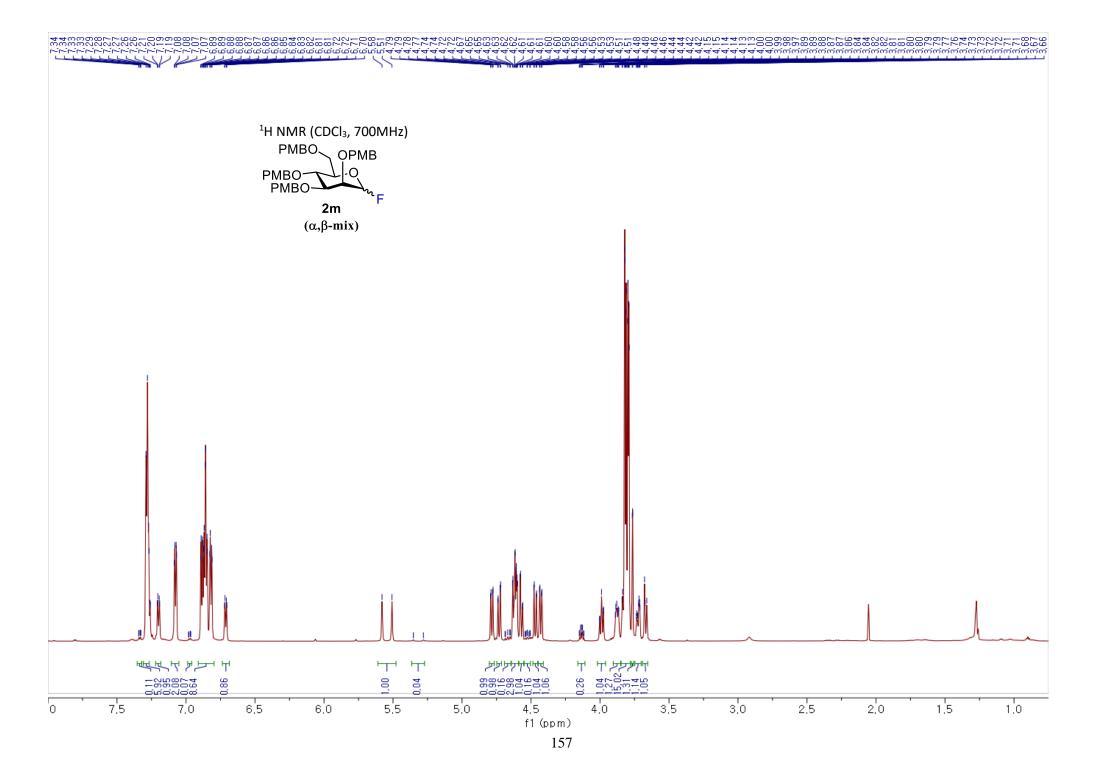


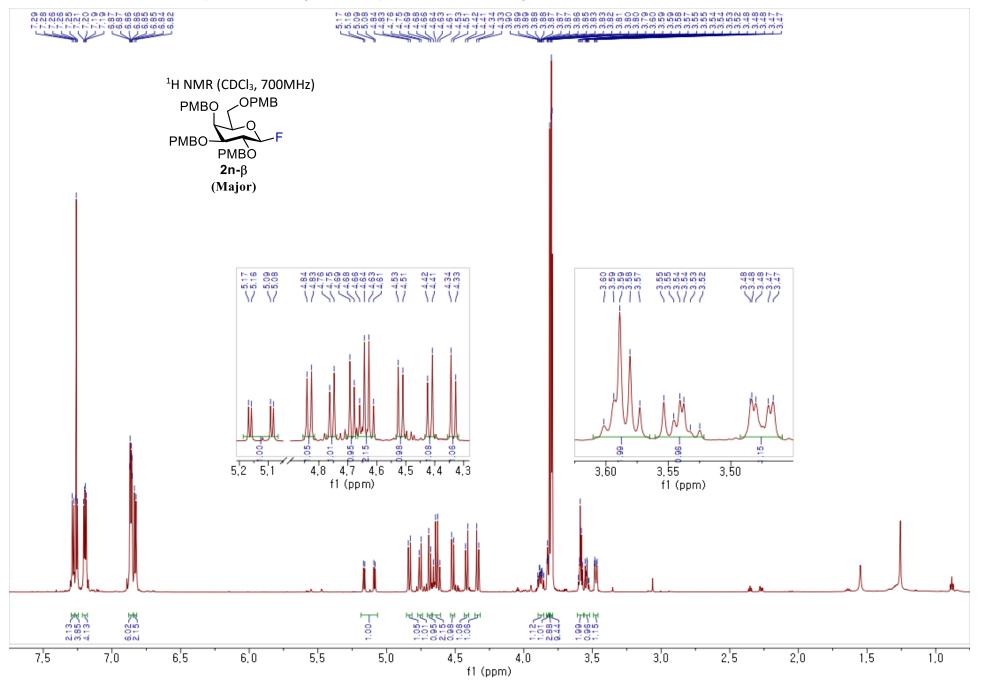


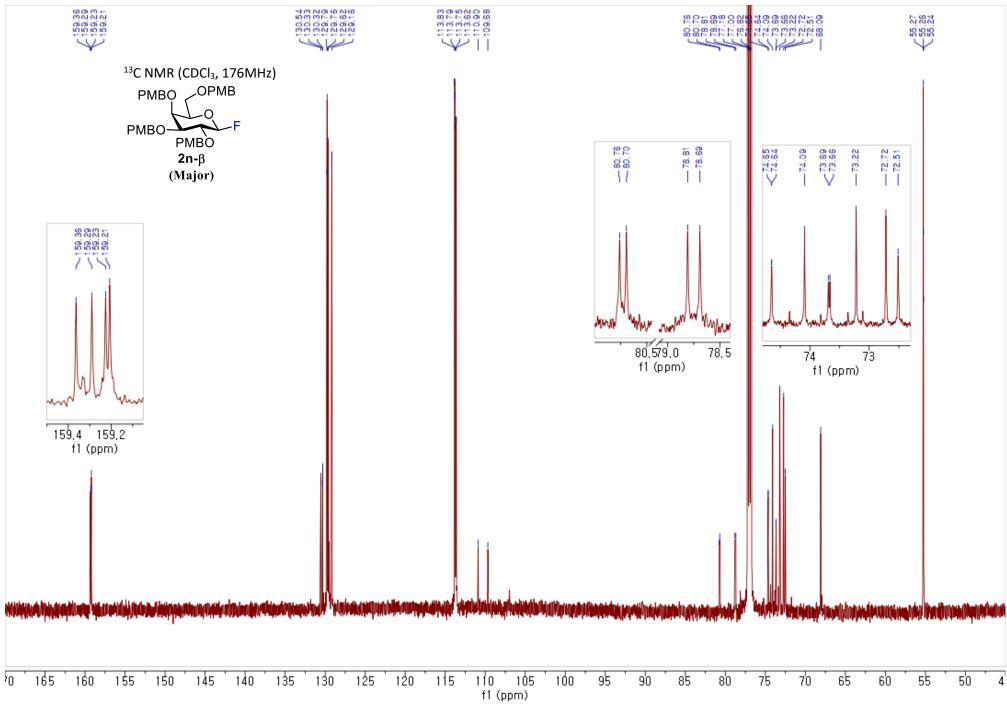


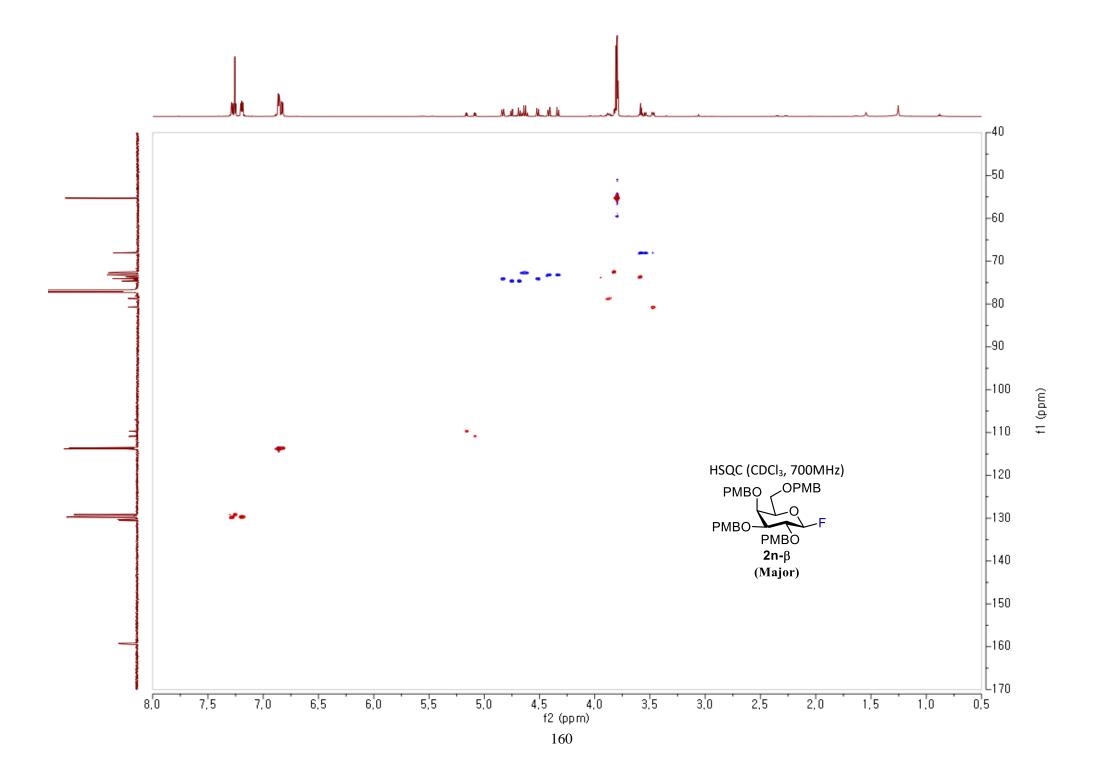


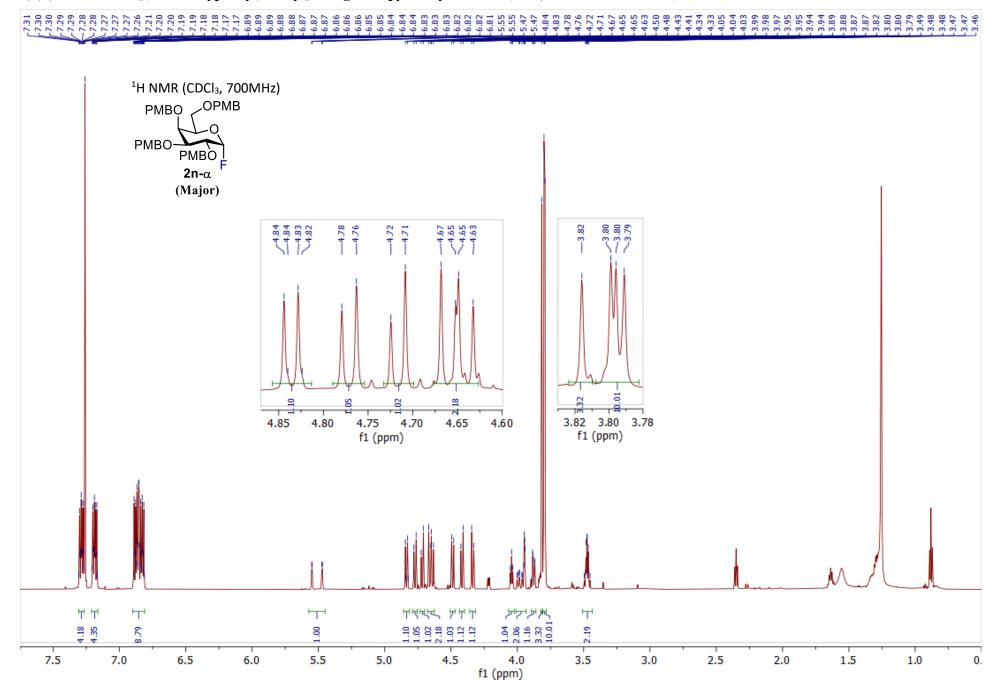



2,3,4,6-Tetrakis-O-[(4-methoxyphenyl)methyl]-α-D-mannopyranosyl fluoride (2m- α, Major diastereomer)

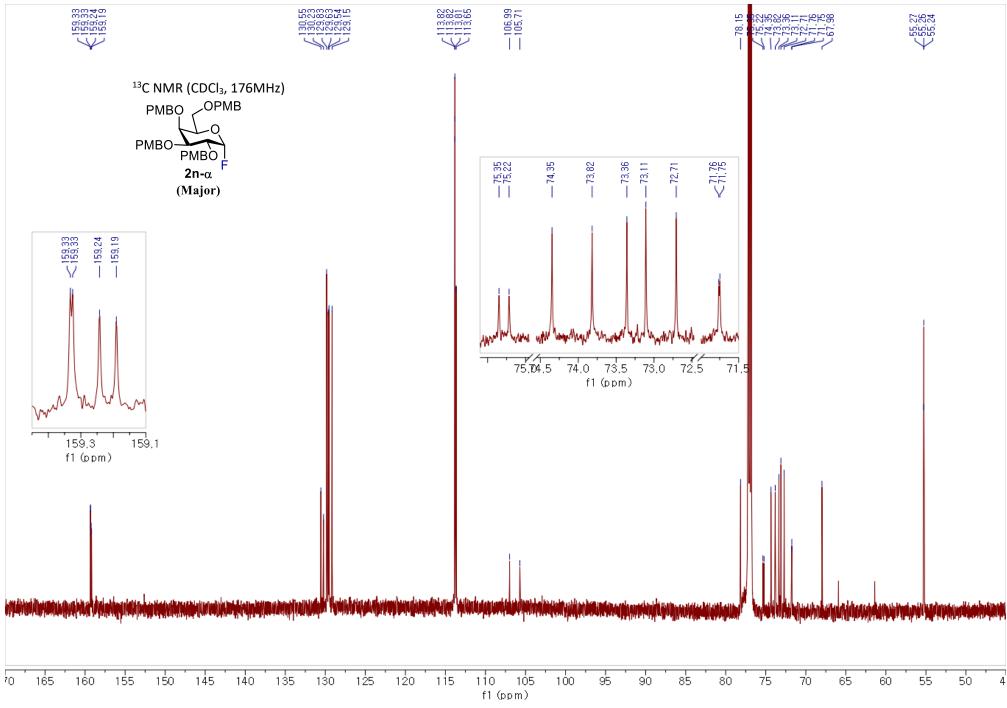


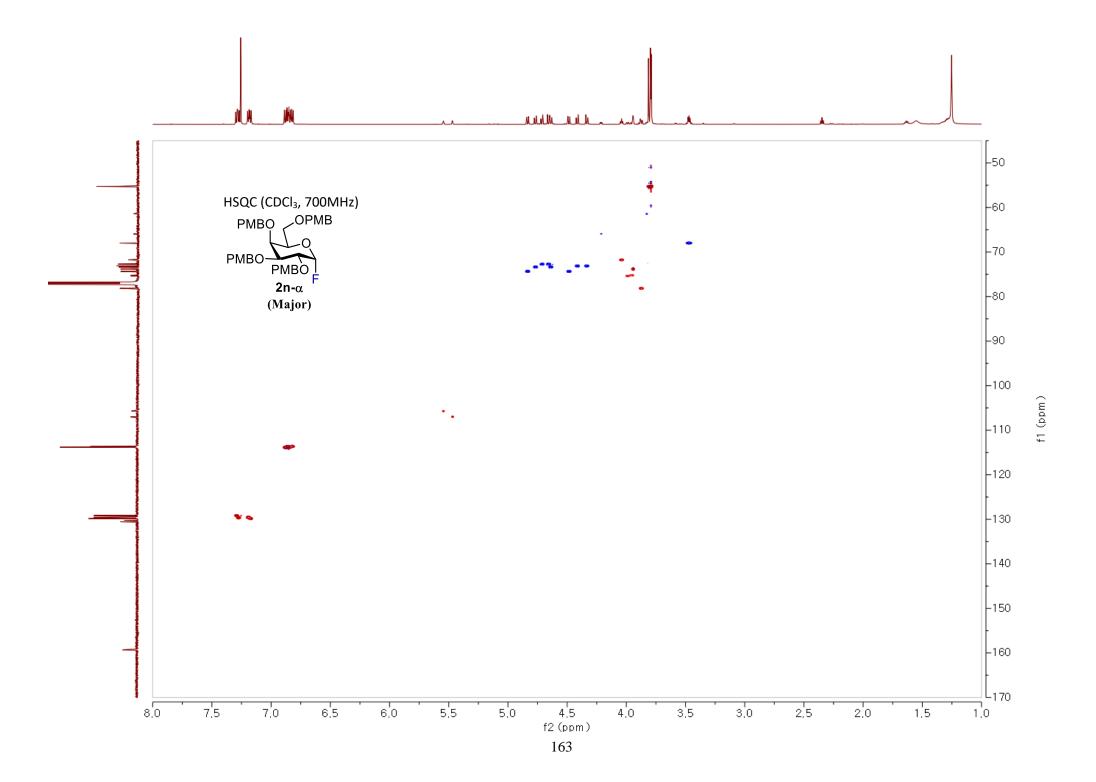


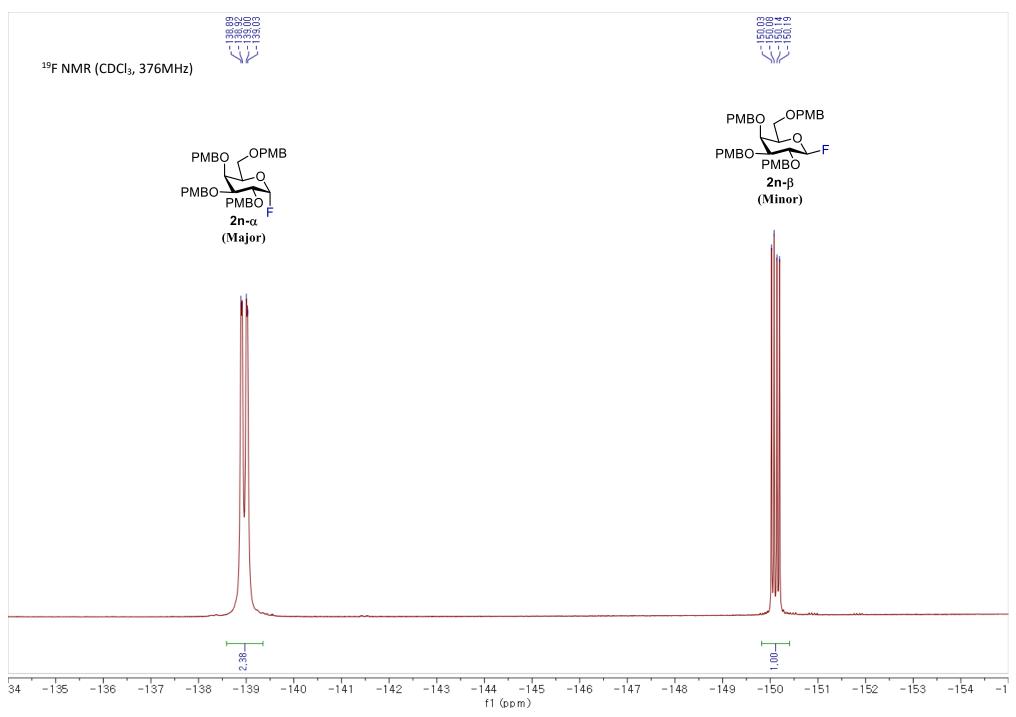


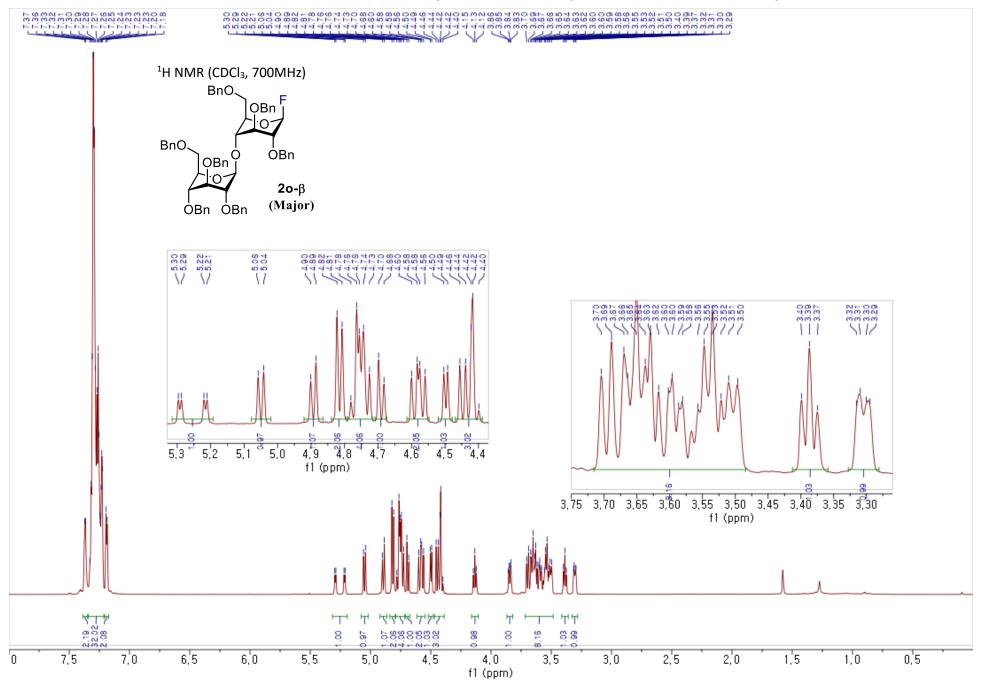


2,3,4,6-Tetrakis-O-[(4-methoxyphenyl)methyl]-β-D-galactopyranosyl fluoride (2n-β, Major diastereomer)

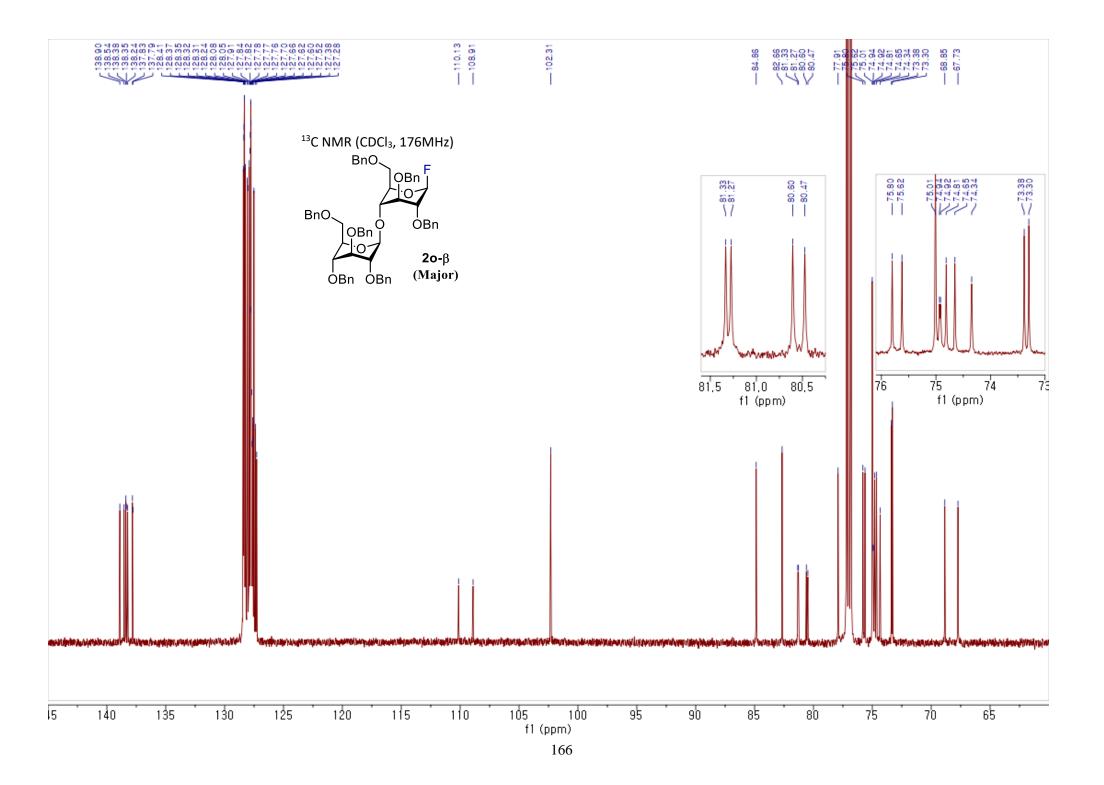


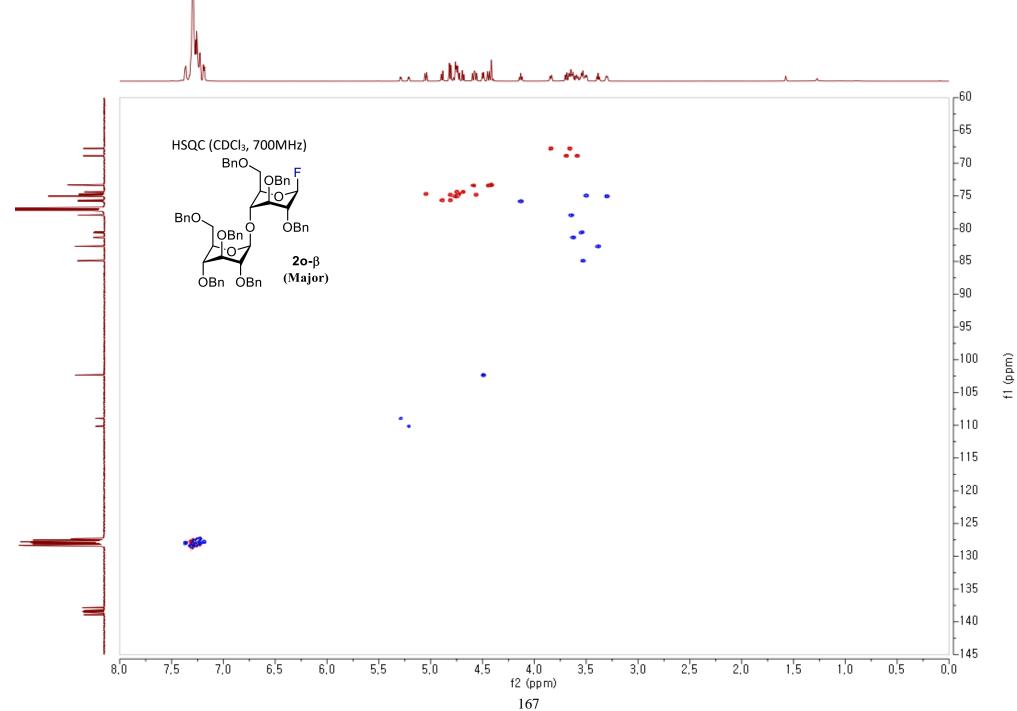


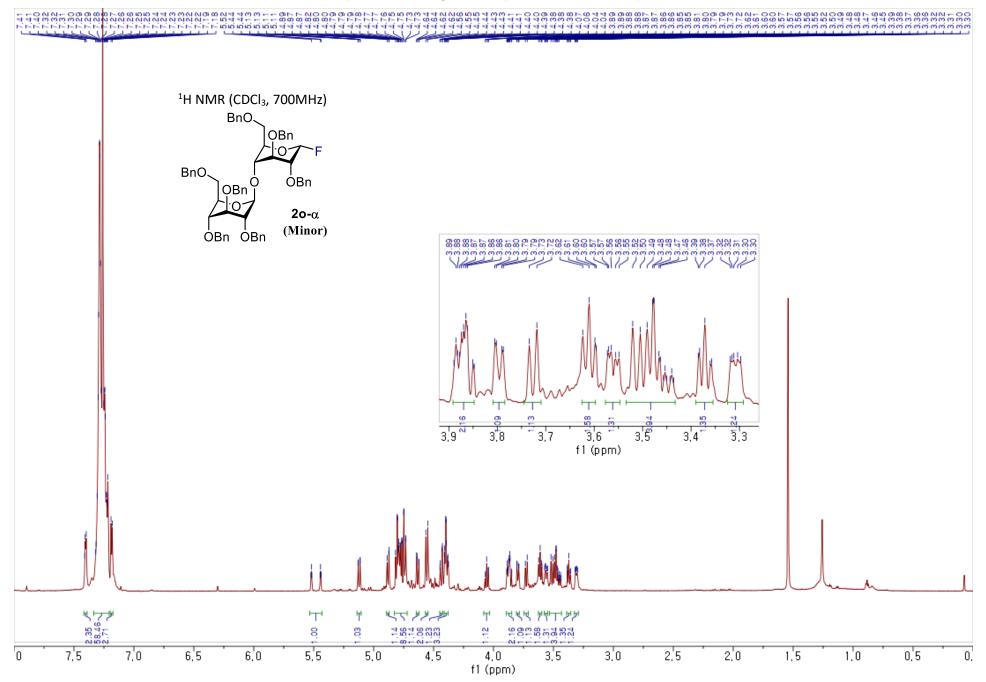


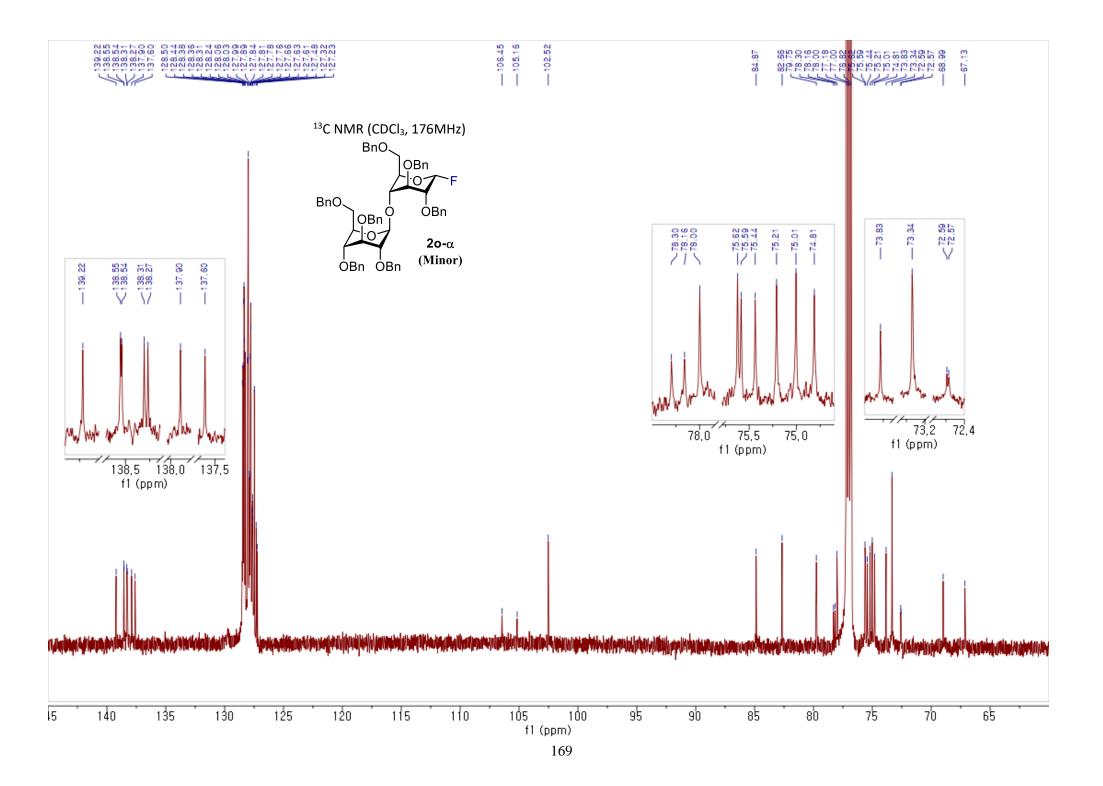


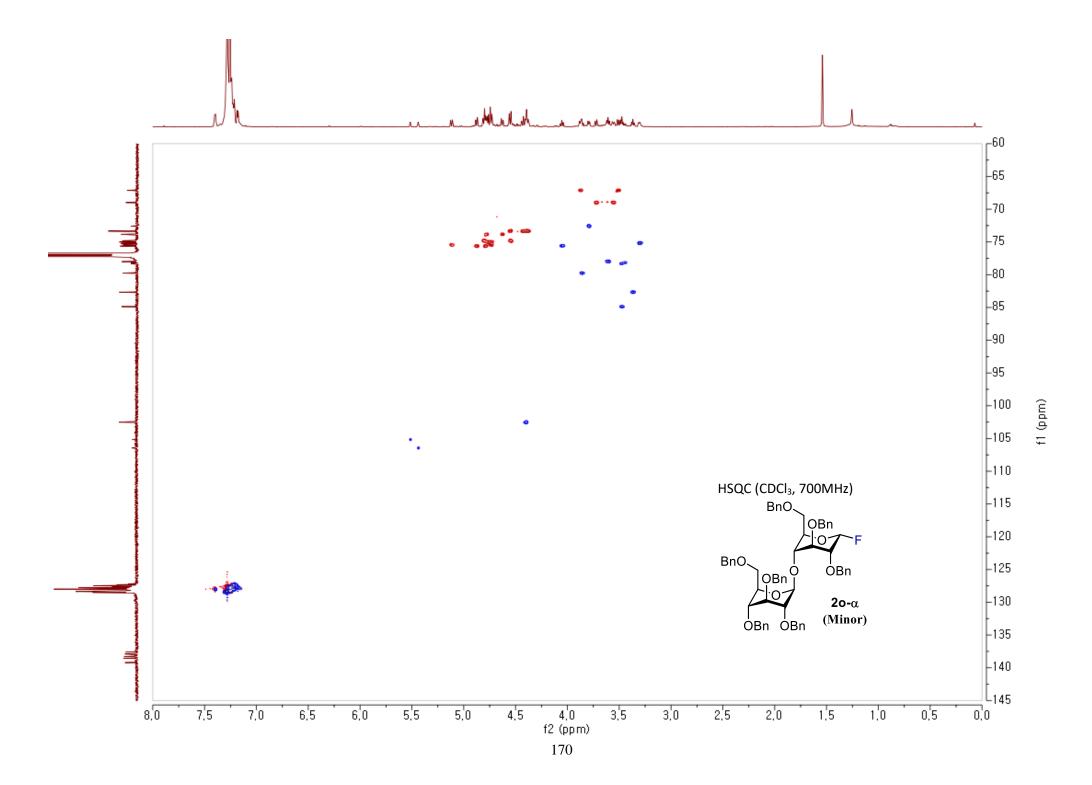
2,3,4,6-Tetrakis-*O*-[(4-methoxyphenyl)methyl]-α-D-galactopyranosyl fluoride (2n-α, Minor diastereomer)

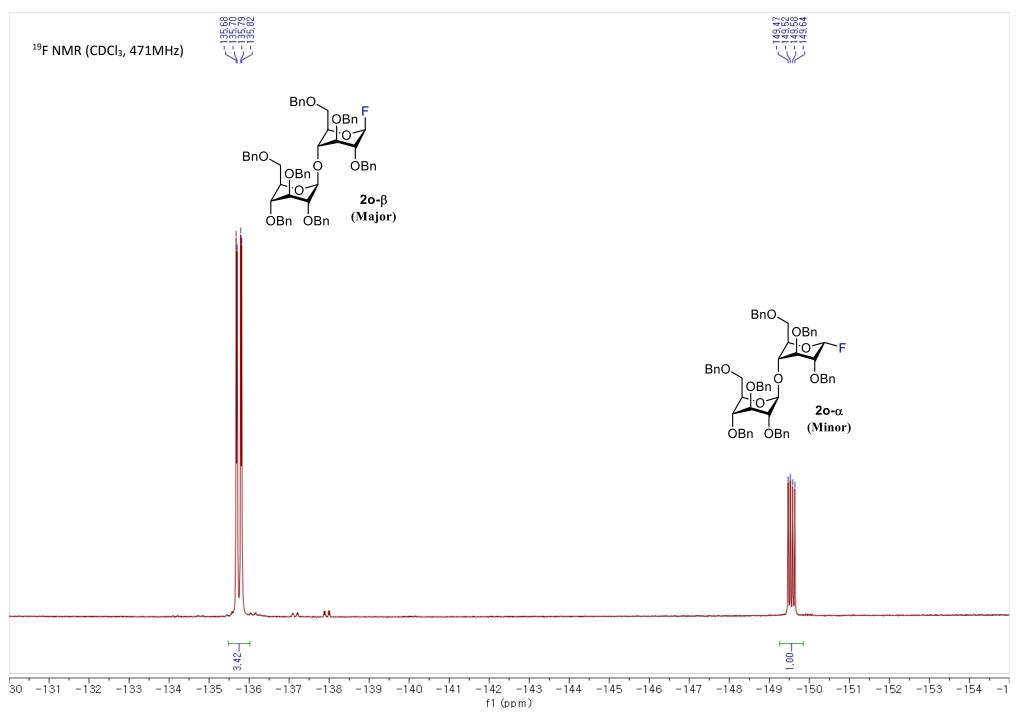


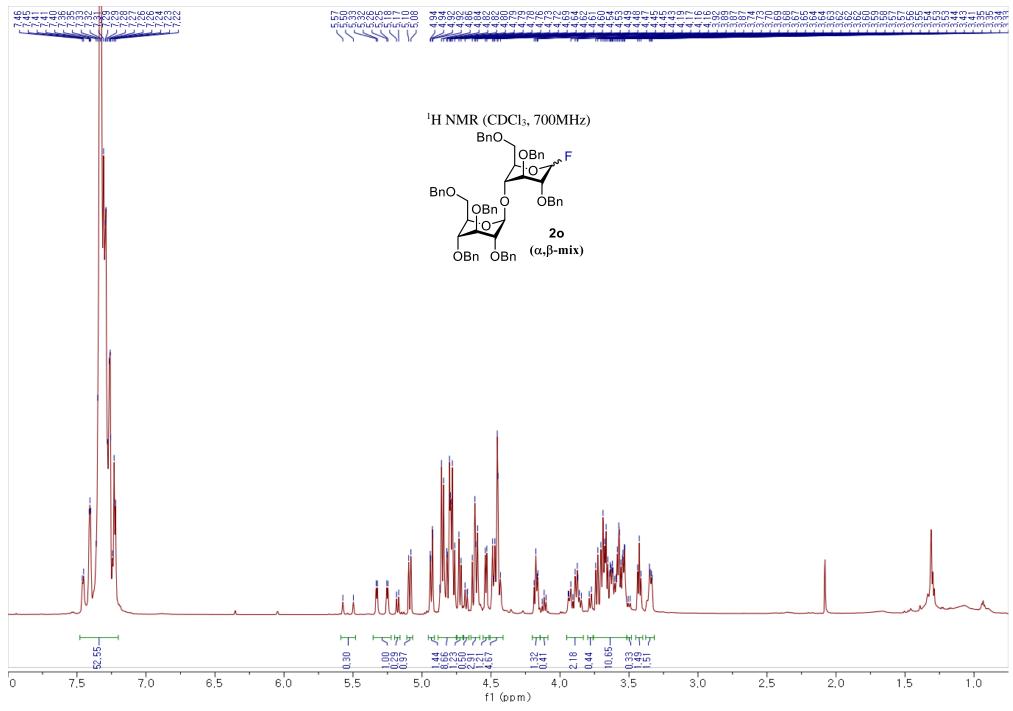


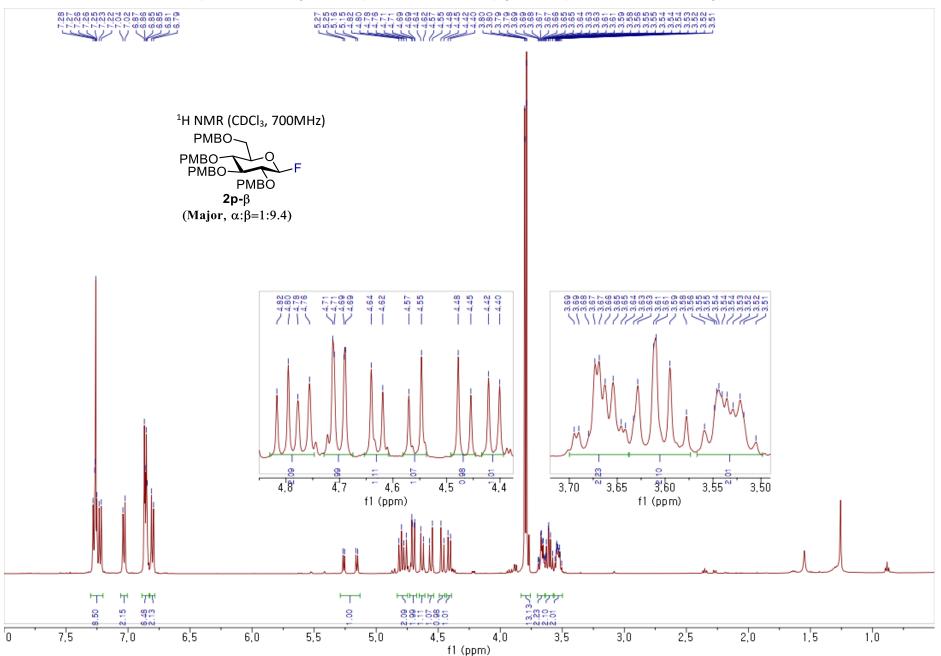


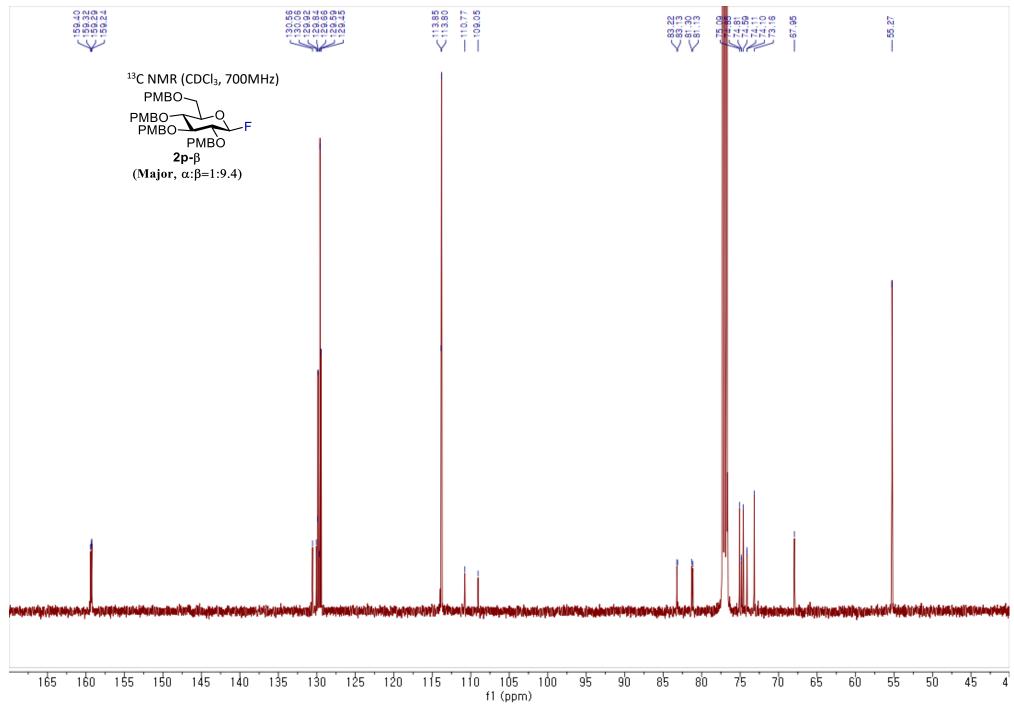

2,3,6-Tris-*O*-(phenylmethyl)-4-*O*-[2,3,4,6-tetrakis-*O*-(phenylmethyl)-β-D-glucopyranosyl]-β-D-glucopyranosyl fluoride (20-β, Major diastereomer)

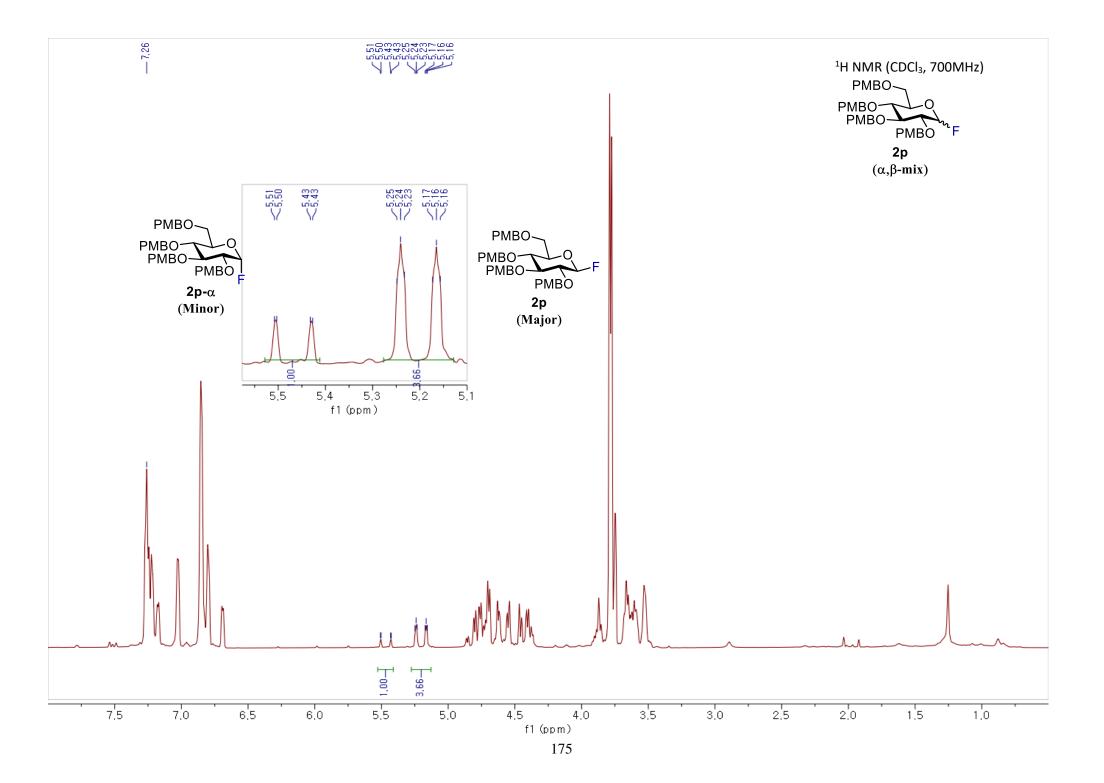


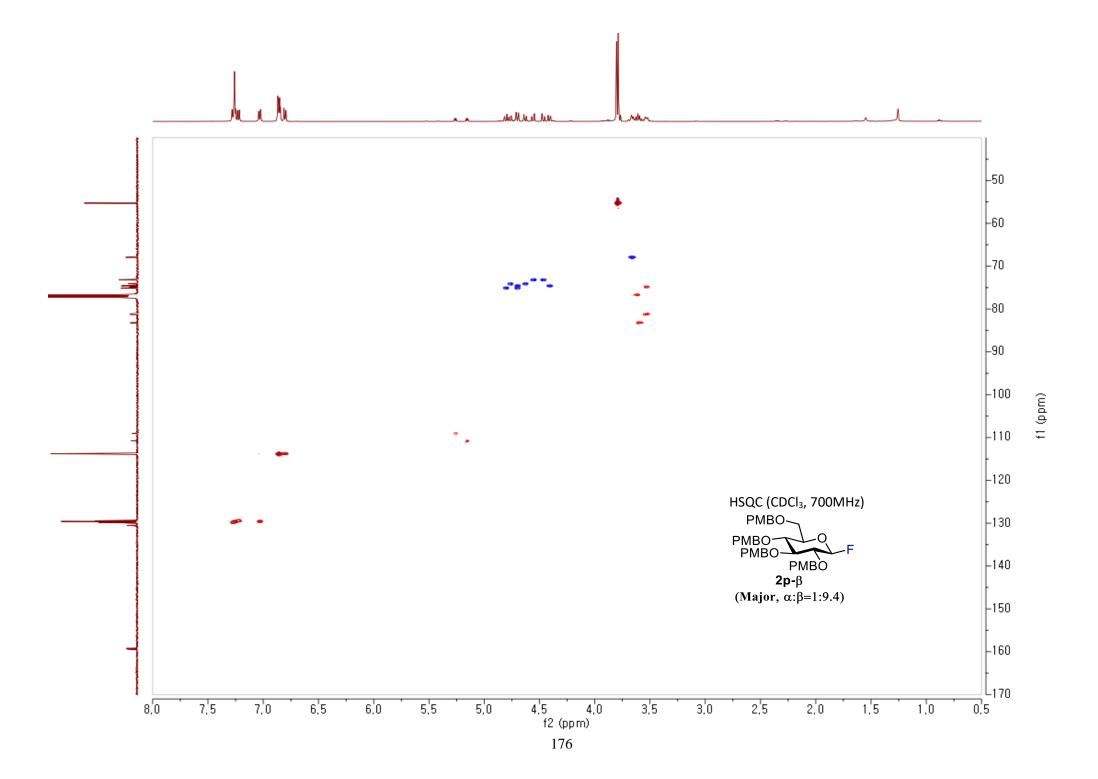


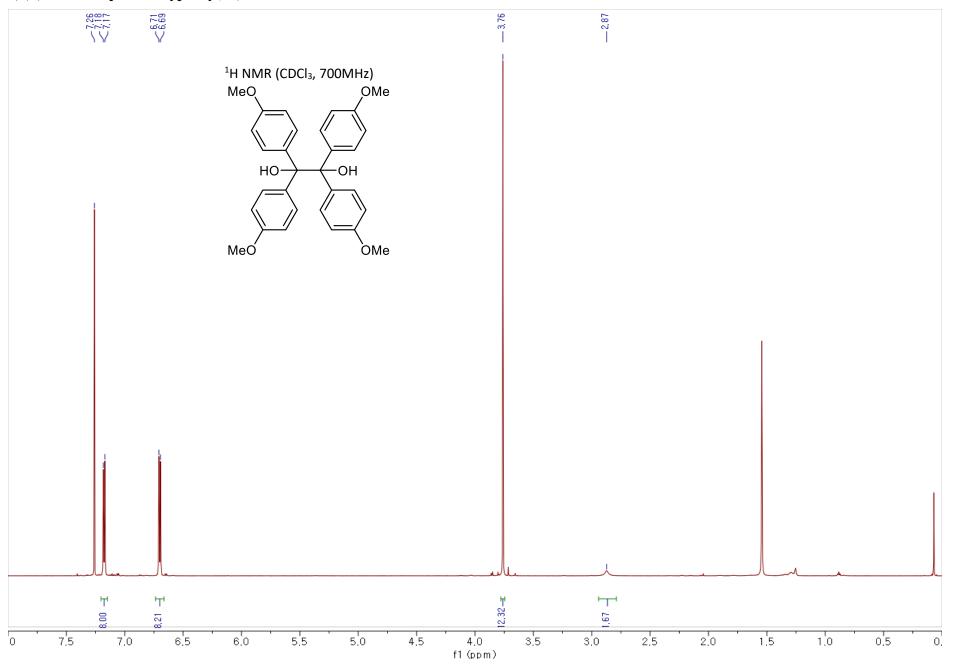


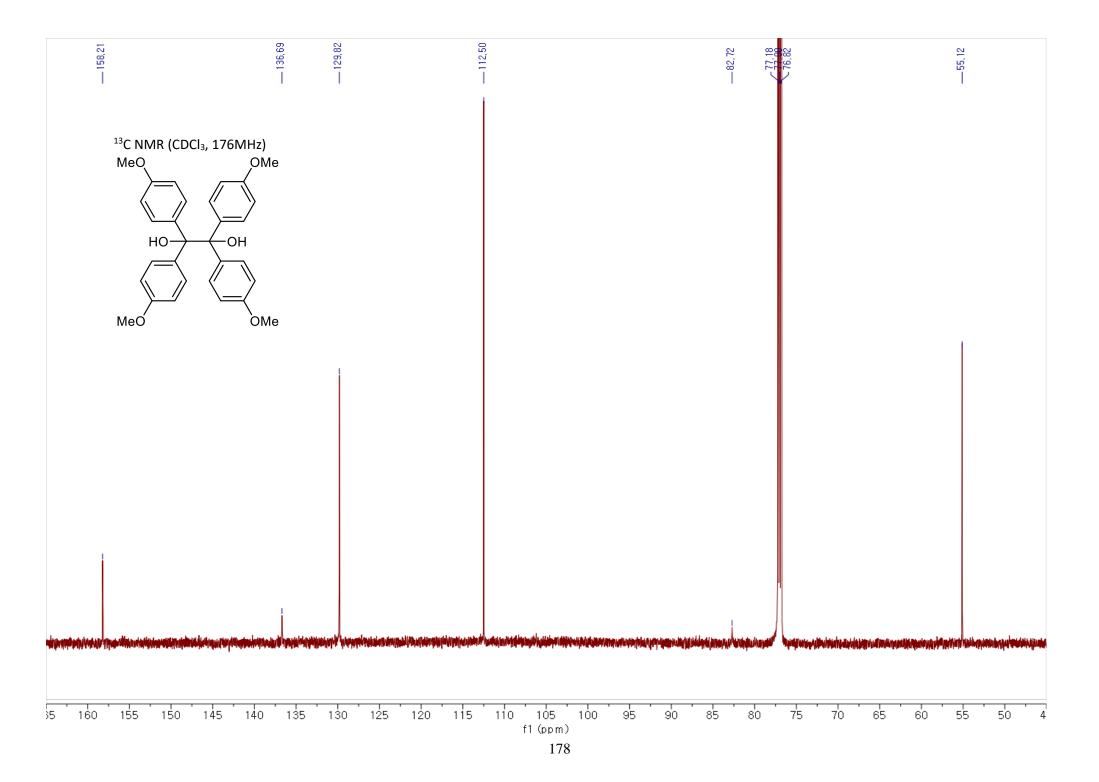

2,3,6-Tris-O-(phenylmethyl)-4-O-[2,3,4,6-tetrakis-O-(phenylmethyl)-β-D-glucopyranosyl]-α-D-glucopyranosyl fluoride (20-α, Minor diastereomer)

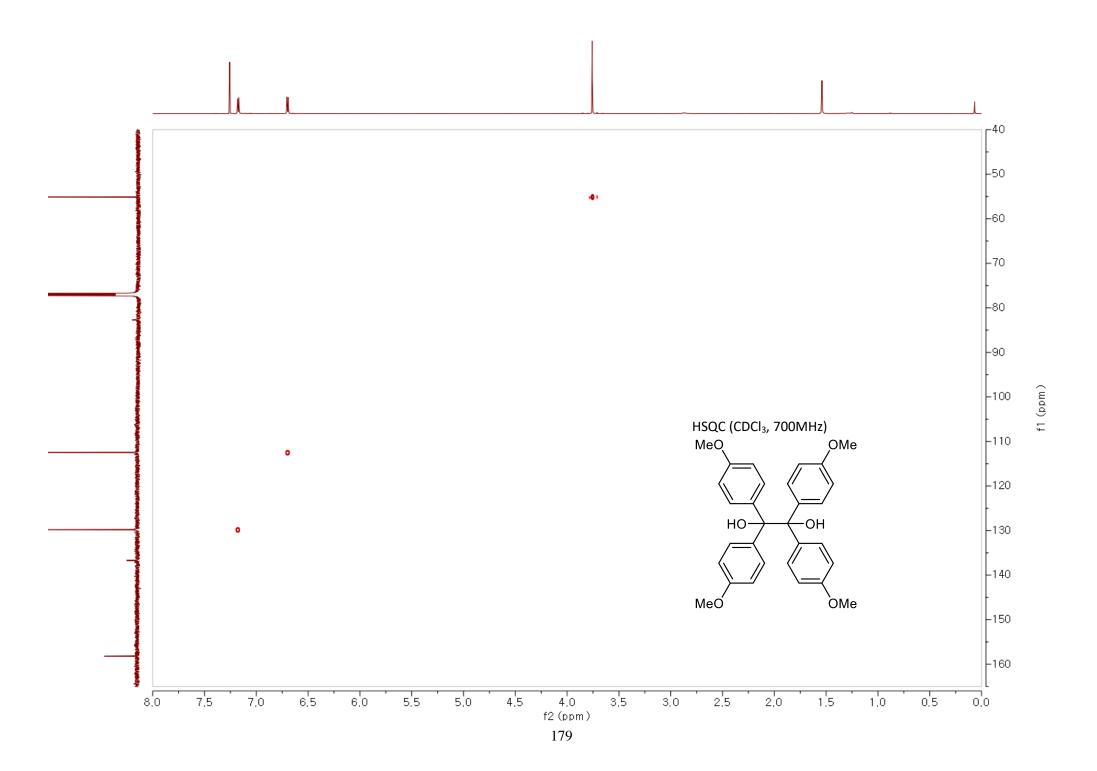







2,3,4,6-Tetrakis-O-[(4-methoxyphenyl)methyl]- β -D-glucopyranosyl fluoride (2p- β , Major product, Isolated as α : β = 1 : 9.4 mixture)





1,1,2,2-Tetrakis(*p*-methoxyphenyl)-1,2-ethanediol

