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To approximately find the best k, that makes the electric potential inside the working

region of Zig-Zag cell analytically, firstly we must solve the following sub-problem: to find the

potential distribution on the axis of the conductive infinitely-long hollow grounded cylinder

with a ring with a voltage in the region near z = 0. From the point of view of mathematical
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physics, the problem can be formulated as follows: to find ϕ(ρ, z)|ρ=0 where

∆ϕ(ρ, z) =
∂2ϕ

∂ρ2
+

1

ρ

∂ϕ

∂ρ
+

∂2ϕ

∂z2
= 0, ϕ(R, z) =


ϕ0, |z| ≤ l

0, else

(1)

The procedure of solving such equations is pretty standard. By separating the variables

ϕ(ρ, z) = A(z) ·B(ρ) we get two equations:

d2A

dz2
+ λ2A = 0;

d2B

dρ2
+

1

ρ

dB

dρ
− λ2B = 0 (2)

The solution of the equations are

A(z) = cosλz; B(ρ) = I0(λρ) (3)

Where I0 is the modified Bessel function of the first kind and zero order. Because the problem

has symmetry on z, the sinλz term disappears from A(z).

The general solution of the equation would be presented in form

ϕ(ρ, z) =

∫ +∞

−∞
c(λ) cos(λz)I0(λρ)dλ (4)

where c(λ) is the coefficient of decomposition.

The boundary conditions may be presented as the Fourier integral:

∫ +∞

−∞
a(λ) cos(λz)dλ = ϕ(R, z) (5)

where

a(λ) =
1

2π

∫ +∞

−∞
cos(λz)ϕ(R, z)dz =

1

2π

∫ +l

−l

cos(λz)ϕ0dz =
ϕ0

π

sinλl

λ
(6)

Knowing a(λ) we can find c(λ) and, finally, get
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ϕ(ρ, z) =
ϕ0

π

∫ +∞

−∞

sinλl

λ

cos(λz)I0(λρ)

I0(λR)
dλ (7)

This equation may be simplified. Firstly, we are interesting only in ρ = 0, thus I0(λρ)|ρ=0 ≡

1. Secondly, we’ll integrate on l, so suppose l ≪ 1. Thus, sin(λl)/λ|l≪1 = l. Finally, we

can use variable substitution λR → λ. With all these manipulations, the eq. (7) transforms

into:

ϕimpulse(ϕ0, z) =
ϕ0

πR
l

∫ +∞

−∞

cos(λz/R)

I0(λ)
dλ ≡ ϕ0

πR
l · I(z/R) (8)

Numerical integration shows, that when z/R ≫ 1 the integral I(z/R) is approximately

equal to exp(γz/R+δ), where γ < 0 and δ are some constants. Using python’s scipy.integrate.quad

we get γ ≃ −2.4, δ ≃ 2.5.

ϕimpulse(ϕ0, z)|z/R≫1 =
ϕ0

πR
leγz/Reδ (9)

Now we can return to the main task. We’ll suppose that the best k coefficient is such,

that the mean difference on the cell axis of the real potential distribution inside zig-zag cell

ϕreal(k, z, ρ) from the ideal potential ϕideal(z, ρ) ∼ 2z2 − ρ2 is zero.

In other words

kopt = argmink|ϕreal(k, ρ = 0, θ, z)− ϕideal(ρ = 0, θ, z)| (10)

We can introduce ϕ∆(k, ρ, θ, z) ≡ ϕideal(ρ, θ, z) − ϕreal(k, ρ, θ, z). It can be found from the

Laplace equation with the boundary conditions ϕ∆(k,R, θ, z), which will be the difference be-

tween the boundary conditions of the ideal and real potentials ϕideal(R, θ, z)−ϕreal(k,R, θ, z),

where the boundary conditions of ϕideal were described in eq. (??), while the boundary con-

ditions of ϕreal were described in eq. (??). For the analytical solution we would assume that

the cylinder is infinite (zfull = +∞).

On the axis the real potential is the same as the averaged one. So, since we are only
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interested in the potential distribution along ρ = 0, we can simplify the boundary conditions

by averaging them over the polar angle. Thus, we can write the following conditions for

ϕ∆(R, z):

ϕ0(k, z) ≡ ϕ∆(k, z, R) =


0, |z| ≤ z0

(2− k)β
(

z2

z20
− 1

)
ϕ0, z0 < |z| ≤ z1(

1− k + β
(

z2

z20
− 1

))
ϕ0, z1 < |z|

(11)

Now we can find the potential ϕ∆ along ρ = 0 from the equation

ϕ∆(k, z, ρ = 0) =

∫
dϕimpulse(ϕ0(k, z1), |z − z1|)dz1 (12)

or

ϕ∆(k, z, ρ = 0) =

∫ +∞

−∞
dz′

ϕ0(k, z
′)

2πR

∫ +∞

−∞
dλ

cos(λ|z − z′|/R)

I0(λ)
(13)

For |z| < z0 ϕ0(k, z) = 0 , therefore the integral
∫ +∞
−∞ dz′ splits into two integrals:∫ −z0

−∞ dz′ +
∫ +∞
+z0

dz′. We are only interesting in the electric potential distribution inside

the working volume (|z| < 0.5z0). Simulation shows, that for such z for all |z′| ≥ z0 we can

use approximation |z − z′|/R ≫ 1 for ϕimpulse (eq. 9). Thus, the previous equation can be

simplified as

ϕ∆(k, z, ρ = 0) =
eδ

2πR

(∫ −z0

−∞
dz′e

γ
R
(z−z′)ϕ0(k, z

′) +

∫ +∞

z0

dz′e
γ
R
(z′−z)ϕ0(k, z

′)

)
(14)

because ϕ0(z) = ϕ0(−z) and exp(z) + exp(−z) = 2 cosh(z) we get

ϕ∆(k, z, ρ = 0) =
eδ

2πR
2 cosh(z · γ/R)

∫ +∞

z0

dz′e
γ
R
z′ϕ0(k, z

′) (15)

The integral is divided to sub-integrals with borders z0...z1 and z1...∞ with simple integrands.
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If we define (from
∫
exp z · (z2 − 1)dz with some coefficients)

Iz2(z) ≡ exp(γz/R)

[
(γz/R)2 − 2(γz/R) + 2

(γz0/R)2
− 1

]
(16)

the ϕ∆ can be expressed through

i0 = βIz2(z1)− 2βIz2(z0)− eγz1/R (17)

i1 = βIz2(z0)− βIz2(z1) + eγz1/R (18)

as

ϕ∆(k, z, ρ = 0) =
eδϕ0

πR
·R/γ · (i1k + i0) · cosh(γz/R) (19)

And the mean value on z potential in the working volume (when |z| < 0.5z0)

<ϕ∆(k)>z=
1

0.5z0

eδϕ0

πR
·R/γ · (i1k + i0) · sinh(γ · 0.5z0/R) (20)

From this equation1 the best k coefficient can be find. In this approximation the best

coefficient k is

kopt = −i0/i1 =
2βIz2(z0)− βIz2(z1) + eγz1/R

βIz2(z0)− βIz2(z1) + eγz1/R
(21)

where Iz2(z) is defined in eq. (16). For β = 0.9, z0/R = 2 we get k = 2.18.

1you may notice, that the best k may also be found from eq. (19). But we are still using the equation
(20), because it is the solution of the equation (10), that was used to initially formulate the problem
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