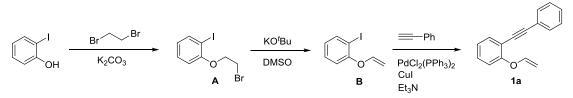
Supporting Information

Visible Light-induced Cyclization/aromatization of 2-Vinyloxy Arylalkynes: Synthesis of Thio-substituted Dibenzofuran Derivatives

Hui Chen,^[a] Yunyun Yan,^[b] Niuniu Zhang,^[a] Zuyu Mo,^{*[a]} Yanli Xu,^{*[a, c]} and Yanyan Chen^{* [a, c]}

[a] College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China.
[b] Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, People's Republic of China.
[c] Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China.

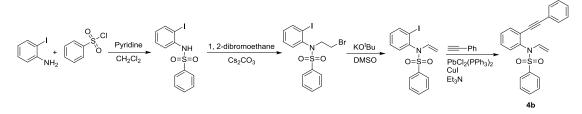

Table of Contents	
General Information	S2
Experimental Procedures	
General procedure for the synthesis of substrates 1, 2 and 4	S2
Photoreactor configuration	S4
General procedure for the synthesis of compound 3	S4
Typical experimental procedure for the large scale synthesis of product 3a	S4
Condition optimization	S5
General procedure for the synthesis of compound 5ba	S5
Controlled experiments	S6
Photophysical Properties	S9
References	S13
Analytical Data of Products	S13
Copies of ¹ H NMR and ¹³ C NMR spectra of products	S23
The X-ray crystal data of 3a	S 51

General information.

Column chromatography was performed on silica gel (100-200, 300–400 mesh). NMR spectra were obtained using a Bruker Avance 400/600 spectrometer (¹H at 400/600 MHz and ¹³C at 100/150 MHz). Chemical shifts were reported in ppm. ¹H NMR spectra were referenced to CDCl₃(7.26 ppm), and ¹³C-NMR spectra were referenced to CDCl₃(7.0 ppm). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz. High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (Agilent Technologies 7250 GCQTOF) equipped with EI ionization source and Exactive Mass Spectrometer (Thermo Scientific, USA) equipped with ESI or APCI ionization source. UV-Vis spectroscopy was performed on a UV-Vis spectrophotometer (Shimadzu UV2700) and all fluorescence spectra were recorded using a spectrofluorometer (Shimadzu RF-6000). Unless stated otherwise, commercial reagents were used without further purification.

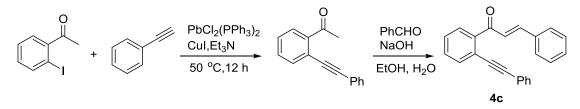
General Procedure for the Synthesis of Substrate 1, 2 and 4.

Preparation of Substrate 1 and 4a.¹

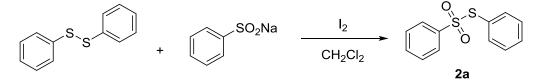

To a stirred solution of 2-iodophenol (20 mmol, 4.4 g) and 1,2-dibromoethane (60 mmol, 11.28 g) in mixture solvent of DMF and acetone (50 mL, V_{DMF} : $V_{\text{acetone}} = 3 : 2$) was added K₂CO₃ (60 mmol, 8.28 g), and the resulting mixture was stirred at 80 °C for overnight. Then the reaction was quenched with water (10 mL), and extracted with EtOAc (20 mL x 3). The organic layer was dried with Na₂SO₄, and concentrated by rotary evaporator under reduced pressure. The residue was purified by flash column chromatography to give **A** as colorless oil in 40% yield (2.61 g).

To a stirred solution of **A** (8 mmol, 2.61 g) in DMSO (50 mL) at room temperature at nitrogen atmosphere was added KO^tBu (12 mmol, 1.344 g) in three times. The resulting mixture was stirred for additional 2 h. Then the reaction was quenched with water (10 mL), and extracted with EtOAc (20 mL x 3). The combined organic layer was dried with Na₂SO₄ and concentrated by rotary evaporator under reduced pressure. The residue was purified by flash column chromatography to give **B** as yellow oil in 98% yield (1.97 g).

A solution of **B** (8 mmol, 1.97 g), phenyl acetylene (12 mmol, 1.22 g), $Pd(PPh_3)_2Cl_2$ (0.16 mmol, 112 mg) and CuI (0.4 mmol, 76 mg) in Et₃N (30 mL) was stirrer at room temperature at nitrogen atmosphere for 3 h. The reaction was quenched with water (10 mL) and extracted with EtOAc (20 mL x 3). The combined organic layer was dried


with Na₂SO₄ and concentrated by rotary evaporator under reduced pressure. The residue was purified by flash column chromatography to give **1a** as yellow oil in 98% yield (1.76 g). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, *J* = 10.4, 5.5 Hz, 3H), 7.45 – 7.34 (m, 4H), 7.19 – 7.07 (m, 2H), 6.76 (dd, *J* = 13.7, 6.1 Hz, 1H), 4.86 (d, *J* = 13.7 Hz, 1H), 4.54 (d, *J* = 6.1 Hz, 1H). The NMR data are consistent with the reported literature.^[1]

Preparation of 4b.²

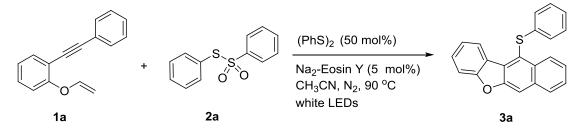

The *N*-(2-(phenylethynyl)phenyl)-*N*-vinylbenzenesulfonamide **4b** was synthesized according to the literature procedures.² Yellow oil (2.01g, 56%); ¹H NMR (600 MHz, CDCl₃) δ 7.65 (d, *J* = 7.6 Hz, 2H), 7.48 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.29 - 7.18 (m, 9H), 7.12 (dd, *J* = 15.5, 8.9 Hz, 1H), 7.03 (d, *J* = 7.6 Hz, 1H), 4.23 (d, *J* = 8.9 Hz, 1H), 3.75 (d, *J* = 15.5 Hz, 1H). The NMR data are consistent with the reported literature.²

Preparation of 4c.³

The (*E*)-3-phenyl-1-(2-(phenylethynyl)phenyl)prop-2-en-1-one **4c** was synthesized according to the literature procedures.³ Yellow solid (443 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 6.4, 5.5 Hz, 1H), 7.68 (s, 1H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.62 – 7.55 (m, 3H), 7.51 – 7.42 (m, 2H), 7.37 – 7.32 (m, 5H), 7.25 (dd, *J* = 4.8, 2.3 Hz, 1H), 7.20 (t, *J* = 7.3 Hz, 2H). The NMR data are consistent with the reported literature.³

Preparation of Substrate 2.⁴

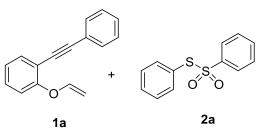
To a stirred solution of sodium sulfinate (6.4 mmol, 1.05 g) and disulfide (2 mmol, 436 mg) in CH_2Cl_2 (20 mL) was added I_2 (4 mmol, 1.02 g) at room temperature. The reaction was detected by TLC until the disulfide was consumed, then CH_2Cl_2 (50 mL)

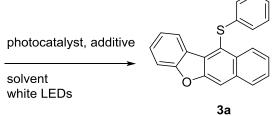

was added, followed by aqueous $Na_2S_2O_3$ (1 M, 10 mL). The organic layer was washed with H_2O (50 mL x 3) and dried with Na_2SO_4 . The organic layer was concentrated under reduced pressure. The residue was purified by flash column chromatography to give **2a** as colorless crystal in 94% yield (470 mg).

Photoreactor configuration

Reactions were irradiated by a simple photoreactor which is consist of a 30 W white LED lamp and heating mantle, and the inside of reaction box was equipped with tin foil to reflect light. The distance between lamp and the quartz tube was 2 cm. And the temperature of reaction box was 90 $^{\circ}$ C measured by a standard alcohol thermometer.

General Procedure for the Synthesis of Compound 3.

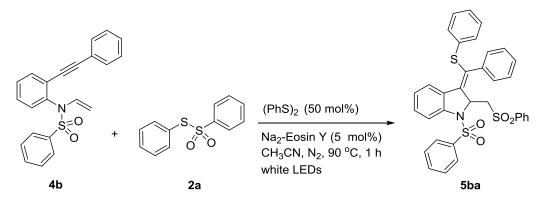



A solution of **1a** (44 mg, 0.2 mmol), **2a** (75 mg, 0.3 mmol), 1,2-diphenyldisulfane (0.1 mmol, 21.8 mg) and Na₂-Eosin Y (0.01 mmol, 7 mg) in CH₃CN (2 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 12 h. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **3a** in 70% yield.

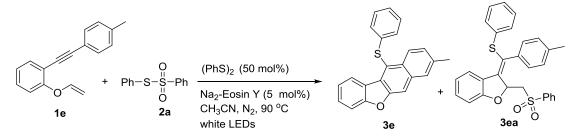
Typical experimental procedure for the synthesis of product 3a in 1mmol scale.

A solution of **1a** (220 mg, 1 mmol), **2a** (375 mg, 1.5 mmol), 1,2-diphenyldisulfane (0.5 mmol, 109 mg) and Na₂-Eosin Y (0.05 mmol, 35 mg) in CH₃CN (5 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 12 h. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **3a** in 59% yield (192 mg).

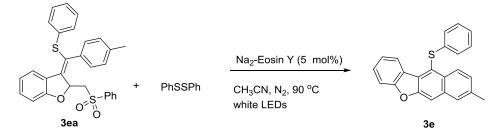
Condition Optimization



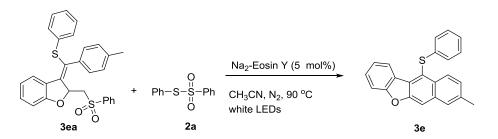
Entry	Photocatalyst	Tem.	Additive (mol%)	Solvent	Yield (%)
		(°C)			
1	Na ₂ -Eosin Y	80	no	CH ₃ CN	55
2	no	80	no	CH ₃ CN	trace
3	Eosin Y	80	no	CH ₃ CN	31
4	$Mes\text{-}AcrPh^{+}BF_{4}$	80	no	CH ₃ CN	trace
5	Rhodamine B	80	no	CH ₃ CN	50
6	Bengal Rose	80	no	CH ₃ CN	43
7	Ru(bpy) ₃ Cl ₂	80	no	CH ₃ CN	trace
8	Ir(ppy) ₃	80	no	CH ₃ CN	20
9	$Ir(bpy)(ppy)_2PF_6$	80	no	CH ₃ CN	25
10	Na ₂ -Eosin Y	80	no	DCE	10
11	Na ₂ -Eosin Y	80	no	DMF	0
12	Na ₂ -Eosin Y	80	no	toluene	0
13	Na ₂ -Eosin Y	80	no	EtOAc	18
14	Na ₂ -Eosin Y	80	no	1,4-dioxane	16
15	Na ₂ -Eosin Y	90	no	CH ₃ CN	60
16	Na ₂ -Eosin Y	100	no	CH ₃ CN	56
17	Na ₂ -Eosin Y	90	(PhS) ₂ (20 mol%)	CH ₃ CN	65
18	Na ₂ -Eosin Y	90	(PhS) ₂ (50 mol%)	CH ₃ CN	70
19^b	Na ₂ -Eosin Y	90	(PhS) ₂ (50 mol%)	CH ₃ CN	trace
20^c	Na ₂ -Eosin Y	90	$(PhS)_2$ (50 mol%)	CH ₃ CN	0

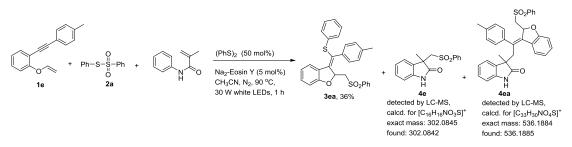

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol) and photocatalyst (5 mol%) in solvent (2.0 mL) under the irradiation of 30 W white LEDs at 80 °C at nitrogen atmosphere was stirred for 12 h, data in parentheses are the yields of isolated products. ^{*b*}The reaction was performed at air atmosphere. ^{*c*}The reaction was performed in the dark.

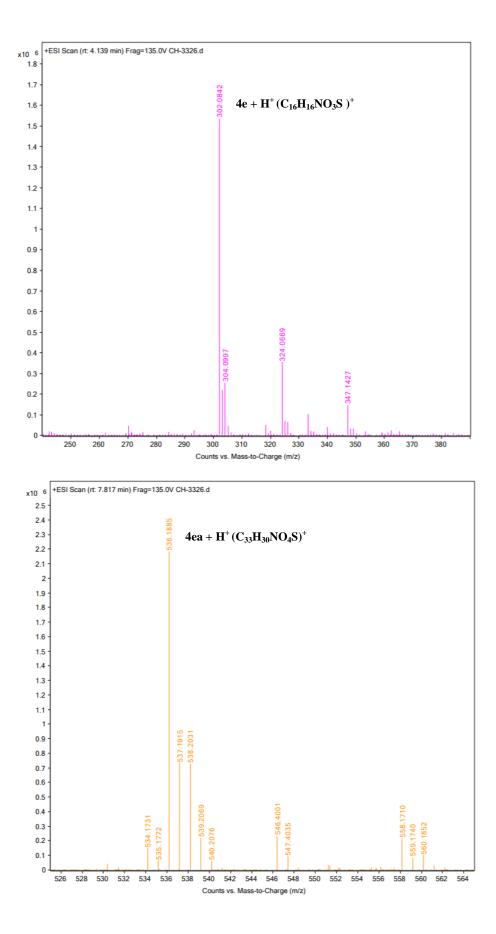
General Procedure for the Synthesis of Compound 5ba.



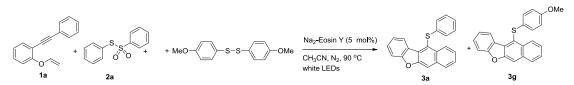
A solution of **4b** (72 mg, 0.2 mmol), **2a** (75 mg, 0.3 mmol), 1,2-diphenyldisulfane (0.1 mmol, 21.8 mg) and Na₂-Eosin Y (0.01 mmol, 7 mg) in CH₃CN (2 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 1 h. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **5ba**. Yellow solid (85.3 mg, 70%); $R_f = 0.3$ (petroleum ether/ethyl acetate = 10:1); mp: 77-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.69 (m, 2H), 7.56 – 7.37 (m, 7H), 7.29 (dd, *J* = 8.2, 7.6 Hz, 3H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.10 – 6.96 (m, 7H), 6.95 – 6.91 (m, 2H), 6.64 – 6.59 (m, 1H), 6.04 (d, *J* = 7.5 Hz, 1H), 5.42 (dd, *J* = 6.0, 3.3 Hz, 1H), 4.09 (dd, *J* = 15.2, 6.0 Hz, 1H), 3.96 (dd, *J* = 15.2, 3.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 140.1, 136.4, 136.3, 135.1, 133.5, 133.4, 132.3, 131.5, 131.0, 130.5, 129.4, 129.1, 129.0, 128.8, 128.4, 128.2, 127.8, 127.5, 125.3, 124.0, 118.6, 63.2, 58.9. HRMS (ESI): m/z [M+NH₄]⁺ calcd for C₃₄H₃₁N₂O₄S₃: 627.1440, found 627.1444.


Controlled experiments


A solution of **1e** (0.2 mmol, 68 mg), **2a** (0.3 mmol, 75 mg), phenyl disulfide (0.1 mmol, 22 mg) and Na₂-Eosin Y (0.01 mmol, 7 mg) in CH₃CN (2 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 45 min. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **3ea** in 81% yield. When the reaction was carried out at 47 °C, the yield of **3ea** was 22%.


A solution of **3ea** (48 mg, 0.1 mmol), phenyl disulfide (37.5 mg, 0.15 mmol) and Na₂-Eosin Y (0.005 mmol, 3.5 mg) in CH₃CN (1 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 12 h. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **3e** in 69% yield.

A solution of **3ea** (48.4 mg, 0.1 mmol), **2a** (37.5 mg, 0.15 mmol) and Na₂-Eosin Y (0.005 mmol, 3.5 mg) in CH₃CN (1 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 12 h. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **3e** in 64% yield.

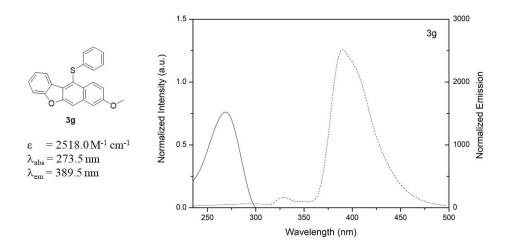


A solution of **1e** (0.2 mmol, 68 mg), **2a** (0.3 mmol, 75 mg), phenyl disulfide (0.1 mmol, 22 mg) and *N*-phenylmethacrylamide (0.6 mmol, 96 mg) in CH₃CN (2 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 1 h. Then the mixture was analyzed by LC-MS, radical adducts **4e** and **4ea** were detected. The mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **3ea** in 36% yield

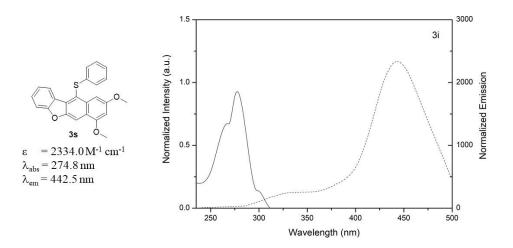
$$\begin{array}{c} & & & \\ & & & \\ & & & \\$$

A solution of **1e** (0.2 mmol, 68 mg), **2a** (0.3 mmol, 75 mg), phenyl disulfide (0.1 mmol, 22 mg) in CH₃CN (2 mL) in a quartz tube was stirred at 90 $^{\circ}$ C under the irradiation of 254 nm light (6 W) at nitrogen atmosphere for 8 h. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **3ea** and **3e** in 43% and 14% yield, respectively.

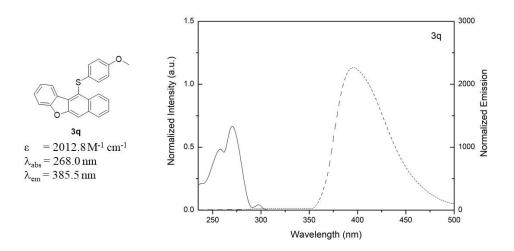
A solution of **1a** (0.2 mmol, 44 mg,), **2a** (0.3 mmol, 75 mg), di(4-methoxyphenyl) persulfide (0.3 mol, 83.4 mg) and Na₂-Eosin Y (0.005 mmol, 7 mg) in CH₃CN (2 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 12 h. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **3a** in 16% yield and **3g** in 47% yield.


A solution of **2a** (0.2 mmol, 50 mg), di(4-methoxyphenyl) disulfide (0.2 mol, 55.6 mg) and Na₂-Eosin Y (0.005 mmol, 7 mg) in CH₃CN (2 mL) in a quartz tube was stirred at 90 °C under the irradiation of 30 W white LEDs at nitrogen atmosphere for 45 min. Then the mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography to give **2g** in 20% yield, **2a** and di(4-methoxyphenyl) disulfide were recoveries in 75% and 71%, respectively.

Photophysical Properties


The photophysical properties of compounds 3g, 3i, 3q, 3s, 3u, 3w and 3y in DCE.

Compounds	$\lambda_{abs}^{[a]}[nm]$	$\lambda_{em} [b] [nm]$	$\epsilon [M^{-1} cm^{-1}]$
3g	273.5	389.5	2518.0
3i	274.8	442.5	2334.0
3q	268.0	385.5	2012.8
3s	273.5	391.5	2391.0
3u	267.8	382.5	1944.3
3w	273.5	394.5	2364.0
3у	273.5	381.5	2409.0


^[a] Absorption maxima in DCE (10⁻⁵ mol/L). ^[b] Emission maxima in DCE (10⁻⁵ mol/L).

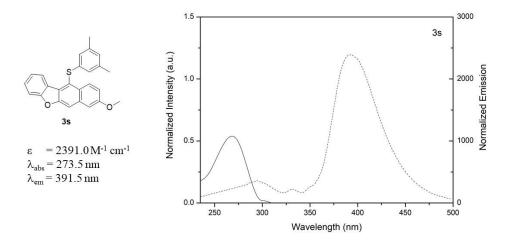

Figure 1. UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) obtained for compounds **3g** in DCE.

Figure 2. UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) obtained for compounds **3i** in DCE.

Figure 3. UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) obtained for compounds **3q** in DCE.

Figure 4. UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) obtained for compounds **3s** in DCE.

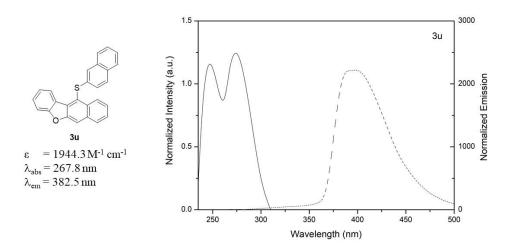


Figure 5. UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) obtained for compounds **3u** in DCE.

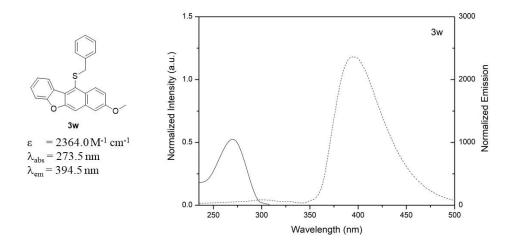
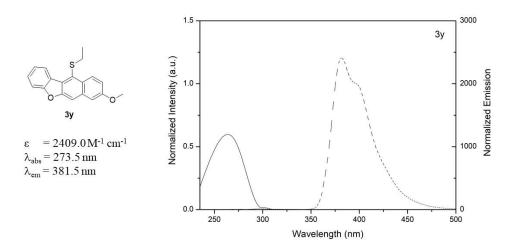
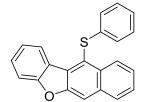



Figure 6. UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) obtained for compounds **3w** in DCE.

Figure 7. UV/Vis absorption spectra (solid lines) and fluorescence emission spectra (dashed line) obtained for compounds **3**y in DCE.

References

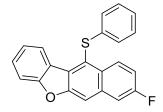
1. Norifumi, S.; Keiichi, N.; Ken, T. Rhodium-Catalyzed Intramolecular Cyclization of Naphthol- or Phenol-Linked 1,6-Enynes Through the Cleavage and Formation of sp² C–O Bonds. *Angew. Chem. Int. Ed.* **2012**, *51*, 5976.


2. Sadhan, J.; Ajay, V.; Rahul, K.; Sangit, K. Visible-light-induced oxidant and metal-free dehydrogenative cascade trifluoromethylation and oxidation of 1,6-enynes with water. *Chem. Sci.* **2017**, *8*, 6633.

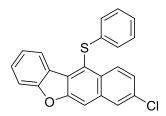
3. Wu Y.-N.; Fu R.; Wang N.-N.; Hao W.-J.; Li G.-G.; Tu S.-J.; Jiang B. Catalytic Sulfur-Enabled Dehydrobicyclization of 1,6-Enynes toward Arylated Indeno[1,2-*c*]thiophenes. *J. Org. Chem.* **2016**, *81*, 4762.

4. Fujiki, K.; Tanifuji, N.; Sasaki, Y.; Yokoyama, T. New and Facile Synthesis of Thiosulfonates from Sulfinate/Disulfide/I₂ System. *Synthesis*. **2002**, 343.

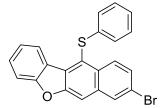
Analytical Data of Products


11-(phenylthio)naphtho[2,3-b]benzofuran (3a)

White solid (45.6 mg, 70%); $R_f = 0.6$ (petroleum ether); mp: 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (t, J = 7.5 Hz, 2H), 8.01 – 7.94 (m, 2H), 7.53 – 7.45 (m, 4H), 7.27 (dd, J = 10.8, 4.1 Hz, 1H), 7.10 – 6.98 (m, 5H). ¹³C NMR (100 MHz,

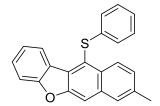

CDCl₃) δ 158.0, 154.2, 137.3, 133.4, 132.7, 130.4, 129.1, 129.1, 128.3, 126.5, 126.3, 126.0, 125.7, 125.4, 125.1, 124.0, 123.0, 122.4, 111.3, 109.5. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₄OS, 326.0765; found, 326.0763.

8-fluoro-11-(phenylthio)naphtho[2,3-b]benzofuran (3b)

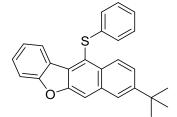

White solid (34 mg, 50%); $R_f = 0.6$ (petroleum ether); mp: 123-125 °C.¹H NMR (400 MHz, CDCl₃) δ 8.72 – 8.57 (m, 2H), 7.93 (s, 1H), 7.60 – 7.46 (m, 3H), 7.31 – 7.23 (m, 2H), 7.11 (t, J = 7.4 Hz, 2H), 7.07 – 6.98 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.0 (d, C-F, ¹ $J_{C-F} = 247.8$ Hz), 157.8, 155.0, 137.0, 134.3 (d, C-F, ³ $J_{C-F} = 9.8$ Hz), 129.8 (d, C-F, ⁴ $J_{C-F} = 2.4$ Hz), 129.6, 129.2, 129.1, 128.8 (d, C-F, ³ $J_{C-F} = 9.2$ Hz), 126.5, 125.5, 124.9, 123.8, 123.1, 122.8, 116.08 (d, C-F, ² $J_{C-F} = 25.3$ Hz), 111.3, 111.2 (d, C-F, ² $J_{C-F} = 21.5$ Hz), 108.9 (d, C-F, ⁴ $J_{C-F} = 5.5$ Hz). HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₃FOS, 344.0671; found, 344.0674.

8-chloro-11-(phenylthio)naphtho[2,3-b]benzofuran (3c)

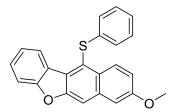
White solid (39.6 mg, 55%); $R_f = 0.6$ (petroleum ether); mp: 144-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (dd, J = 16.3, 8.5 Hz, 2H), 7.83 (d, J = 2.1 Hz, 1H), 7.77 (s, 1H), 7.45 – 7.37 (m, 2H), 7.31 (dd, J = 9.2, 2.1 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.02 (dd, J = 10.2, 4.6 Hz, 2H), 6.96 – 6.89 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 154.8, 136.9, 133.9, 132.3, 130.8, 130.5, 129.3, 129.2, 127.8, 126.7, 126.6, 126.5, 125.6, 125.0, 123.6, 123.1, 122.8, 111.3, 108.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₃ClOS, 360.0376; found, 360.0379.


8-bromo-11-(phenylthio)naphtho[2,3-b]benzofuran (3d)

White solid (47.1 mg, 58%); $R_f = 0.6$ (petroleum ether); mp: 167-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.56 – 8.51 (m, 1H), 8.41 (d, *J* = 9.1 Hz, 1H), 7.98 (d, *J* = 1.9 Hz,

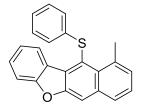

1H), 7.74 (s, 1H), 7.44 – 7.38 (m, 3H), 7.18 (ddd, J = 8.1, 6.3, 2.0 Hz, 1H), 7.03 – 6.98 (m, 2H), 6.94 –6.89 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 154.7, 136.9, 134.3, 131.0, 130.6, 130.0, 129.4, 129.2, 129.0, 127.8, 126.6, 125.6, 125.1, 123.6, 123.2, 122.9, 120.7, 111.4, 108.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₃BrOS, 405.9850; found, 405.9858.

8-methyl-11-(phenylthio)naphtho[2,3-b]benzofuran (3e)

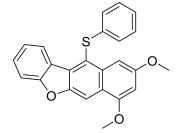

White solid (44.7 mg, 65%); $R_f = 0.6$ (petroleum ether); mp: 118-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 8.56 (d, J = 8.8 Hz, 1H), 7.88 (s, 1H), 7.71 (s, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.32 – 7.20 (m, 3H), 7.08 (dd, J = 10.4, 4.4 Hz, 2H), 7.02 (d, J = 7.3 Hz, 2H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 154.4, 137.5, 136.2, 133.7, 131.0, 129.5, 129.1, 128.8, 128.1, 127.2, 126.5, 125.8, 125.3, 124.9, 124.1, 122.9, 122.1, 111.2, 108.9, 21.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₃H₁₆OS, 320.0922; found, 340.0929.

8-(tert-butyl)-11-(phenylthio)naphtho[2,3-b]benzofuran (3f)

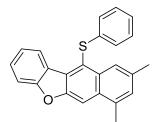
White solid (46 mg, 60%); $R_f = 0.5$ (petroleum ether); mp: 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (t, J = 8.6 Hz, 2H), 7.89 (s, 1H), 7.80 (s, 1H), 7.50 (dd, J = 9.1, 1.6 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.37 (dd, J = 7.2, 1.0 Hz, 1H), 7.16 (d, J = 7.7 Hz, 1H), 7.01 – 6.88 (m, 5H), 1.33 (d, J = 2.2 Hz, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 157.9, 154.4, 149.1, 137.4, 133.5, 131.0, 129.7, 129.1, 128.8, 126.5, 125.7, 125.3, 124.9, 124.9, 124.1, 123.2, 122.9, 121.8, 111.2, 109.6, 34.9, 31.2. HRMS (EI) m/z: [M]⁺ calcd for C₂₆H₂₂OS, 382.1391; found, 382.1400.


8-methoxy-11-(phenylthio)naphtho[2,3-b]benzofuran (3g)

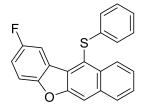
Light yellow solid (50.6 mg, 71%); $R_f = 0.3$ (petroleum ether/ethyl acetate = 200:1);


mp: 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, J = 12.3, 8.6 Hz, 2H), 7.77 (s, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.36 (dt, J = 8.1, 4.1 Hz, 1H), 7.19 – 7.14 (m, 1H), 7.13 (d, J = 2.1 Hz, 1H), 7.06 (dd, J = 9.3, 2.6 Hz, 1H), 7.02 – 6.97 (m, 2H), 6.96 – 6.89 (m, 3H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 157.6, 154.9, 137.4, 134.9, 129.1, 128.5, 128.2, 128.1, 127.7, 126.4, 125.3, 124.6, 124.2, 122.9, 122.4, 118.8, 111.2, 108.4, 105.9, 55.4. HRMS (EI) m/z: [M]⁺ calcd for C₂₃H₁₆O₂S, 356.0871; found, 356.0878.

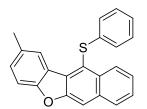
10-methyl-11-(phenylthio)naphtho[2,3-b]benzofuran (3h)


White solid (30 mg, 44%); $R_f = 0.6$ (petroleum ether); mp: 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 8.0 Hz, 1H), 7.98 (s, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.47 (dd, J = 17.7, 7.5 Hz, 2H), 7.39 – 7.33 (m, 1H), 7.27 (d, J = 6.8 Hz, 1H), 7.23 – 7.20 (m, 1H), 7.08 (t, J = 7.7 Hz, 2H), 7.00 – 6.86 (m, 3H), 3.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 153.3, 139.5, 136.6, 135.2, 132.7, 132.7, 130.2, 129.2, 128.9, 128.0, 125.8, 125.7, 125.3, 124.8, 124.5, 122.8, 122.2, 111.2, 111.1, 26.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₃H₁₆OS, 340.0922; found, 340.0931.

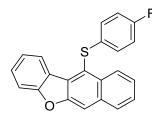
7,9-dimethoxy-11-(phenylthio)naphtho[2,3-b]benzofuran (3i)


Yellow solid (41.7 mg, 54%); $R_f = 0.3$ (petroleum ether/ethyl acetate = 200:1); mp: 143-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, J = 7.9, 0.6 Hz, 1H), 8.31 (s, 1H), 7.48 (dd, J = 8.0, 5.1 Hz, 2H), 7.43 – 7.37 (m, 1H), 7.22 – 7.18 (m, 1H), 7.05 – 6.93 (m, 5H), 6.48 (d, J = 2.2 Hz, 1H), 3.93 (s, 3H), 3.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 158.0, 156.6, 152.7, 137.2, 134.6, 130.5, 129.0, 128.8, 126.7, 125.3, 124.9, 124.1, 122.7, 121.8, 120.2, 111.3, 104.9, 98.0, 96.0, 55.9, 55.4. HRMS (EI) m/z: [M]⁺ calcd for C₂₄H₁₈O₃S, 386.0977; found, 386.0980.

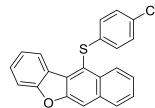
7,9-dimethyl-11-(phenylthio)naphtho[2,3-b]benzofuran (3j)


White solid (41 mg, 58%); $R_f = 0.6$ (petroleum ether); mp: 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (dd, J = 7.8, 0.6 Hz, 1H), 8.30 (s, 1H), 8.06 – 8.01 (m, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.40 – 7.34 (m, 1H), 7.17 (dd, J = 11.0, 4.0 Hz, 1H), 7.13 (s, 1H), 7.02 – 6.90 (m, 5H), 2.64 (s, 3H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 153.8, 137.6, 134.9, 134.1, 133.3, 131.0, 129.7, 129.6, 129.1, 128.8, 126.3, 125.2, 125.0, 124.1, 123.1, 122.8, 121.7, 111.2, 106.2, 22.0, 20.1. HRMS (EI) m/z: [M]⁺ calcd for C₂₄H₁₈OS, 354.1078; found, 354.1078.

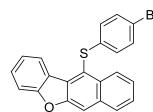
2-fluoro-11-(phenylthio)naphtho[2,3-b]benzofuran (3k)


White solid (32.4 mg, 47%); $R_f = 0.4$ (petroleum ether); mp: 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, J = 8.3, 0.9 Hz, 1H), 8.38 (dd, J = 8.9, 2.7 Hz, 1H), 8.06 – 7.98 (m, 2H), 7.60 – 7.47 (m, 2H), 7.49 (dd, J = 8.9, 4.1 Hz, 1H), 7.22 (td, J = 8.8, 2.8 Hz, 1H), 7.16 – 7.09 (m, 2H), 7.08 – 7.01 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.8 (d, C-F, ¹ $J_{C-F} = 239.2$ Hz), 154.9, 154.0, 136.9, 133.6, 132.6, 129.8 (d, C-F, ⁴ $J_{C-F} = 3.8$ Hz), 129.2, 128.3, 126.6, 126.5, 126.1, 125.9, 125.5, 124.9 (d, C-F, ³ $J_{C-F} = 10.7$ Hz), 123.0, 116.3 (d, C-F, ² $J_{C-F} = 25.9$ Hz), 111.8 (d, C-F, ³ $J_{C-F} = 9.1$ Hz), 111.2 (d, C-F, ² $J_{C-F} = 26.6$ Hz), 109.8. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₃FOS, 344.0671; found, 344.0668.

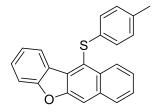
2-methyl-11-(phenylthio)naphtho[2,3-b]benzofuran (31)


White solid (35.8 mg, 52%); $R_f = 0.6$ (petroleum ether); mp: 167-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 8.7 Hz, 1H), 8.41 (d, J = 0.4 Hz, 1H), 7.89 (d, J = 9.8 Hz, 2H), 7.47 – 7.38 (m, 2H), 7.34 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 8.3 Hz, 1H), 7.06 – 6.92 (m, 5H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 154.5, 137.5, 133.3, 132.5, 132.4, 130.4, 130.1, 129.1, 128.3, 126.7, 126.2, 126.0, 125.3, 125.4, 125.1, 123.9, 122.3, 110.8, 109.5, 21.5. HRMS (EI) m/z: [M]⁺ calcd for C₂₃H₁₆OS,

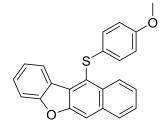
11-((4-fluorophenyl)thio)naphtho[2,3-b]benzofuran (**3m**)


White solid (32 mg, 47%); $R_f = 0.5$ (petroleum ether); mp: 119-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.64 – 8.57 (m, 2H), 7.95 – 7.88 (m, 2H), 7.49 – 7.41 (m, 4H), 7.26 – 7.21 (m, 1H), 6.97 – 6.92 (m, 2H), 6.76 – 6.69 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.1 (d, C-F, ¹*J*_{*C*-*F*} = 245.1 Hz), 158.0, 154.2, 133.4, 132.4, 132.3 (d, C-F, ⁴*J*_{*C*-*F*} = 3.1 Hz), 130.3, 129.2, 128.5 (d, C-F, ³*J*_{*C*-*F*} = 8.0 Hz) 128.4, 126.3, 125.8, 125.7, 125.0, 123.9, 123.0, 122.7, 116.4 (d, C-F, ²*J*_{*C*-*F*} = 22.1 Hz), 111.4, 109.7. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₃FOS, 344.0671; found, 344.0676.

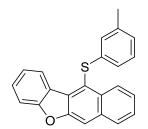
11-((4-chlorophenyl)thio)naphtho[2,3-b]benzofuran (**3n**)


White solid (41.8 mg, 58%); $R_f = 0.5$ (petroleum ether); mp: 151-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.46 (m, 2H), 7.90 – 7.80 (m, 2H), 7.43 – 7.38 (m, 4H), 7.20 – 7.15 (m, 1H), 6.98 – 6.91 (m, 2H), 6.87 – 6.79 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 154.1, 135.9, 133.4, 132.4, 131.2, 130.4, 129.3, 128.4, 127.7, 126.4, 125.9, 125.7, 124.9, 123.8, 123.1, 121.7, 111.4, 109.8. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₃ClOS, 360.0376; found, 360.0373.

11-((4-bromophenyl)thio)naphtho[2,3-b]benzofuran (**3**0)

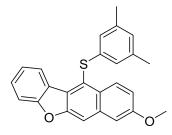

White solid (51.2 mg, 63%); $R_f = 0.5$ (petroleum ether); mp: 163-165 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.48 (m, 2H), 7.89 (s, 1H), 7.86 (dd, J = 7.1, 2.2 Hz, 1H), 7.44 – 7.37 (m, 4H), 7.21 – 7.15 (m, 1H), 7.10 – 7.06 (m, 2H), 6.80 – 6.73 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 154.1, 136.6, 133.4, 132.4, 132.1, 130.4, 129.3, 128.4, 128.0, 126.4, 125.9, 125.7, 124.9, 123.7, 123.1, 121.5, 119.0, 111.4, 109.9. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₃BrOS, 405.9850; found, 405.9854.

11-(p-tolylthio)naphtho[2,3-b]benzofuran (**3p**)

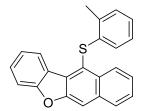

White solid (44.2 mg, 65%); $R_f = 0.7$ (petroleum ether); mp: 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 7.6 Hz, 2H), 7.87 – 7.83 (m, 2H), 7.42 – 7.34 (m, 4H), 7.17 (t, J = 7.5 Hz, 1H), 6.86 – 6.78 (m, 4H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 154.2, 135.3, 133.8, 133.4, 132.7, 130.3, 129.9, 129.0, 128.3, 126.8, 126.3, 126.1, 125.6, 125.2, 124.1, 123.0, 123.0, 111.3, 109.4, 20.9. HRMS (EI) m/z: [M]⁺ calcd for C₂₃H₁₆OS, 340.0922; found, 340.0928.

11-((4-methoxyphenyl)thio)naphtho[2,3-b]benzofuran (3q)

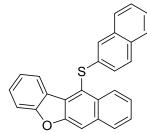
Light yellow solid (47 mg, 66%); $R_f = 0.3$ (petroleum ether/ethyl acetate = 200:1); mp: 132.5-134.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 – 8.62 (m, 2H), 7.91 – 7.84 (m, 2H), 7.47 – 7.39 (m, 4H), 7.26 – 7.20 (m, 1H), 6.99 – 6.94 (m, 2H), 6.60 – 6.53 (m, 2H), 3.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 158.0, 154.2, 133.4, 132.5, 130.1, 129.0, 128.9, 128.3, 127.9, 126.2, 126.1, 125.5, 125.1, 124.1, 124.0, 123.0, 114.9, 111.3, 109.3, 55.3. HRMS (EI) m/z: [M]⁺ calcd for C₂₃H₁₆O₂S, 356.0871; found, 356.0872.


11-(m-tolylthio)naphtho[2,3-b]benzofuran (3r)

White solid (40.8 mg, 60%); $R_f = 0.7$ (petroleum ether); mp: 108-110 °C.¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 7.9 Hz, 2H), 7.95 (s, 1H), 7.94 – 7.89 (m, 1H), 7.49 – 7.41 (m, 4H), 7.23 (t, J = 7.5 Hz, 1H), 6.89 (t, J = 7.7 Hz, 1H), 6.85 (s, 1H), 6.76 (d, J = 7.5 Hz, 1H), 6.69 (d, J = 7.8 Hz, 1H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 154.2, 138.9, 137.0, 133.4, 132.7, 130.4, 129.0, 129.0, 128.3, 127.0, 126.3, 126.3, 126.1, 125.6, 125.2, 124.0, 123.5, 123.0, 122.5, 111.3, 109.5, 21.4. HRMS (EI)

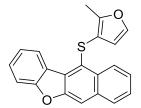

m/z: $[M]^+$ calcd for C₂₃H₁₆OS, 340.0922; found, 340.0924.

11-((3,5-dimethylphenyl)thio)-8-methoxynaphtho[2,3-b]benzofuran (3s)

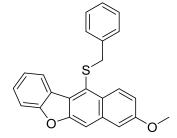

White solid (45.3 mg, 59%); $R_f = 0.4$ (petroleum ether/ethyl acetate = 250:1); mp: 135-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 7.7 Hz, 1H), 8.51 (d, J = 9.3 Hz, 1H), 7.85 (s, 1H), 7.48 (d, J = 8.1 Hz, 1H), 7.44 – 7.38 (m, 1H), 7.25 – 7.20 (m, 2H), 7.11 (dd, J = 9.4, 2.6 Hz, 1H), 6.59 (d, J = 4.6 Hz, 3H), 3.90 (s, 3H), 2.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 157.6, 154.9, 138.7, 136.9, 134.9, 128.4, 128.3, 128.2, 127.8, 127.4, 124.7, 124.3, 124.0, 122.9, 122.6, 118.6, 111.1, 108.2, 105.9, 55.4, 21.3. HRMS (APCI) m/z: [M+H]⁺ calcd for C₂₅H₂₁O₂S, 385.1257; found, 385.1258.

11-(o-tolylthio)naphtho[2,3-b]benzofuran (3t)

White solid (41.5 mg, 61%); $R_f = 0.7$ (petroleum ether); mp: 139-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.64 – 8.52 (m, 2H), 8.06 – 7.98 (m, 2H), 7.56 – 7.46 (m, 4H), 7.27 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.20 (d, J = 7.4 Hz, 1H), 6.93 (td, J = 7.4, 1.1 Hz, 1H), 6.70 (ddd, J = 8.1, 7.4, 0.8 Hz, 1H), 6.31 (dd, J = 8.0, 1.0 Hz, 1H), 2.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 154.3, 136.4, 134.7, 133.4, 132.7, 130.5, 130.2, 129.1, 128.3, 126.6, 126.3, 125.9, 125.7, 125.1, 124.9, 124.9, 123.9, 122.9, 122.0, 111.3, 109.5, 20.3. HRMS (EI) m/z: [M]⁺ calcd for C₂₃H₁₆OS, 340.0922; found, 340.0924.


11-(naphthalen-2-ylthio)naphtho[2,3-b]benzofuran (**3u**)

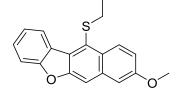
White solid (47.4 mg, 63%); $R_f = 0.5$ (petroleum ether); mp: 204-206 °C. ¹H NMR


(600 MHz, CDCl₃) δ 8.73 (t, J = 8.7 Hz, 2H), 8.08 (s, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.60 – 7.54 (m, 3H), 7.52 – 7.47 (m, 3H), 7.42 (s, 1H), 7.35 – 7.30 (m, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.18 (dd, J = 8.7, 1.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 158.0, 154.2, 134.8, 133.8, 133.4, 132.6, 131.4, 130.4, 129.1, 128.7, 128.3, 127.6, 126.9, 126.5, 126.3, 125.9, 125.7, 125.3, 125.0, 124.9, 124.2, 123.9, 123.0, 122.0, 111.3, 109.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₆H₁₆OS, 376.0922; found, 376.0919.

11-((2-methylfuran-3-yl)thio)naphtho[2,3-b]benzofuran (3v)

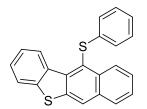
Yellow-green solid (19.8 mg, 30%); $R_f = 0.7$ (petroleum ether); mp: 119-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 7.8 Hz, 1H), 8.70 – 8.64 (m, 1H), 7.87 – 7.81 (m, 2H), 7.49 – 7.42 (m, 4H), 7.32 – 7.27 (m, 1H), 6.94 (d, J = 1.9 Hz, 1H), 5.89 (d, J = 1.9 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 154.0, 151.3, 140.7, 133.4, 132.0, 129.4, 129.0, 128.3, 126.1, 126.0, 125.2, 125.1, 124.2, 122.8, 113.2, 112.0, 111.4, 108.8, 12.3. HRMS (EI) m/z: [M]⁺ calcd for C₂₁H₁₄O₂S, 330.0715; found, 330.0713.

11-(benzylthio)-8-methoxynaphtho[2,3-b]benzofuran (3w)

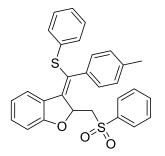


Yellow solid (32.6 mg, 44%); $R_f = 0.3$ (petroleum ether/ethyl acetate = 200:1); mp: 103-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 7.9 Hz, 1H), 8.62 (d, J = 9.3 Hz, 1H), 7.81 (s, 1H), 7.51–7.48 (m, 2H), 7.40–7.34 (m, 1H), 7.23 (d, J = 2.5 Hz, 1H), 7.16 (dd, J = 9.3, 2.6 Hz, 1H), 7.13–7.02 (m, 5H), 4.06 (s, 2H), 3.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 157.4, 154.8, 137.5, 134.7, 128.8, 128.3, 128.2, 127.7, 127.4, 127.1, 126.0, 124.4, 124.3, 122.7, 118.2, 111.1, 107.5, 105.8, 55.4, 41.0. HRMS (EI) m/z: [M]⁺ calcd for C₂₄H₁₈O₂S, 370.1028; found, 370.1026.

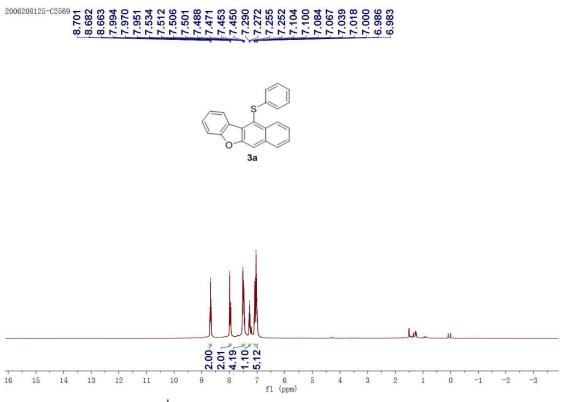
8-methoxy-11-(methylthio)naphtho[2,3-b]benzofuran (3x)


White solid (23.5 mg, 40%); $R_f = 0.4$ (petroleum ether/ethyl acetate = 250:1); mp: 134-135 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 29.0, 8.9 Hz, 2H), 7.74 (s, 1H), 7.52 – 7.41 (m, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 2.5 Hz, 2H), 3.90 (s, 3H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 157.5, 154.9, 134.8, 128.2, 128.1, 127.6, 127.5, 126. 7, 124.4, 122.9, 118.3, 111.2, 107.2, 106.0, 55.5, 19.3. HRMS (EI) m/z: [M]⁺ calcd for C₁₈H₁₄O₂S, 294.0715; found, 294.0711.

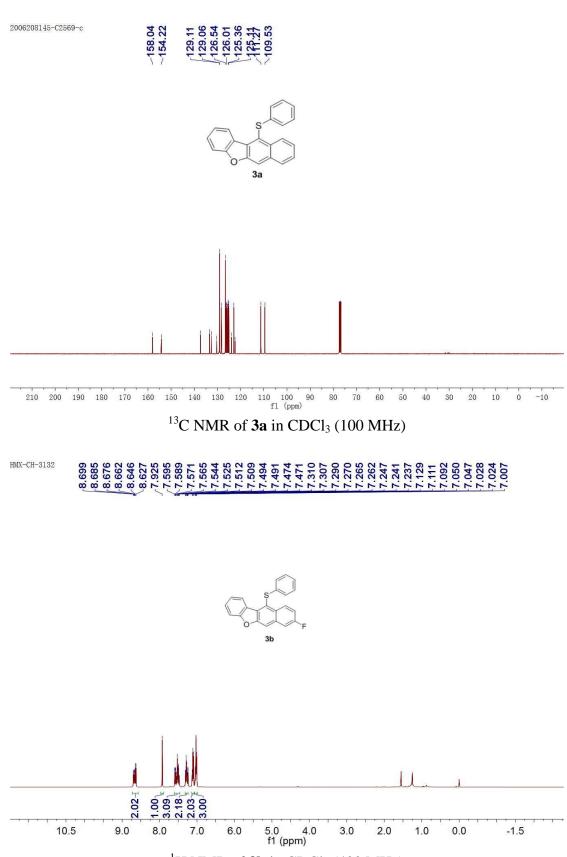
11-(ethylthio)-8-methoxynaphtho[2,3-b]benzofuran (**3y**)

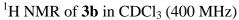

White solid (21.6 mg, 35%); $R_f = 0.4$ (petroleum ether/ethyl acetate = 250:1); mp: 95-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (dd, J = 37.4, 8.9 Hz, 2H), 7.71 (s, 1H), 7.49 – 7.39 (m, 2H), 7.30 (t, J = 7.3 Hz, 1H), 7.17 – 7.13 (m, 2H), 3.87 (s, 3H), 2.85 (q, J = 7.3 Hz, 2H), 1.08 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 157.5, 154.8, 134.7, 128.5, 128.1, 127.9, 127.3, 126.5, 124.6, 124.5, 122.8, 118.1, 111.2, 107.2, 105.8, 55.4, 30.7, 15.2. HRMS (EI) m/z: [M]⁺ calcd for C₁₉H₁₆O₂S, 308.0871; found, 308.0871.

11-(phenylthio)benzo[b]naphtho[2,3-d]thiophene (5a)

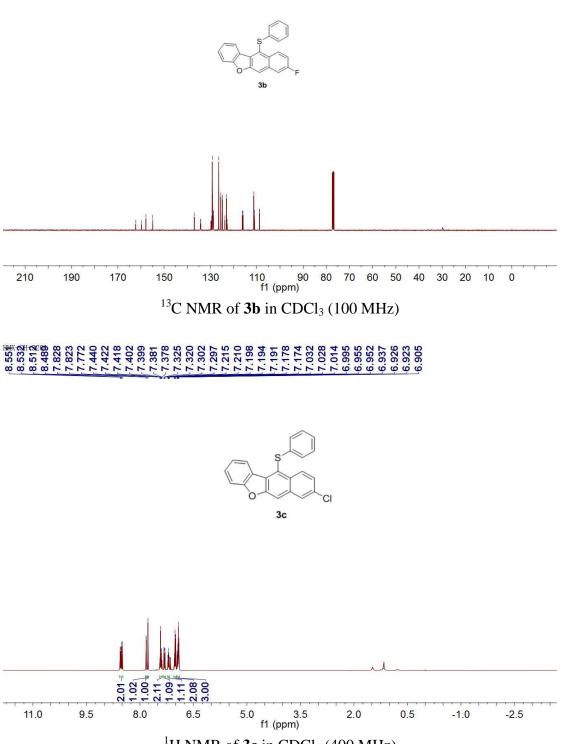

Yellow solid (20.5 mg, 30%); $R_f = 0.4$ (petroleum ether); mp: 161-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.47 (d, J = 8.2 Hz, 1H), 8.79 (dd, J = 5.7, 4.2 Hz, 1H), 8.37 (s, 1H), 7.87 (dd, J = 5.6, 3.9 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.43 – 7.38 (m, 1H), 7.35 – 7.29 (m, 1H), 7.04 (dd, J = 10.5, 4.6 Hz, 2H), 7.00 – 6.89 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (100 MHz, CDCl₃) δ 141.0, 138.6, 138.3, 137.5, 135.5, 134.2, 132.4, 129.1, 128.1, 128.1, 127.4, 126.7, 126.6, 126.5, 126.2, 125.2, 124.5, 124.1, 123.7, 122.5. HRMS (EI) m/z: [M]⁺ calcd for C₂₂H₁₄S₂, 342.0537; found, 342.0536.

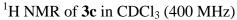
(*E*)-2-((*phenylsulfonyl*)*methyl*)-3-((*phenylthio*)(*p-tolyl*)*methylene*)-2,3-*dihydrobenzofu ran* (*3ea*)

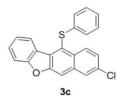


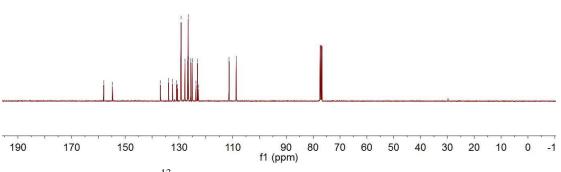

Yellow oil (78.4 mg, 81%); $R_f = 0.3$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.84 (m, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 2H), 7.07 – 7.01 (m, 7H), 6.95 (ddd, *J* = 8.6, 4.4, 1.3 Hz, 3H), 6.46 (dd, *J* = 12.5, 4.7 Hz, 2H), 6.30 (d, *J* = 7.6 Hz, 1H), 5.96 (dd, *J* = 9.6, 1.8 Hz, 1H), 3.96 (dd, *J* = 14.7, 1.8 Hz, 1H), 3.55 (dd, *J* = 14.7, 9.6 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 140.2, 139.1, 138.2, 134.2, 133.6, 132.6, 131.2, 130.6, 129.3, 129.0, 128.8, 128.5, 127.4, 127.3, 123.9, 123.8, 121.0, 111.0, 80.6, 59.9, 21.3. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₉H₂₅O₃S₂: 485.1240, found 485.1237.

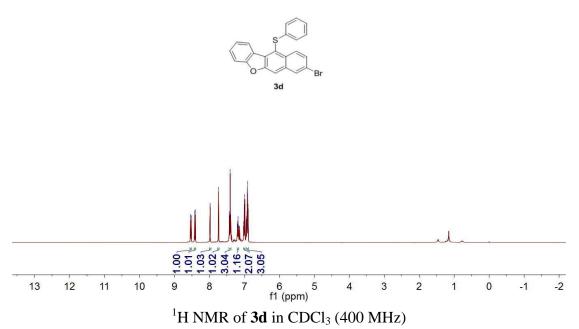
Copies of ¹H NMR and ¹³C NMR spectra of products

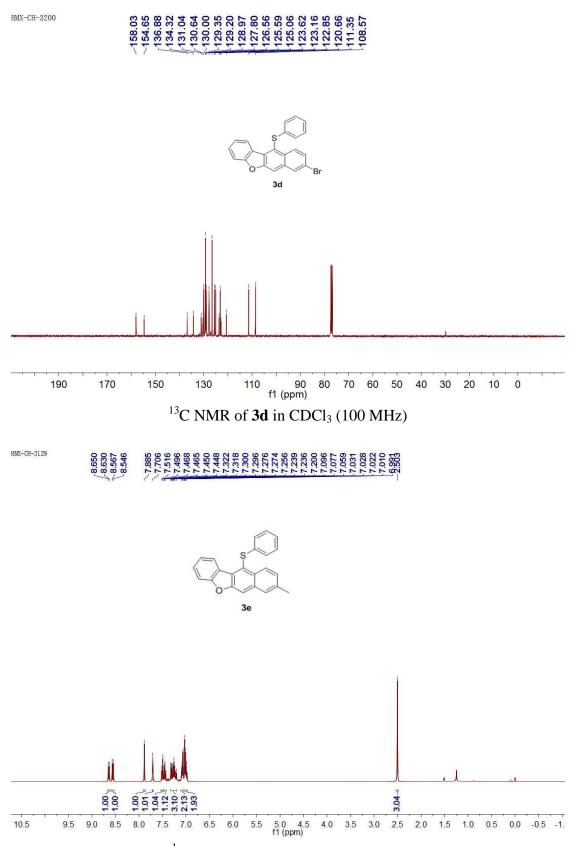

¹H NMR of **3a** in CDCl₃ (400 MHz)

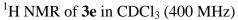


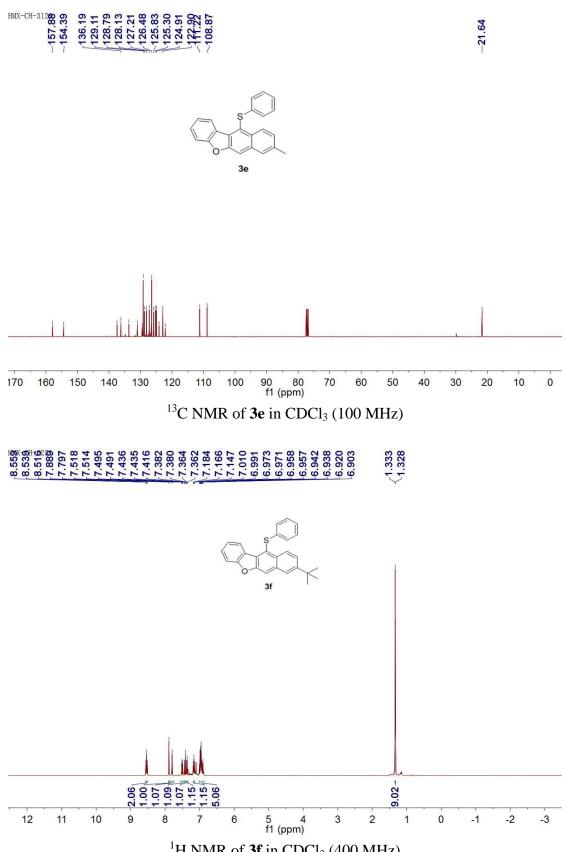

162.23 159.76 157.84 154.97 136.97 136.97 134.20 128.83 128.83 129.19 128.83 128.83 128.83 128.83 128.83 128.83 128.83 128.83 128.83 128.83 128.83 128.83 128.83 115.95 11



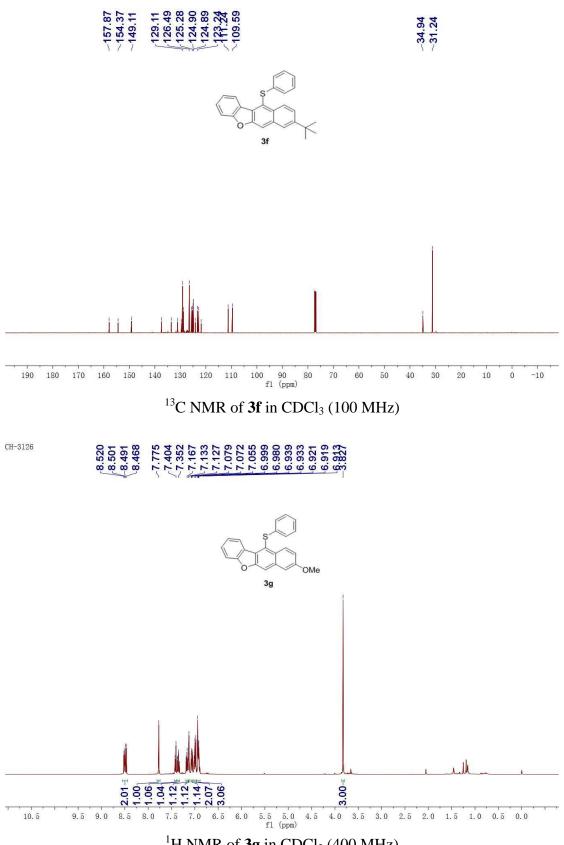


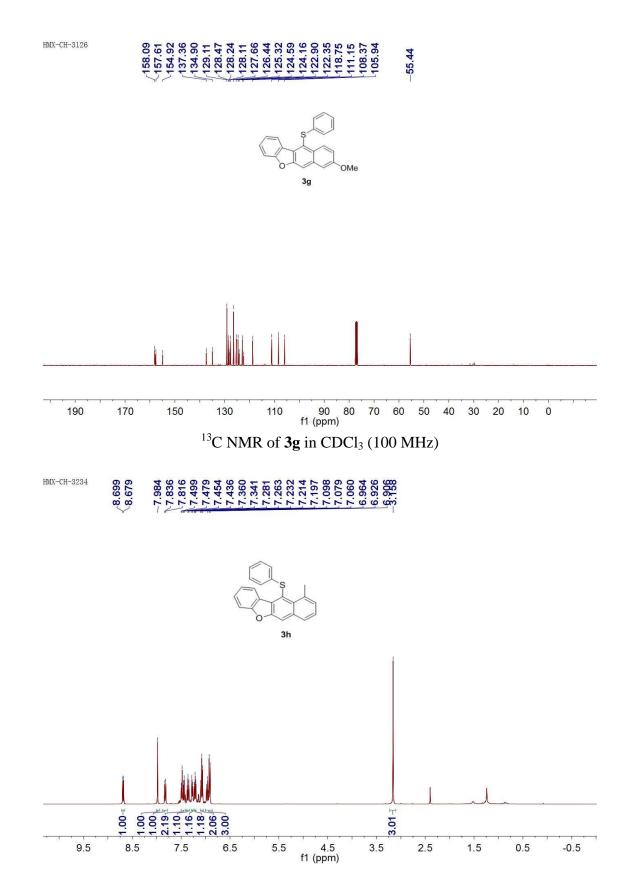


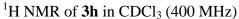


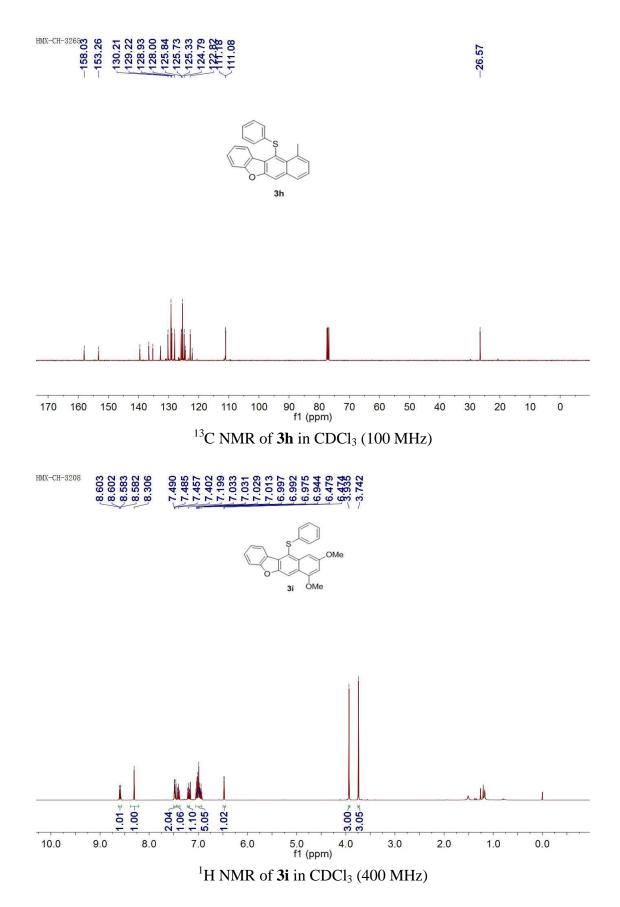

 13 C NMR of **3c** in CDCl₃ (100 MHz)

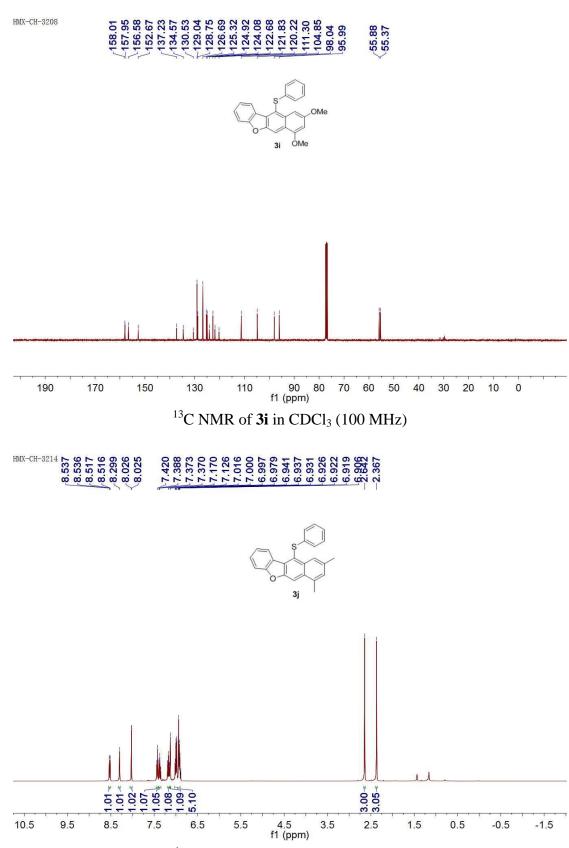
8.528 8.528 8.528 8.528 8.528 8.528 8.528 8.528 7.7.982 7.7.982 7.7.982 7.7.982 7.7.982 7.7.982 7.7.982 7.7.982 7.7.982 7.7.182 7.7.182 7.7.182 7.7.182 7.7.182 7.7.182 7.7.182 7.7.182 7.7.162 7.7.182 7.7.163 7.7.16

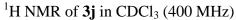


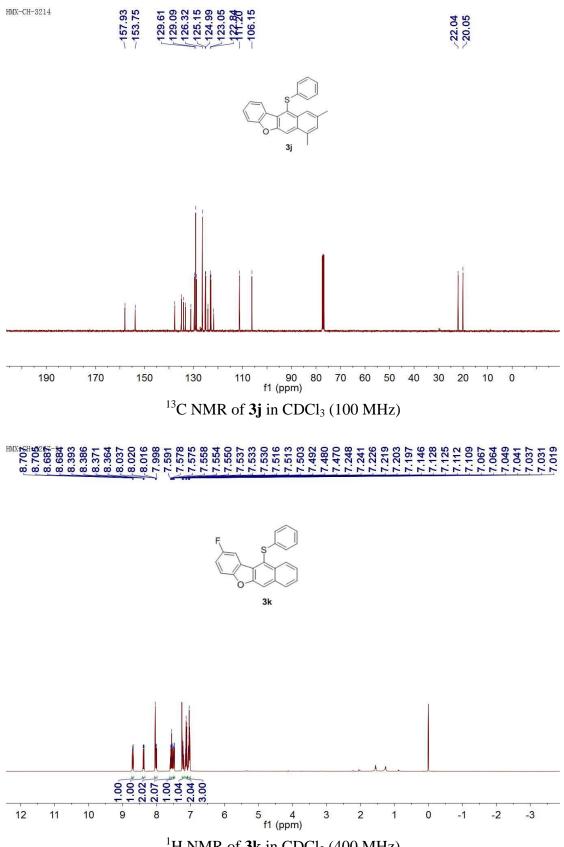


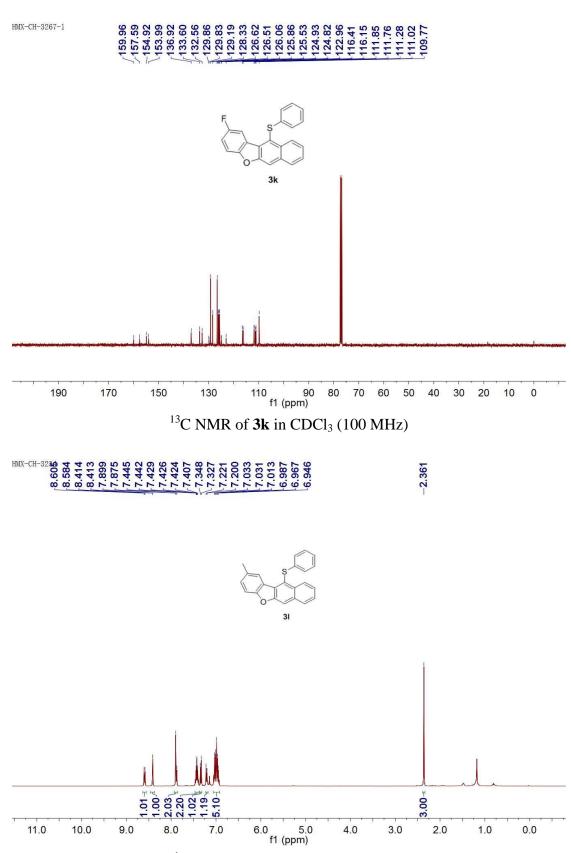


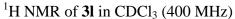

¹H NMR of **3f** in CDCl₃ (400 MHz)

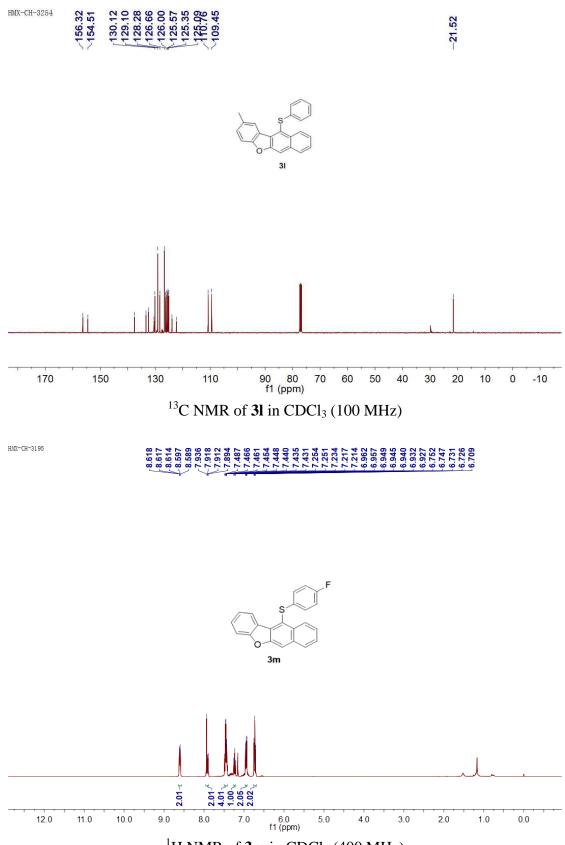


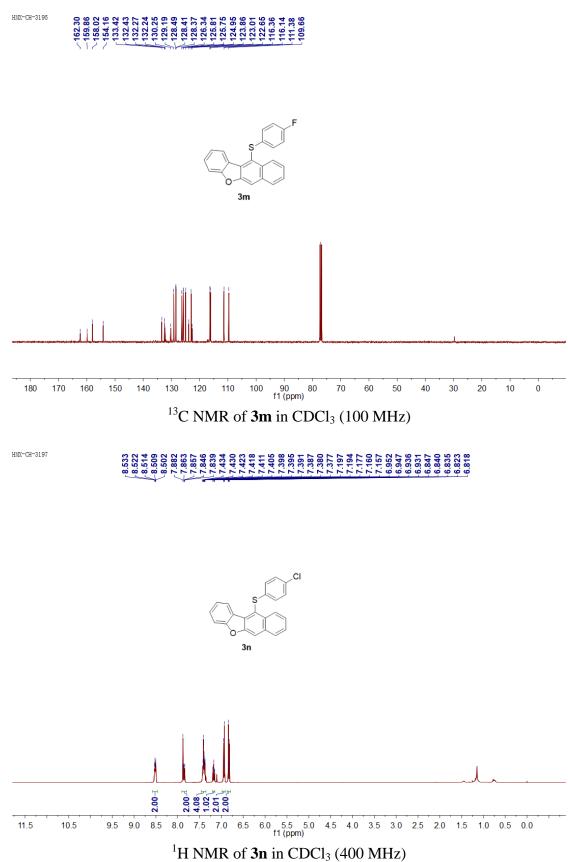


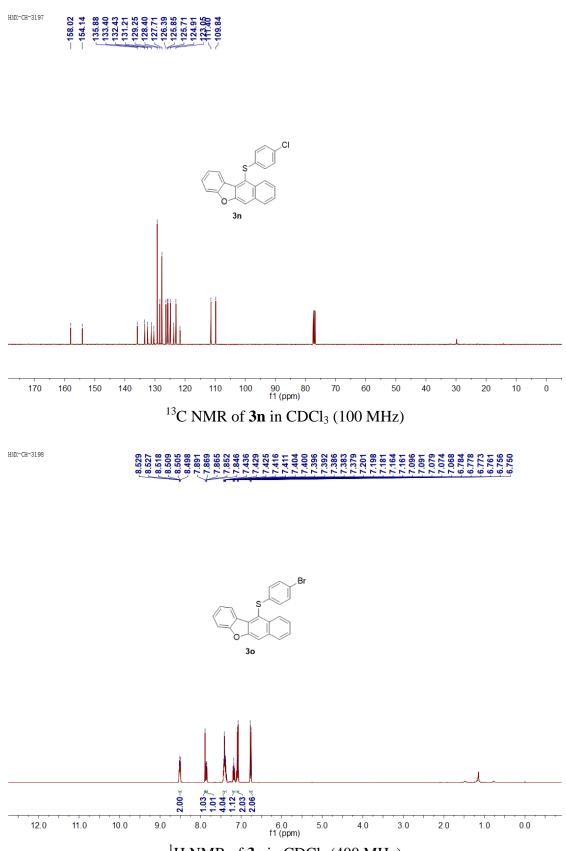


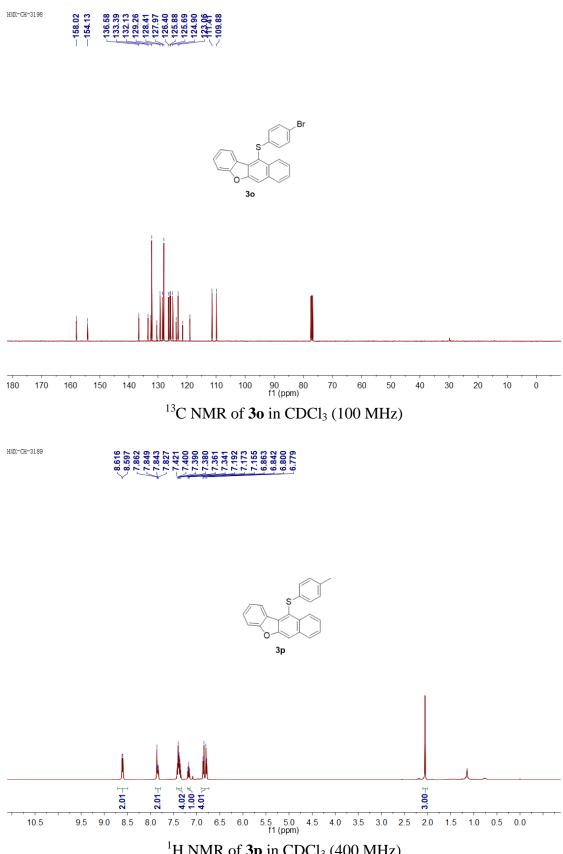


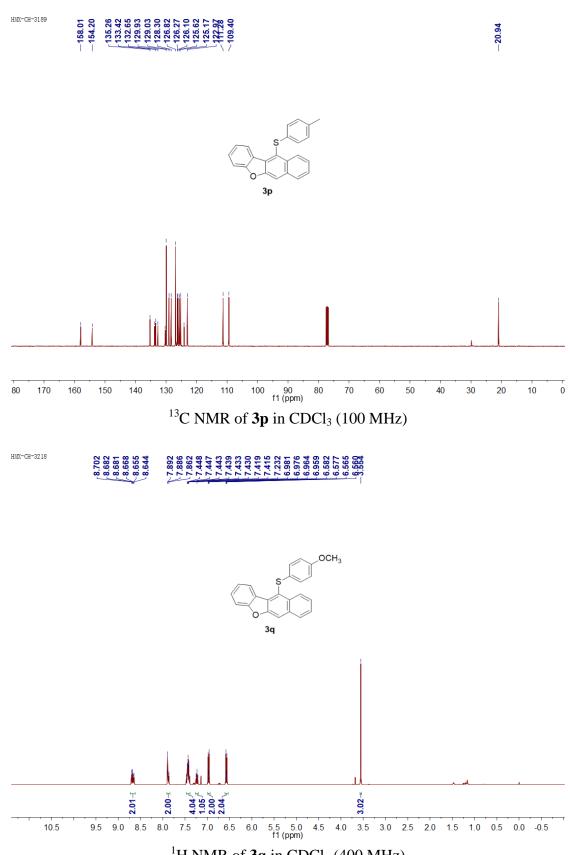


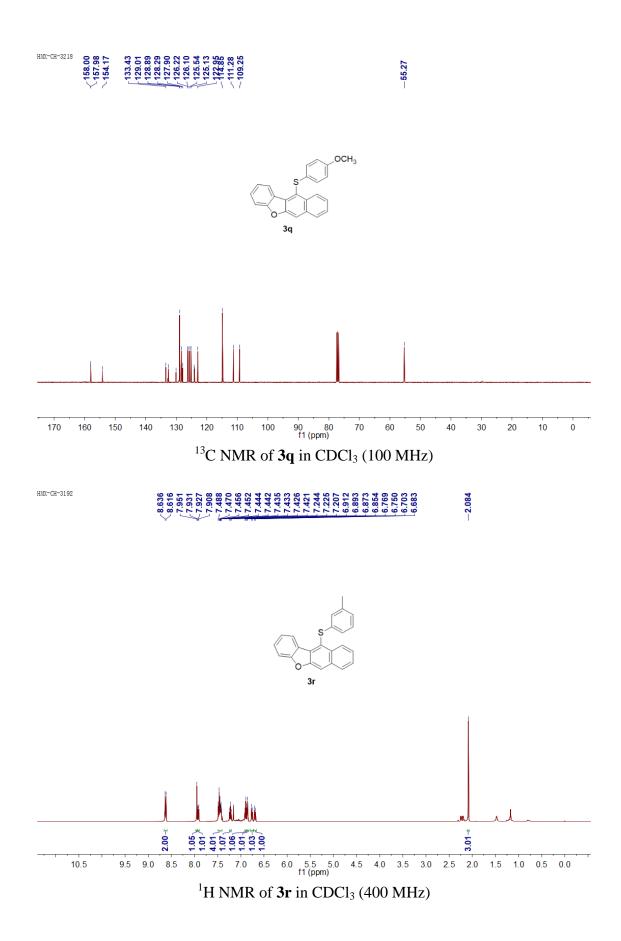


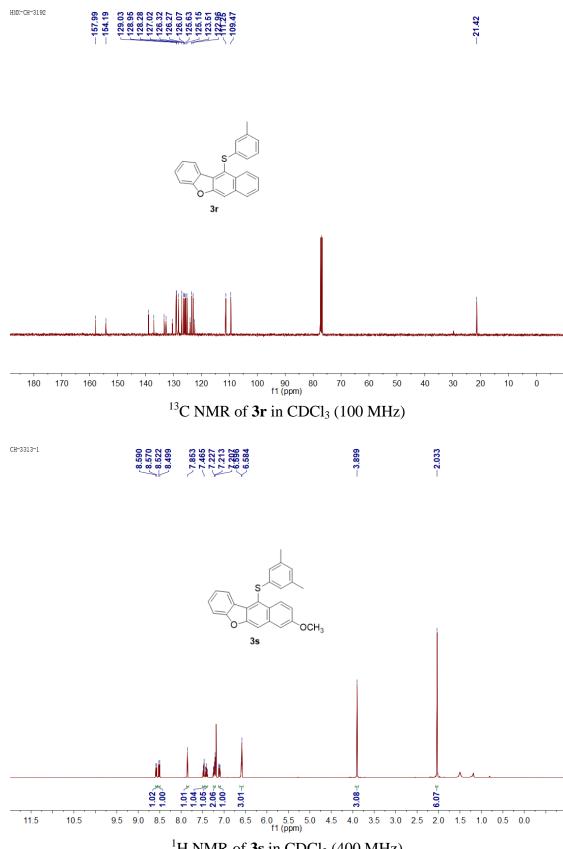


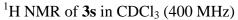


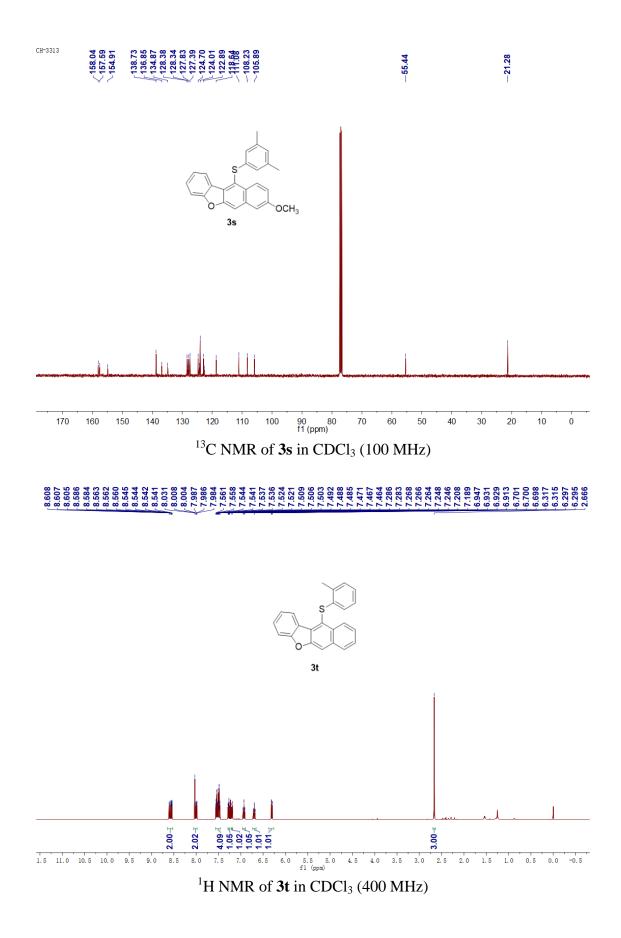

¹H NMR of 3m in CDCl₃ (400 MHz)

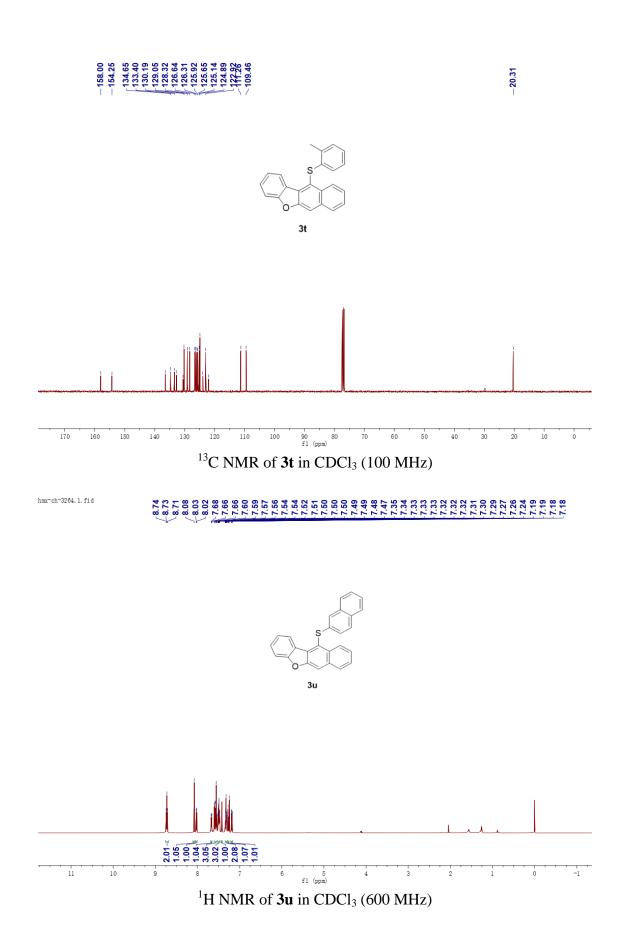


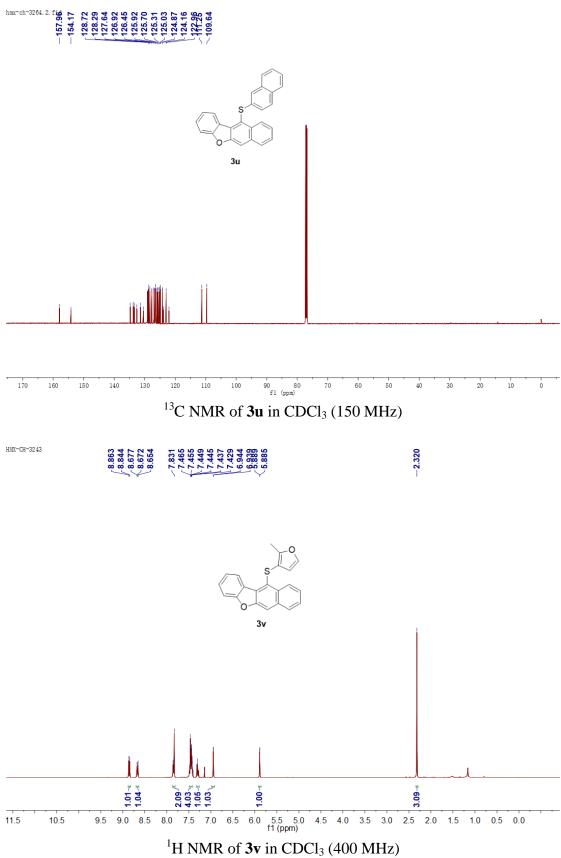


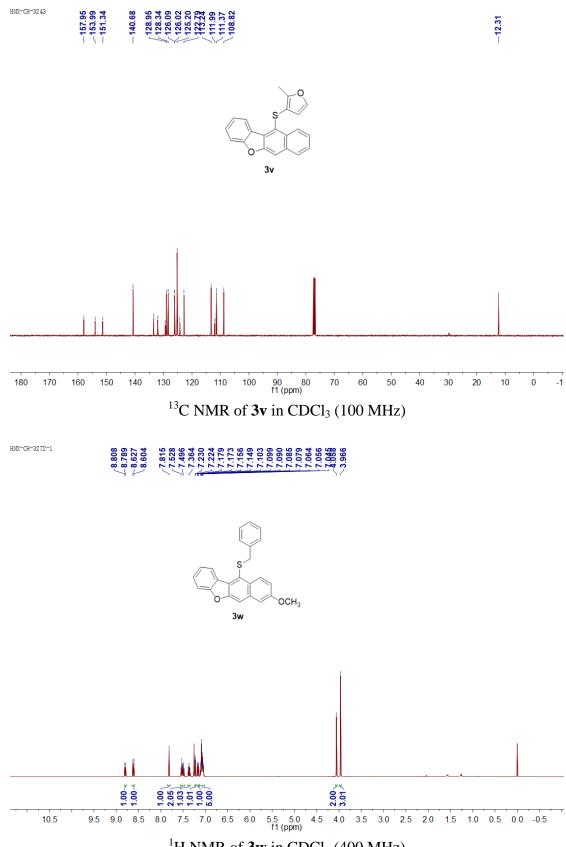


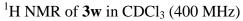


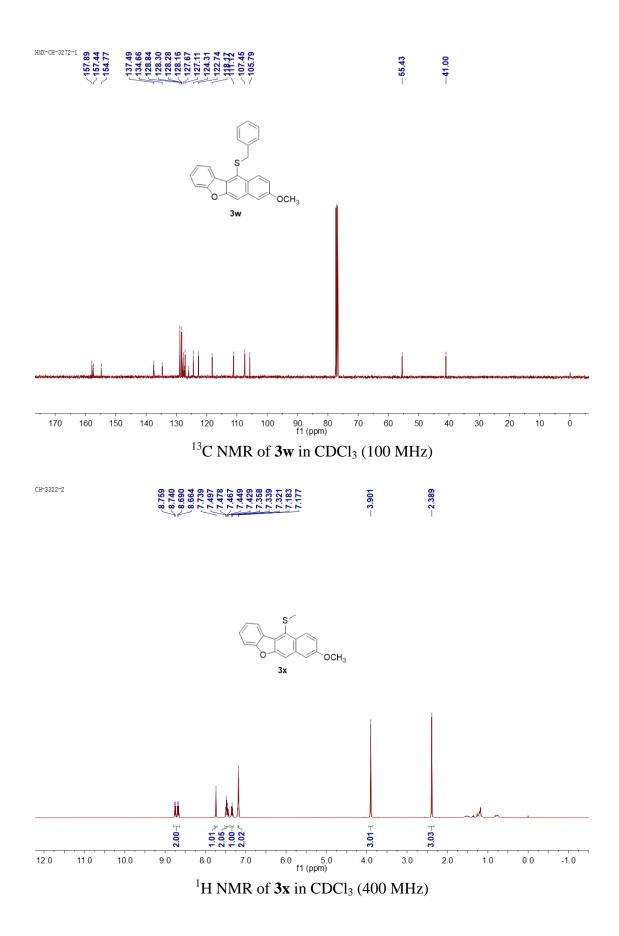


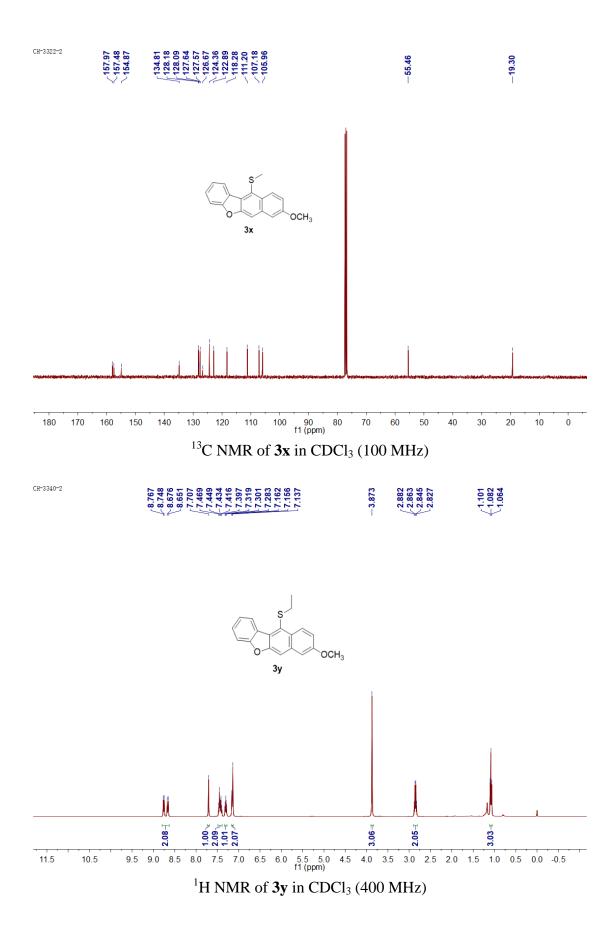


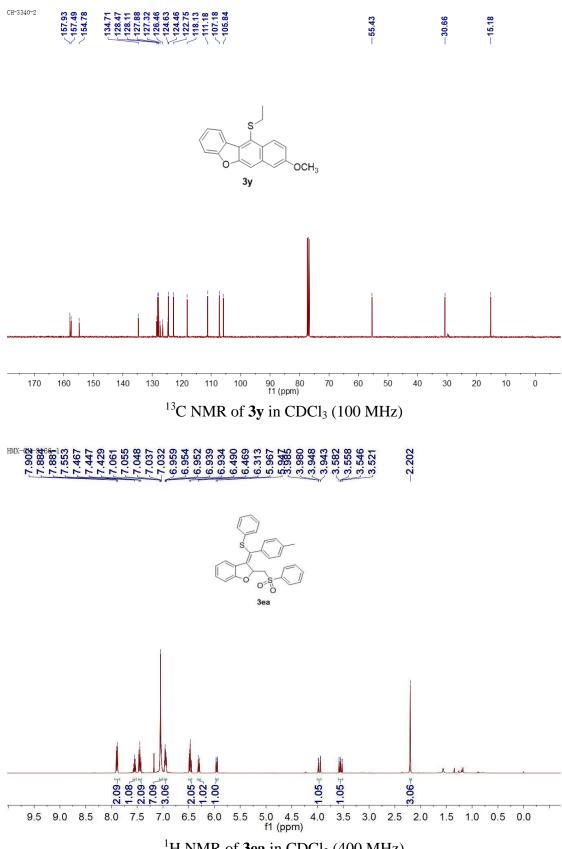


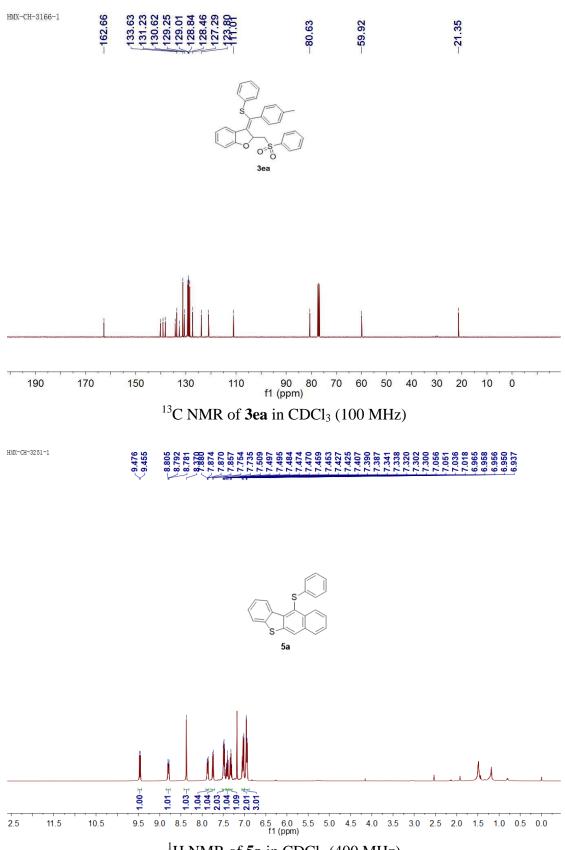




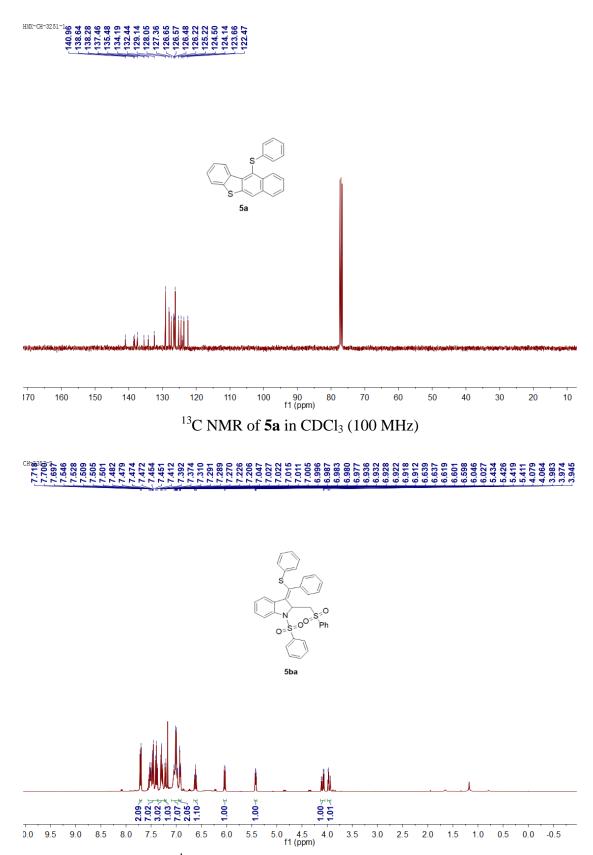


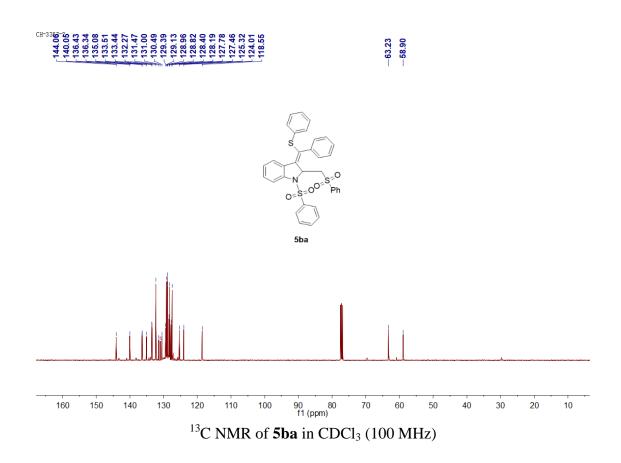


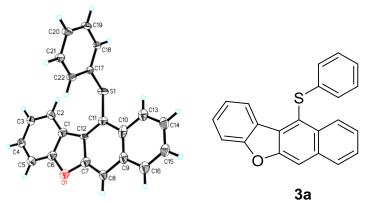












The X-ray crystal data of 3a

The X-ray crystal structure of **3a** (displacement ellipsoids are drawn at 50% probability level), CCDC: 2032114


```
Bond precision: C-C = 0.0064 A
                                      Wavelength=0.71073
            a=9.8020(9) b=9.8192(9)
Cell:
                                            c=9.9339(10)
            alpha=112.718(9) beta=105.510(8) gamma=101.172(8)
Temperature: 100 K
              Calculated
                                      Reported
Volume
              800.96(17)
                                      800.96(14)
Space group
                                      P -1
              P -1
              -P 1
                                      -P 1
Hall group
Moiety formula C22 H14 O S
                                      C22 H14 O S
Sum formula C22 H14 O S
                                      C22 H14 O S
              326.39
                                      326.39
Mr
Dx,g cm-3
             1.353
                                      1.353
                                       2
Z
              2
             0.206
                                      0.206
Mu (mm-1)
F000
              340.0
                                      340.0
F000'
             340.38
h,k,lmax
             11,11,11
                                      11,11,11
Nref
             2818
                                      2818
Nreı
Tmin,Tmax
             0.978,0.984
                                      0.226,1.000
Tmin'
             0.978
Correction method= # Reported T Limits: Tmin=0.226 Tmax=1.000
AbsCorr = MULTI-SCAN
Data completeness= 1.000
                              Theta(max) = 24.999
R(reflections) = 0.0782(2159)
                              wR2(reflections) = 0.2202( 2818)
                        Npar= 219
S = 1.182
```

Preparation of the crystal

In a test tube, product 3a was dissolved in CH₃Cl (0.5 mL). Then the closed tube was left at ambient temperature until the well-shaped single crystals formed.

Crystal measurement

3a was collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. Data reduction was carried out with the diffractometer's software.¹ The structure was solved by direct methods using Olex2 software,² and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018³ using a full-matrix least squares procedure based on F^2 . The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms.

[1] Agilent Technologies, CrysAlisPRO, Version 1.171.36.28, 2013.

[2] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *OLEX2*: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.

[3] Kratzert, D.; Holstein, J. J.; Krossing, I. *DSR*: enhanced modelling and refinement of disordered structures with *SHELXL. J. Appl. Cryst.* **2015**, *48*, 933-938.