Supporting Information

Integration of TaO_x with Bi₂S₃ for Targeted Multimodality Breast Cancer Theranostics

Yushen Jin,¹ Chu Tang,² Jie Tian, ^{3*} Bing Shao ^{1*}

¹Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing 100013, China ²Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China²

³Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China *Corresponding author. Email: <u>tian@ieee.org; shaobingch@sina.com</u>

The photothermal conversion efficiency (η) is calculated with the following equation

$$\eta = \frac{\text{hs}(T_{\text{max}} - T_{\text{surr}}) - Q_{dis}}{I(1 - 10^{-A_{\lambda}})}$$

where *h* is heat transfer coefficient, *s* is the surface area of container, $(T_{max}-T_{surr})$ is the temperature difference between the system and the ambient, Q_{dis} is the heat dissipation of the container, which is calculated independently with pure water measured at the same conditions, *I* is the laser power density, and A_{λ} is the absorbance of the sample at wavelength of λ . *hs* can be calculated using the equation

hs =
$$\frac{m_w C_w}{\tau_s}$$

where m_w is the mass of water (1.0 g), C_w is the heat capacity of water (4.2 J/g), and τ_s is a time constant of the studied system. τ_s can be obtained from a plot of the cooling time versus $-\ln(\theta)$ obtained from the cooling stage, where $\theta = (T_t - T_{surr})/(T_{max} - T_{surr})$. The value of Q_{dis} was measured to be 26.6 mW in this study.

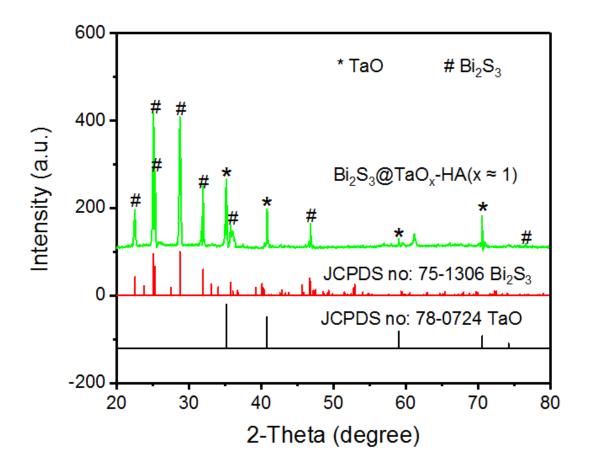


Figure S1. XRD pattern of Bi₂S₃@TaO_x-HA

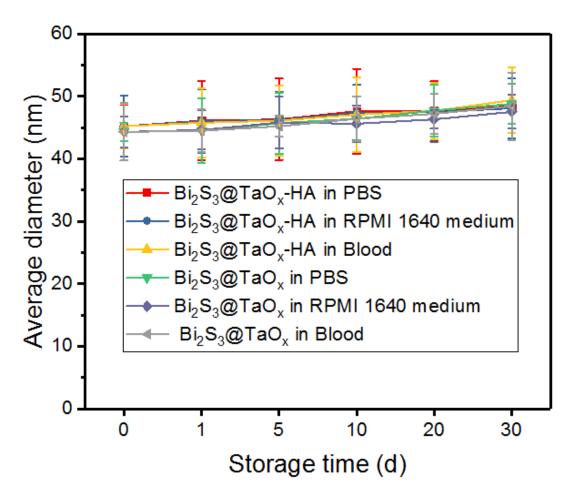


Figure S2. Average diameter of the Bi₂S₃@TaO_x-HA and Bi₂S₃@TaO_x nanoparticles that were dissolved in PBS, RPMI 1640 medium and blood.

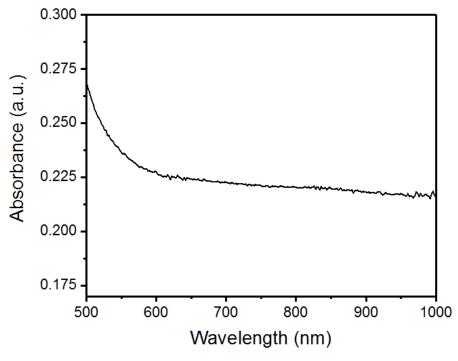


Figure S3. UV-Vis-NIR spectrum of the Bi₂S₃@TaO_x-HA nanoparticles

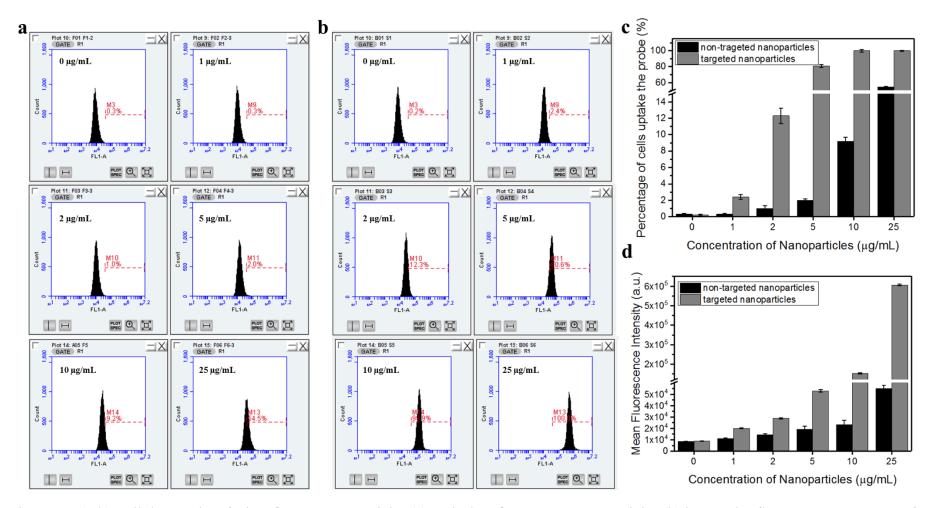


Figure S3. (a-b) Cellular uptake of Bi₂S₃@TaO_x nanoparticles (a) and Bi₂S₃@TaO_x-HA nanoparticles (b) by 4T1 by flow cytometry at 37°C for

4 h; (c) Percentage of cells taking up nanoparticles, (d) Mean fluorescence intensity of the cells