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Figure S1: (a) Weight loss of agar membrane at a low humidity of 12 % RH as a function of time
followed by recovery at environmental humidity of RH 65 %, (b) Weight loss of agar membrane

wrapped in V,0s membrane and Al foil at a low humidity of 12 % RH as a function of time.
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Figure S2: Ionic conductivity of agar gel membranes: (a) Digital photograph of device fabricated to
measure the ionic conductivity of agar gel membranes, (b) characteristics I-V curves of agar gel
membranes intercalated with different electrolytes, (c) bar diagram showing conductivity of different
agar gel electrolytic membranes, and (d) characteristics [-V curves of agar gel membranes intercalated

with electrolytes of different concentration.
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Figure S3: Surface charge governed ionic conductivity: (a) Digital photograph of device, (b)

Representative I-V curves recorded with nanofluidic V,0s at different electrolyte concentration.

Nanofluidic device was prepared by encapsulating a rectangular strip of V,0s film into a PDMS
(polydimethylsiloxane) elastomer and carving out the edges to form electrolyte chambers. The
linear I-V curves recorded for different electrolytes confirm the formation of percolated
nanofluidic channels of V,05 Conductivity values at different electrolyte concentration was
determined by multiplying the slope of the I-V curves with respective cell constant of the

device.
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Figure S4: (a) Experimental and simulated EIS of Al-gel@Li+-VO device with the equivalent circuit
(inset), (b) Nyquist plot for Al-gel@Li*-VO device recorded at different applied pressure (c)
Conductivity of Al-gel@Li*-VO device as a function of applied pressure.
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Figure S5: (a) Schematic representation of controlled humidity chamber, (b) Output-current of an Al-
gel-VO device in alternating argon and air atmosphere at 15 % relative humidity, and (c) A plot
comparing the output-current of an Al-gel-VO devices recorded at different humidity levels.
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Figure S6: Open circuit voltage and short circuit current generated at the interface of (a) agar and

aluminium and (b) V,0;sand agar.
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Figure S7: Device stability: (a) Open circuit voltage and (b) short circuit current of Al-agar@Li+-VO

device recorded for 5 continuous days in contact mode.
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Figure S8: XPS survey scan of Al electrode recorded (a) before and (b) after 5 days of continuous
power generation, the presence of carbon along with Al and O is attributed to the absorption of carbon
dioxide on the surface. Moreover, the sample was attached the XPS stub with the help of a conductive

carbon tape. XPS Al 2p peaks of (c) fresh Al foil and (d) corroded Al foil, XPS peaks of Ols of (¢)
fresh Al foil and (f) corroded Al foil.
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Figure S9: pXRD pattern of the Al foil before and after discharge process.
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Flgure SIO Regeneratlon energy harvestlng devices: (a) Photographs showing water assisted

healing of V,05 membrane, (b) Surface FESEM image of self-healed V,0s membrane, (c) comparison

of stress-strain curve of self-healed and pristine V,0s membrane.

Self-healing of vanadium pentoxide membranes: A V,0s strip of 1.5 cm X 1.5 cm was cut
into two halves with the help of scissors and gently placed upon one another with edges
overlapping each other. A water droplet of 20 uL is spread over the overlapping edges and was
allowed to dry under ambient conditions. The water droplet evaporates from the surface within

2 hours, thereby assisting water-induced self-repairing of the V,0s strips into a single strip.
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Figure S11: Regeneration energy harvesting devices: (a) Photographs showing recycling of gel

membranes, (b) Surface FESEM image of regenerated gel membrane, and (c) comparison of stress-

strain curve of regenerated and pristine gel membrane.

Recycling of agar gel membranes: The used pieces of agar gel membranes were easily
recycled by simply re-melting and re-casting. For example, broken agar membranes are placed
on a Petri dish and microwaved for 2-3 minutes. The microwave assisted heating melts the agar
membranes and form a gelatinous solution which is allowed to dry at 50 ° C in a vacuum oven

for several hours to obtain free standing gel membranes.
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Figure S 12: Application of pressure responsive device: A proof of concept demonstrating an animal

sensor

Table S1: A comparison of electrochemical performance of this work with other moisture batteries

SI. No. | Materials OCP (V) | Current Ideal Voltage at | Reference

used density Humidity | lowest
(RH%) humidity (V)

1 PANI 1.84 V -- 50-90% | ~0.23 V at 20 | 1
foam/Mg % RH

2 Li foil and | 2.7V 360 pA cm? | 90 % 1Vat20%RH | 2
graphene
oxide film

3 Mg/Zn anode | 1.7V -- 60-100% | ~0.1 Vat20% | 3
and  PANI RH
coated
polyurethane
sponge

4 Al-Agar gel- | 1.3V 35 pA cm? 65 % 1 Vat15%RH | This work
V105
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