In-Plane Optical and Electrical Anisotropy of 2D Black-Arsenic

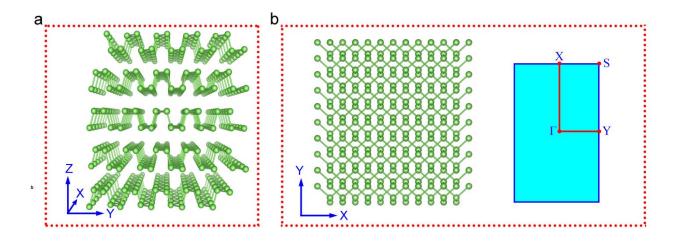
Mianzeng Zhong¹, Haotong Meng¹, Sijie Liu¹, Huai Yang², Wanfu Shen³, Chunguang Hu³, Juehan Yang², Zhihui Ren², Bo Li⁴, Yunyan Liu⁵, Jun He^{1*}, Qinglin Xia^{1*}, Jingbo

Li⁶, and Zhongming Wei^{2*}

¹Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China ²State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China ³State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin

University, Tianjin 300072, China

⁴Department of Applied Physics, School of Physics and Electronics, Hunan University,


Changsha 410082, Hunan, China

⁵School of Physics and Optoelectronic Engineering, Shandong University of

Technology, Zibo 255049, Shandong, China

⁶Institute of Semiconductors, South China Normal University, Guangzhou 510631,

China

Figure S1. Crystal structures of orthorhombic b-As from (a) side view and (b) top view, showing its highly anisotropic nature.

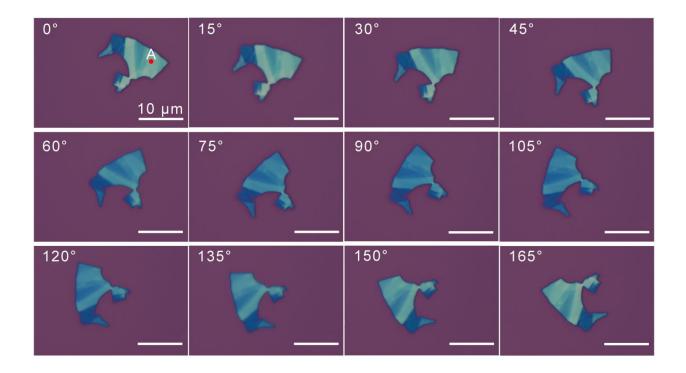


Figure S2. Polarization-resolved optical images of b-As flake.

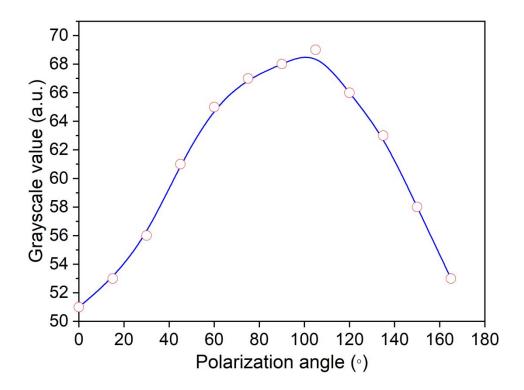
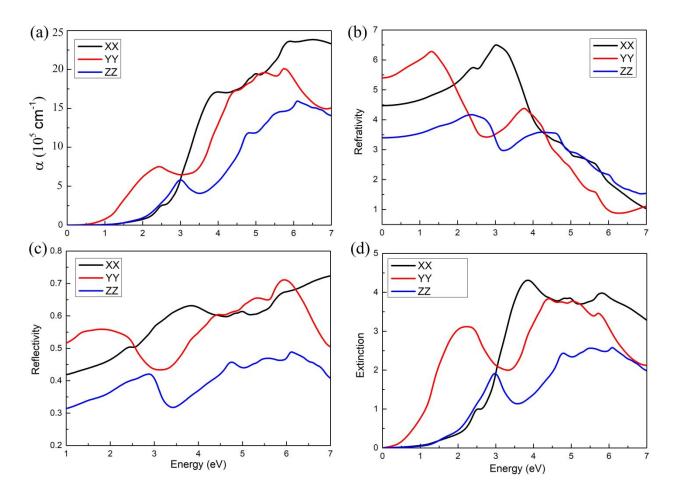
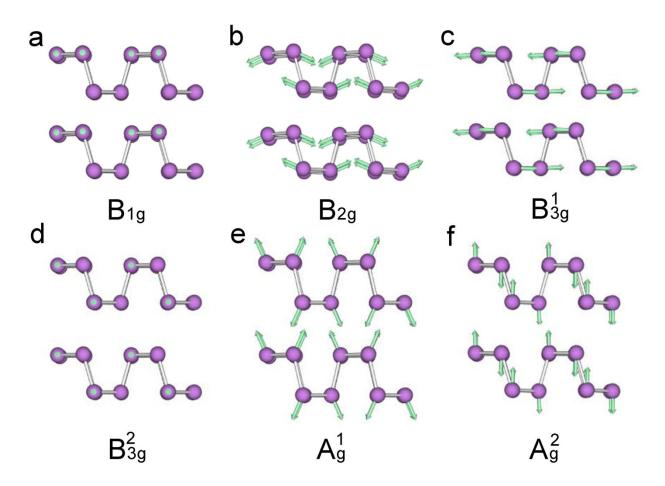
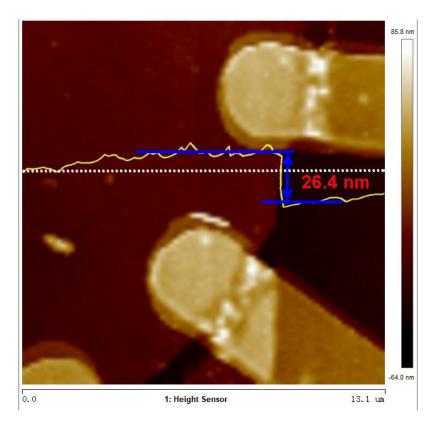




Figure S3. Grayscale values obtained from the A point in Figure S1 under different



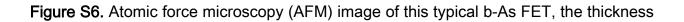

polarization angles as a function of the polarization angle.

Figure S4. The absorption(a), reflectivity(b), refractive index (c), and extinction (d) for b-As considering XX, YY and ZZ directions.

Figure S5. Schematic diagrams for six Raman-active modes in b-As. Green arrows indicate atomic displacements.

of the b-As crystal is about 26.4nm.



Figure S7. Room-temperature output characteristics $(I_{ds}-V_{ds})$ of this FET with the different directions (different symmetrical source-drain electrodes), the gate voltage is 0V.

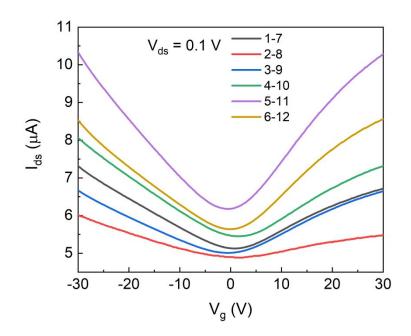


Figure S8. Room-temperature transfer characteristics $(I_{ds}-V_g)$ of this FET with the different directions (different symmetrical source-drain electrodes), the drain-source voltage is 1V.

Note S1

For b-As, the Raman tensors of the phonons with A_g , and B_{2g} symmetry are

$$\vec{R}_{A_g} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = \begin{pmatrix} |a|e^{i\phi_a} & 0 & 0 \\ 0 & |b|e^{i\phi_b} & 0 \\ 0 & 0 & |c|e^{i\phi_c} \end{pmatrix}$$
(S1)

and

$$\vec{R}_{B_{2g}} = \begin{pmatrix} a & 0 & f \\ 0 & 0 & 0 \\ f & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & |f|e^{i\phi_f} \\ 0 & 0 & 0 \\ |f|e^{i\phi_f} & 0 & 0 \end{pmatrix}$$
(S2)

where |a|, ϕ_a , |b|, ϕ_b , |c|, ϕ_c , |f|, and ϕ_f are the magnitude and complex phase of the independent components of these two tensors, respectively. In our experimental configuration, the incident laser beam along the y direction (perpendicular to the layer plane of our arsenic sample). So, the polarization vector of the incident beam (\hat{e}_i) can be expressed as $\hat{e}_i = (\sin \theta \ 0 \ \cos \theta)$ (θ is the sample rotation angle), and the polarization

vector of the scattered light (\hat{e}_s) can be expressed as $\hat{e}_s = (\sin \theta \ 0 \ \cos \theta)$ and $\hat{e}_s = (\cos \theta \ 0 \ -\sin \theta)$ for the parallel and cross-polarization configurations, respectively. The Raman scattering intensity, which is related to the Raman tensor and the polarization vectors of incident laser beam and scattered light, is expressed as $S \propto |\hat{e}_i \cdot \vec{R} \cdot \hat{e}_s|^2$. As a consequence, the Raman intensities of A_{1g} and B_{2g} modes under parallel and cross-polarization configurations are written as following

$$S_{A_g}^{//} = \left(|a|\sin^2\theta + |c|\cos\phi_{ca}\cos^2\theta\right)^2 + |c|^2\sin^2\phi_{ca}\cos^4\theta \tag{S3}$$

$$S_{A_g}^{\perp} = [(|a| - |c|\cos\phi_{ca})^2 + |c|^2\sin^2\phi_{ca}]\cos^2\theta\sin^2\theta$$
(S4)

$$S_{B_{2g}}^{//} = |f|^2 sin^2 2\theta$$
 (S5)

$$S_{B_{2g}}^{\perp} = |f|^2 \cos^2 2\theta \tag{S6}$$

where ϕ_{ca} is the phase difference $\phi_c - \phi_a$. As described, the Raman intensity of A_{1g} and B_{2g} modes shows different periodic variation with the sample rotation angle under parallel and cross-polarization configurations of the scattered light. According to (3) and (5), under the parallel configuration, when the crystal orientation parallel to the scattered light, the Raman intensity of A_{1g} mode has maximum or minimum value, while B_{2g} mode

is forbidden. In contrast, under the cross-polarization configuration, the A_{1g} mode is forbidden, and Raman intensity of B_{2g} mode has the maximum value.