Ballast water exchange plus treatment lowers species invasion rate in freshwater ecosystems

Johanna N. Bradie ${ }^{l, 2}$, D. Andrew R. Drake ${ }^{l}$, Dawson Ogilvie ${ }^{l}$, Oscar Casas-Monroy ${ }^{l}$, and Sarah A. Bailey ${ }^{\text {I* }}$
${ }^{1}$ Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867
Lakeshore Road, Burlington, ON, L7S 1A1, Canada
${ }^{2}$ Current address: Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4

Number of pages: 12
Number of tables: 4

Number of figures: 7 each region.

Recipient Port Salinity	Source Port Salinity	Great Lakes- All Shipping Pathways	Lawrence River International	Pacific International	Atlantic International	Arctic International	Arctic Domestic
	Fresh	87	67	9	11	0	0
	Brackish	77	58	17	2	0	0
Brackish	Brackish	424	186	136	2	0	0
	Marine	59	0	0	27	0	0
	Fresh	458	0	1	39	0	0
Marine	Brackish	638	0	105	329	4	0
	Marine	1,270	0	153	478	7	0
		Sample Year	2006	2008	2006	2015	20

Table S1. Sample size of voyages $(n=2,980)$ for each salinity combination within a given shipping pathway. Sample year indicates the timespan for which transit data were available for而

Table S2. Number of empirical ballast water samples available with estimates of zooplankton abundance and species richness for each shipping pathway. Note that due to limited biological data, the Arctic domestic pathway used zooplankton data from ships arriving to the Arctic from Atlantic Canada, and from internal Great Lakes-St. Lawrence River transits.

Shipping Pathway	Number of Samples
Pacific International	50
Atlantic International	39
Great Lakes-St. Lawrence River International	19
Arctic International	31
Arctic Domestic	74

Model Parameter		Shipping Pathway					
		Great Lakes-St. Lawrence River International	Pacific International	Atlantic International	Arctic International		stic* GLSLR
Sample Concentration (Negative	size	0.6297	0.2783	0.8268	0.2894	1.5618	0.4034
Binomial Distribution)	μ	752.00	8861.66	13099.23	1661.77	77349.90	123550.70
Population Concent Error	tion	Poisson					
Proportion	α	0.7515	0.2302	0.1842	0.0973	1.0696	0.2411
Nonindigenous (Beta)	β	0.4004	2.9896	14.1509	0.4625	7.9209	1.1468

All Trips

Probability	α	0.005
Single Propagule		
Establishes (Beta)	β	5
Allee Effect	c	1

*The Arctic domestic pathway used zooplankton data from ships arriving to the Arctic from Atlantic Canada, and from internal Great LakesSt. Lawrence River transits.
Table S3. Model parameters used to estimate the mean number of nonindigenous zooplankton species establishing in Canadian ecosystems.

Table S4. Sensitivity analysis results.

			Transit Frequency		Mean Plankton Concentration μ		Mean Nonindigenous β		$\alpha=0.005$	Allee Effect
Management Scenario	Null	Randomized Port Pairings	+25\%	-25\%	+25\%	-25\%	+25\%	-25\%	All Species	$c=2$
NM	1.85	1.86	2.00	1.76	2.13	1.73	2.03	1.76	54.63	3.98
E	1.87	1.89	1.99	1.74	2.13	1.72	2.02	1.70	54.32	3.92
T (PE)	0.80	0.81	0.89	0.73	0.86	0.78	0.87	0.74	22.29	1.78
$\mathrm{E}+\mathrm{T}$ (PE)	0.75	0.77	0.81	0.71	0.82	0.79	0.83	0.68	20.83	1.69
T (FE)	0.06	0.06	0.07	0.06	0.07	0.07	0.08	0.05	0.48	0.05
E+T (FE)	0.05	0.06	0.06	0.06	0.06	0.07	0.07	0.03	0.35	0.03

The response variable is the mean number of species per year among all Canadian ports (fresh, brackish, and marine) examined in this study. The management methods assessed are no management (NM), exchange only (E), treatment only (T), and exchange plus treatment ($\mathrm{E}+\mathrm{T}$). Ballast water treatment systems were either partially effective on half of the transits (PE) or fully effective on all transits (FE). An outcome with less or greater than 1:1 response indicates the model is insensitive or very sensitive to changes to a parameter. Outcomes with large deviations ($>25 \%$ change) relative to the null are in bold.

Figure S1. The Canadian geographical regions with the shipping ports examined in this study. The four Canadian regions of interest are the Pacific, Atlantic, Great Lakes-St. Lawrence River (GLSLR), and Arctic. The Great Lakes-St. Lawrence River region includes all freshwater ports upstream of and including Québec City. The destination ports ($n=72$) included in this study are displayed by the markers where their color and size represent their salinity category and number of arrivals, respectively.

Figure S2. Probability distribution describing the zooplankton sample concentration (individuals per m^{3}) among ship transits within each shipping pathway. The Arctic domestic pathway used zooplankton data from ships arriving to the Arctic from Atlantic Canada (bottom right panel), and from internal Great Lakes-St. Lawrence River (GLSLR) transits (bottom left panel). The black lines represent the probability density function.

Pacific International

GLSLR International

Arctic Domestic: GLSLR Source

Atlantic International

Arctic International

Arctic Domestic: Atlantic Source

Figure S3. An example $C_{p} \mid C_{s}$ distribution describing the population concentration of zooplankton in a single ship, with a sample concentration of 10,000 zooplankton per m^{3}.

Figure S4. Probability distributions describing the proportion of nonindigenous zooplankton out of the total organism concentration among ship trips within each shipping pathway. The Arctic domestic pathway used zooplankton data from ships arriving to the Arctic from Atlantic Canada (bottom right panel), and from internal Great Lakes-St. Lawrence River (GLSLR) transits (bottom left panel). The black lines represent the probability density function.

Figure S5. Environmental distance curve. $\mathrm{P}(\mathrm{Y}=1)$ represents the probability of survival in the recipient environment given the temperature match between the source and recipient environments.

Figure S6. Examples of the probability of establishment based on the per-capita probability of establishment (α), initial organism concentration (individuals per m^{3}), and Allee effect (c).

Figure S7. Probability distribution describing the per-capita probability of establishment (α) across multiple species in a ballast tank. This distribution was identical across all trips and shipping pathways.

