Supporting Information:

Discovery of a potent adenine-benzyltriazolopleuromutilin conjugate with pronounced antibacterial activity against MRSA

Christoffer V. Heidtmann, ${ }^{\dagger}$ Faidra Voukia, ${ }^{\dagger}$ Louise N. Hansen, ${ }^{\dagger}$ Stine H. Sørensen, ${ }^{\dagger}$ Brian Urlund, ${ }^{\dagger}$ Salli Nielsen, ${ }^{\dagger}$ Mona Pedersen, ${ }^{\dagger}$ Noor Kelawi, ${ }^{\dagger}$ Brian N. Andersen, ${ }^{\dagger}$ Maria Pedersen, ${ }^{\dagger}$ Peter Reinholdt, ${ }^{\dagger}$ Jacob Kongsted, ${ }^{\dagger}$ Carsten U. Nielsen, ${ }^{\dagger}$ Janne K. Klitgaard, ${ }^{\S}$ Poul Nielsen. ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Department of Physics, Chemistry and Pharmacy, and ${ }^{\S 1}$ Department of Biochemistry and Molecular Biology, Research Unit of Molecular Microbiology, ${ }^{2}$ Institute of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, 5230 Odense M, Denmark

Table of contents

- Experimental procedures for compounds 8-9 and 48-120
- References
- ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $10-44$
- HPLC chromatograms for compounds 10-44

Experimental procedures

General methods

Commercially available solvents and starting materials were used unless otherwise stated. TLC was performed using silica gel 60 F254 plates and visualized at 254 nm or by staining with PMA, ninhydrin or KMnO4 stains. For Flash Chromatography purification, silica gel $60\left(0.040-0.063 \mathrm{~mm}\right.$, Merck) was used. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded at 400 and 101 MHz respectively, on a Bruker Avance III 400 at 300 K . RPLC analysis was performed using a Gemini C18 column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 150 \mathrm{~mm}$); flow, $1 \mathrm{~mL} / \mathrm{min}$.; $10 \% \mathrm{MeCN}$ in water ($0-1 \mathrm{~min}$.), $10-100 \% \mathrm{MeCN}$ in water ($1-10 \mathrm{~min}$.), $100 \% \mathrm{MeCN}(11-15 \mathrm{~min}$.$) , both solvents with 0.1 \%$ trifluoro acetic acid as modifier, UV detection at 254 nm .

General Procedures

General Procedure 1: TMS deprotection with TBAF

The trimethylsilyl protected acetylene analogue (1 eq .) was dissolved in THF ($\sim 1 \mathrm{M}$) under argon, after which tetra-n-butylammonium fluoride (TBAF) in tetrahydrofuran ($1 \mathrm{M}, 1.2-1.6$ eq.) was added. The solution was stirred at room temperature for 1 h . before it was concentrated in vacuo. The resulting residue was dissolved in dichloromethane, washed with brine ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and evaporated in vacuo. The residue was purified by Flash Chromatography (MeOH:DCM or EtOAc:PE) to yield the deprotected alkyne.

General Procedure 2: TMS deprotection with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$

The trimethylsilyl protected acetylene analogue (1 eq .) was dissolved in $\mathrm{MeOH}\left(140 \mathrm{mM}\right.$) after which $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added (1 eq .). The suspension was stirred for $1-24 \mathrm{~h}$. before it was concentrated in vacuo. The residue was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organics phases were washed with brine, dried over MgSO_{4} and evaporated in vacuo. The residue was purified by Flash chromatography in EtOAc:PE unless otherwise stated to yield the deprotected acetylene as an oil or solid.

General Procedure 3: Bromination of benzyl alcohols

The appropriate benzyl alcohol ($1 \mathrm{eq}$.) and 1,8-Diazabicyclo(5.4.0)undec-7-ene (DBU, 1.3 eq.) were dissolved in anhydrous dichloromethane $(1 \mathrm{M})$. The vessel was purged with argon and cooled to $0{ }^{\circ} \mathrm{C}$ before phosphorous tribromide (1.1 eq.) was added dropwise. The mixture was stirred overnight, during which it reached room temperature. The reaction mixture was quenched with ice water, before extraction with dichloromethane (3 x). The combined organic layers were washed with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{x})$, sat. $\mathrm{NaHCO}_{3}(2 \mathrm{x})$ and brine (2 x) before being dried over MgSO_{4}. The combined organic phases were evaporated in vacuo. Purification was either not necessary or by Flash Chromatography to yield the pure benzyl bromide.

General Procedure 4: N-alkylation of secondary amines
To a small, dry microwave vial, the appropriate benzylbromide was dissolved in anhydrous THF (250 mM) before the desired amine (4 eq.) was added. The vessel was purged with argon, sealed and stirred at $55^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$. The mixture was cooled to ambient temperature, diluted with water and acidified with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ before extraction with DCM. The aqueous phase was basified with conc. $\mathrm{NH}_{4} \mathrm{OH}$ and then extracted with DCM (5 x). The combined organic phases were concentrated to afford the desired benzyl amines as oils.

General Procedure 5: Suzuki cross-coupling

A round bottom flask was vac-filled with argon, before the benzylbromide (1 eq.), the appropriate boronic acid (1 eq.), tetrakis(triphenylphosphine)palladium(0) (0.01 eq .), and tetrahydrofuran (1 M) were added. The mixture was stirred for 5 min . at room temperature, vac-filled with argon again and then 1.5 mL of 2 M aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ overnight, before being cooled to room temperature. The mixture was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) and the organic layer was dried over MgSO_{4} and evaporated in vacuo. The resulting residue was purified by Flash chromatography (EtOAc:PE, $0 \rightarrow 5 \% \rightarrow 10 \%$) to afford the product as an oil.

General Procedure 6: TMS deprotection with $\mathrm{MeOH} / \mathrm{DCM}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$
The trimethylsilyl protected acetylene analogue (1 eq.) was dissolved in 6.0 mL of $2: 1 \mathrm{MeOH} / \mathrm{DCM}$ (v/v), after which $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added (0.17 eq.). The suspension was stirred for 2 h at room temperature. The reaction was then quenched with water $(6.0 \mathrm{~mL})$ and extracted with diethyl ether $(3 \times 6 \mathrm{ml})$. The combined organics were washed with brine (6 ml), dried over MgSO_{4} and evaporated in vacuo. The resulting residue was purified by Flash chromatography (EtOAc: PE, $0 \rightarrow 5 \% \rightarrow 10 \%$) to afford the product as an oil or solid;

A large dry microwave-vial was charged with (+)-pleuromutilin (1) $(2.00 \mathrm{~g}, 5.28 \mathrm{mmol})$ and vac-filled three times with argon before anhydrous dichloromethane $(10.0 \mathrm{~mL})$ and anhydrous triethylamine $(0.89 \mathrm{~mL}, 6.35 \mathrm{mmol})$ was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ followed by dropwise addition of methanesulfonyl chloride $(0.41 \mathrm{~mL}, 5.28$ mmol) after which the vial was capped. The mixture was allowed to reach room temperature and stirred overnight resulting in consumption of 1 . Saturated ammonium chloride $(1.5 \mathrm{~mL})$ was added to quench the reaction and the mixture was separated. The aqueous layer was washed with diethyl ether ($3 \times 10 \mathrm{~mL}$). The organic layers were combined and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by Flash chromatography (EtOAc:PE, $5 \% \rightarrow 10 \% \rightarrow 20 \% 50 \%$) to give 1.49 g of $8(62 \%, 3.27 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 6.14(\mathrm{dd}, J=17.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.89-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.56-$ $1.22(\mathrm{~m}, 7 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 217.0$, $170.3,165.4,140.7,115.3,72.6,70.4,65.8,59.7,57.2,44.9,44.2,43.2,41.5,37.6,36.5,36.2,34.0,30.1,28.6,26.6$, 24.4, 20.7, 15.9, 14.4, 14.1, 11.5; HRMS (ESI): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{NaO}_{7} \mathrm{~S}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 479.2074$ found 479.2078, Ref: Chen, J. Mulin acetate comprising substituted squaric acid, and application thereof. CN103204787A, 2012. ${ }^{34}$

22-Azido-22-deoxypleuromutilin (9)

Compound $8(1.43 \mathrm{~g}, 3.13 \mathrm{mmol})$ was dissolved in acetone $(14.0 \mathrm{~mL})$ to which a solution of $\mathrm{NaN}_{3}(254 \mathrm{mg}, 3.91$ mmol) in water (5.3 mL) was slowly added. The mixture was refluxed at $70^{\circ} \mathrm{C}$ for 5 h . before cooling to room temperature and concentration in vacuo. The residue was dissolved in dichloromethane (50 mL) and washed with water $(15 \mathrm{~mL})$, brine (15 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated in vacuo before purification by Flash chromatography (EtOAc:PE, $5 \% \rightarrow 10 \% \rightarrow 30 \%$) to yield 1.035 g of $9(82 \%, 2.56 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.49(\mathrm{dd}, J=17.4,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}$, $J=17.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=10.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 2 \mathrm{H})$, 2.16-2.08 (m, 2H), $1.78(\mathrm{dq}, J=14.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{dq}, J=11.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.09(\mathrm{~m}$, $1 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 216.7,167.2,138.8,117.5$,
$74.6,70.3,58.2,51.2,45.5,44.9,44.0,41.9,36.7,36.1,34.4,30.4,26.9,26.4,24.9,16.7,14.9,11.5$; HRMS (ESI): m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NO}_{4}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 426.2363$ found 426.2345 , Ref: Lolk et al. A Click Chemistry Approach to Pleuromutilin Conjugates with Nucleosides or Acyclic Nucleoside Derivatives and Their Binding to the Bacterial Ribosome. J. Med. Chem. 2008, 51, 4957-4967. ${ }^{33}$

2-(Trimethylsilyl-ethynyl)benzyl alcohol (48)

A round bottom flask was charged with tetrakis(triphenylphosphine)palladium(0) ($397 \mathrm{mg}, 0.344 \mathrm{mmol}$) and copper(I) iodide ($135.2 \mathrm{mg}, 0.687 \mathrm{mmol}$). The vial was vac-filled with argon before anhydrous piperidine (40.0 $\mathrm{mL})$, 2-iodobenzyl alcohol $45(2.00 \mathrm{~g}, 8.54 \mathrm{mmol})$ and trimethylsilylacetylene ($1.46 \mathrm{~mL}, 10.3 \mathrm{mmol}$) were added. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 1.5 h ., before being cooled to room temperature. and diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$. The mixture was washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL}), 2 \mathrm{M} \mathrm{HCl}(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was evaporated in vacuo and the residue was purified by Flash Chromatography (EtOAc:PE, $0 \rightarrow 25 \%$) to yield 1.35 g of $48(78 \%, 6.61 \mathrm{mmol}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{dd}, J=7.6,1.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,132.5,129.0,127.4,127.2$, 121.2, 102.7, 99.6, 64.0, 0.3; HRMS (ESI): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{OSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 205.1036$ found 205.1049

3-(Trimethylsilyl-ethynyl)benzyl alcohol (49)

A large microwave vial was charged with tetrakis(triphenylphosphine)palladium(0) ($182 \mathrm{mg}, 0.157 \mathrm{mmol}$) and copper(I) iodide ($120 \mathrm{mg}, 0.629 \mathrm{mmol}$). The vial was vac-filled with argon (3 x) before anhydrous piperidine (25 $\mathrm{mL})$, 3-iodobenzyl alcohol $46(0.95 \mathrm{~mL}, 7.47 \mathrm{mmol})$ and trimethylsilylacetylene $(1.18 \mathrm{~mL}, 8.26 \mathrm{mmol})$ was added. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . before being cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(70$ $\mathrm{mL})$. The mixture was washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL}), 2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic phases were evaporated in vacuo and the residue was purified by Flash Chromatography (EtOAc:PE, 0-50\%) to yield 1.30 g of $49(85 \%, 6.37 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37$ (m, 1H), 7.33-7.28(m, 2H), $4.67(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.0,131.2,130.5,128.5,127.0,123.5,104.9,94.4,64.9$; HRMS (ESI): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaOSi}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 227.0863$ found 227.0870.

A round bottom flask was charged with 4-iodobenzyl alcohol 47 ($5.00 \mathrm{~g}, 21.4 \mathrm{mmol}$), copper(I) iodide (40.7 mg , 0.214 mmol) and tetrakis(triphenylphosphine)palladium(0) ($494 \mathrm{mg}, 0.427 \mathrm{mmol}$). The vial was vac-filled with argon (3 x) before anhydrous triethylamine (43 mL) and trimethylsilylacetylene ($3.65 \mathrm{~mL}, 25.6 \mathrm{mmol}$) were added. The reaction mixture was stirred at room temperature for 24 h . The reaction mixture was filtered over Celite and evaporated in vacuo. The residue was purified by Flash Chromatography ($\mathrm{MeOH}: \mathrm{DCM}, 2 \%$) to yield 4.33 g of 50 (21.2 mmol, 99\%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.75(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.2,132.2,126.7,122.4,104.9,94.2,65.0$; HRMS (ESI): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaOSi}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 227.0863$ found 227.0872.

3-(Ethynyl)benzyl alcohol (51)

General Procedure 1 was applied with the trimethylsilyl acetylene 49 ($540 \mathrm{mg}, 2.64 \mathrm{mmol}$), anhydrous THF (3 mL) and 1 M TBAF in THF ($3.2 \mathrm{~mL}, 3.2 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h . Purification by Flash Chromatography (EtOAc:PE, 25\%) yielded 230 mg of $51(65 \%, 1.72 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.46(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{dt}, J=6.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: (101 MHz, CDCl_{3}): δ 141.2, 131.4, 130.6, 128.7, 127.5, 122.4, 83.6, 77.4, 64.7; EI MS m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}(\mathrm{M}+) 132.0$ found 132.0.

4-(Ethynyl)benzyl alcohol (52)

General Procedure 2 was applied with the trimethylsilyl acetylene 50 ($1.50 \mathrm{~g}, 7.34 \mathrm{mmol}$) dissolved in MeOH (52 $\mathrm{mL})$ after which $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added ($1.01 \mathrm{~g}, 7.34 \mathrm{mmol}$). The suspension was stirred for 21 h . at room temperature before it was concentrated in vacuo. The resulting residue was purified by Flash Chromatography (EtOAc:PE, 5$20 \%$) to afford 782 mg of $52(81 \%, 5.92 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) . ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.6,132.3,126.7,121.4$, 83.5, 77.2, 64.9; EI MS m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}(\mathrm{M}+) 132.0$ found 132.0.

2-(Trimethylsilyl-ethynyl)benzyl bromide (53)

General Procedure 3 was applied with compound 48 ($500 \mathrm{mg}, 2.45 \mathrm{mmol}$) and 1,8 -diazabicyclo(5.4.0)undec-7-ene ($\mathrm{DBU}, 0.48 \mathrm{~mL}, 3.18 \mathrm{mmol}$), anhydrous dichloromethane $(2.5 \mathrm{~mL}$) and phosphorous tribromide ($0.26 \mathrm{~mL}, 2.7$ mmol). Extraction and Flash Chromatography (EtOAc:PE, $0 \rightarrow 20 \%$) afforded 501 mg of the bromide 53 (77%, $1.87 \mathrm{mmol}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.39(\mathrm{~m}, 2 \mathrm{H}) 7.30(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.5,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 0.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDC13) $\delta 143.2,132.5,129.0,127.4,121.2,102.7,99.6$, 64.0, 0.3; HRMS (ESI): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 267.0199$ found 267.0169

3-(Trimethylsilyl-ethynyl)benzyl bromide (54)

General Procedure 3 was applied with compound $49(1.20 \mathrm{~g}, 5.87 \mathrm{mmol})$ and 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU, $1.14 \mathrm{~mL}, 7.23 \mathrm{mmol}$), anhydrous dichloromethane $(5.9 \mathrm{~mL})$ and phosphorous tribromide ($0.61 \mathrm{~mL}, 6.46$ $\mathrm{mmol})$. After extraction, no further purification was necessary yielding 1.30 g of $54(83 \%, 4.87 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dt}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.0,132.6,131.9,129.2,128.8,123.8$, 104.4, 95.0, 32.7; MS (EI) m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Si}(\mathrm{M}+-\mathrm{HBr}) 187.1$ found 187.2

4-(Trimethylsilyl-ethynyl)benzyl bromide (55)

General Procedure 3 was applied with compound 50 ($750 \mathrm{mg}, 3.67 \mathrm{mmol}$) and 1,8 -diazabicyclo(5.4.0)undec-7-ene (DBU, $0.72 \mathrm{~mL}, 4.77 \mathrm{mmol}$), anhydrous dichloromethane (3.7 mL) and phosphorous tribromide ($0.39 \mathrm{~mL}, 4.05$ mmol). Extraction and Flash Chromatography (EtOAc:PE, $0 \rightarrow 20 \%$) afforded 612 mg of the bromide 55 (62%, $2.29 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 0.35(\mathrm{~d}, J=0.7 \mathrm{~Hz}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.1,132.4,129.0,123.4,104.5,95.3,32.9,0.3$; HRMS (EI): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrSi}(\mathrm{M}+) 266.0$ found 266.0

General Procedure 3 was applied with compound $52(735 \mathrm{mg}, 5.56 \mathrm{mmol}$) and 1,8-diazabicyclo(5.4.0)undec-7-ene ($\mathrm{DBU}, 1.10 \mathrm{~g}, 7.23 \mathrm{mmol}$), dichloromethane $(5.6 \mathrm{~mL}$) and phosphorous tribromide ($0.58 \mathrm{~mL}, 6.12 \mathrm{mmol}$). The reaction was stirred for 19 h . After extraction, no further purification was necessary yielding 938 mg of $\mathbf{5 6}$ (87%, $4.81 \mathrm{mmol})$.; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4,132.5,129.0,122.3,83.1,78.0,32.7$; EI MS m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{Br}(\mathrm{M}+$) 194.0 found 193.9.
N-Ethyl- N-(3-(ethynylbenzyl)ethanamine (57)

In accordance with General Procedure 4, $54(200 \mathrm{mg}, 0.748 \mathrm{mmol})$ was dissolved in anhydrous THF (3.0 mL) and diethylamine ($0.31 \mathrm{~mL}, 2.99 \mathrm{mmol}$) after which it was stirred for 2 h . at $55^{\circ} \mathrm{C}$. Extraction yielded 174 mg of $\mathbf{5 7 a}$ $(90 \%, 0.671 \mathrm{mmol}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{td}, J=1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dt}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$, 0.25 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,132.3,130.4,129.2,128.0,122.9,105.4,93.7,57.3,46.8,11.7$, 0.0; HRMS (ESI) not recorded. General Procedure 2 was applied with the trimethylsilyl acetylene $57 \mathbf{a}$ (160 mg , $0.617 \mathrm{mmol}) \mathrm{MeOH}(4.4 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(85 \mathrm{mg}, 0.617 \mathrm{mmol})$. The suspension was stirred for 20 h . at room temperature before it was concentrated in vacuo. Extraction yielded 96 mg of $57(83 \%, 0.512 \mathrm{mmol})$ as a yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{dt}, J=1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dt}, J=7.9,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5,132.5,130.5,129.4,128.1,121.9,83.9,76.8,57.2,46.8,11.8$; HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right) 188.1434$ found 188.1430 .
N-Ethyl- N-(4-ethynylbenzyl)ethanamine (58)

In accordance with General Procedure 4, $56(125 \mathrm{mg}, 0.641 \mathrm{mmol})$ was dissolved in anhydrous THF (2.6 mL) and diethylamine ($0.27 \mathrm{~mL}, 2.56 \mathrm{mmol}$) after which it was stirred for 2 h . at $55^{\circ} \mathrm{C}$. Extraction yielded 119 mg of 58 ($99 \%, 0.635 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~s}$, $1 \mathrm{H}), 2.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.2,132.0,128.8,128.7$, 127.1, 120.4, 83.8, 76.7, 57.4, 46.9, 11.8; HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right) 188.1434$ found 188.1325.

1-(3-ethynylbenzyl)-4-methylpiperazine (59)

In accordance with General Procedure 4, $5 \mathbf{5 4}(200 \mathrm{mg}, 0.748 \mathrm{mmol})$ was dissolved in anhydrous THF (3.0 mL) and 1-methylpiperazine ($0.33 \mathrm{~mL}, 2.99 \mathrm{mmol}$) after which it was stirred for 2 h . at $55^{\circ} \mathrm{C}$. Extraction yielded 195 mg of 59a $(91 \%, 0.680 \mathrm{mmol}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{dt}, J=1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 8 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.5,132.6,130.7,129.4,128.1,123.0,105.2,94.0,62.7,55.2,53.2,46.1,0.0 ; H R M S(E S I): ~ m / z$ calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 287.1938$ found 287.1947. General Procedure 2 was applied with the trimethylsilyl acetylene $\mathbf{5 9 a}(185 \mathrm{mg}, 0.646 \mathrm{mmol})$ dissolved in $\mathrm{MeOH}(4.6 \mathrm{~mL})$ after which $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added (89 $\mathrm{mg}, 0.646$). The suspension was stirred for 1 h . at room temperature before it was concentrated in vacuo. Extraction yielded 134 mg of $\mathbf{5 9}(97 \%, 0.626 \mathrm{mmol})$ as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{td}, J=1.7,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{dt}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dt}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 2.46$ $(\mathrm{s}, 8 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.7,132.7,130.8,129.7,128.2,122.0,83.8,77.0,62.6,55.1$, 53.1, 46.1; HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 215.1543$ found 215.1538.

1-(4-Ethynylbenzyl)-4-methylpiperazine (60)

In accordance with General Procedure 4, $56(136 \mathrm{mg}, 0.697 \mathrm{mmol})$ was dissolved in anhydrous THF (3.0 mL) and 1-methylpiperazine ($0.31 \mathrm{~mL}, 2.78 \mathrm{mmol}$) after which it was stirred for 1 h . at $55^{\circ} \mathrm{C}$. Extraction yielded 136 mg of $60(90 \%, 0.635 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}$, $2 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 8 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4,132.0,129.0,120.7,83.7$, 76.9, 62.7, 55.2, 53.1, 46.0; HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 215.1543$ found 215.1534 .

2-(4-Methoxybenzyl)phenylacetylene (61)

A round bottom flask was vac-filled with argon, before palladium(II) acetate ($2.2 \mathrm{mg}, 0.010 \mathrm{mmol}$), triphenylphosphine ($5.3 \mathrm{mg}, 0.020 \mathrm{mmol}$), 4-methoxyphenylboronic acid ($228 \mathrm{mg}, 1.50 \mathrm{mmol}$) and $\mathrm{K}_{3} \mathrm{PO}_{4}(272 \mathrm{mg}$, 1.28 mmol) were added. The flask was vac-filled with argon again and then the benzylbromide $53(267 \mathrm{mg}, 1.00$ mmol) in 6.0 mL toluene was added. The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 48 h ., before being cooled to room temperature and extracted with diethyl ether (6 ml). The organic phases were washed with aqueous NaOH (2 mL), brine (2 x 2 mL), dried over MgSO_{4} and evaporated in vacuo. The residue was purified by Flash
chromatography (EtOAc:PE, $0 \rightarrow 5 \%$) to yield 40 mg of $\mathbf{6 1 a}(14 \%, 0.136 \mathrm{mmol}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 0.1,39.3,55.3,98.4,104.1,113.8,122.7,125.9,128.7$, 129.1, 130.0, 132.6, 132.8, 144.0, 158.0; HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 295.1518$ found 295.1438 . General Procedure 6 was applied with the trimethylsilyl acetylene $61 \mathrm{a}(87 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.9 \mathrm{~g}, 0.050$ mmol). Flash Chromatography (EtOAc:PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 34.0 mg of $61\left(52 \%, 0.153 \mathrm{mmol}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.69-6.64(\mathrm{~m}, 2 \mathrm{H}), 3.97$ $(\mathrm{s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 39.1,55.2,81.1,82.6,113.9,121.7,126.0,129.0$, 129.3, 129.9, 132.6, 132.9, 144.2, 158.0; HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right) 223.1123$ found 225.0858

3-(4-Methoxybenzyl)phenylacetylene (62)

General Procedure 5 was applied with the bromide $54(267 \mathrm{mg}, 1.00 \mathrm{mmol})$ and 4-methoxyphenylboronic acid (152 $\mathrm{mg}, 1.00 \mathrm{mmol}$). Flash chromatography (EtOAc: PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 176 mg of 62a ($60 \%, 0.584 \mathrm{mmol}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.3,40.8,55.3,93.9,105.3,114.0,123.2$, 128.3, 129.2, 129.7, 129.9, 132.3, 132.7, 141.6, 158.1; HRMS (ESI): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OSi}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 295.1518 found 295.1499. General Procedure 6 was applied with the trimethylsilyl acetylene 62a ($176 \mathrm{mg}, 0.598$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{~g}, 0.100 \mathrm{mmol})$. Flash Chromatography (EtOAc:PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 114 mg of 62 $(86 \%, 0.513 \mathrm{mmol}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{dd}, J=6.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{dt}, J=$ $6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.8,55.3,77.0,83.9,114.0,122.2,128.5,129.5,129.9,132.5,132.6,141.9,158.2 ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}\left(\mathrm{M}+\mathrm{H}^{+}\right) 223.1123$ found 221.1109

1-Ethynyl-4-(4-methoxybenzyl)benzene (63)

General Procedure 5 was applied with the bromide $55(267 \mathrm{mg}, 1.00 \mathrm{mmol})$ and 4-methoxyphenylboronic acid (152 $\mathrm{mg}, 1.00 \mathrm{mmol}$). Flash chromatography (EtOAc: PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 158 mg of $\mathbf{6 3 a}(54 \%, 0.537 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}$, $2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.1,40.9,55.3,93.6,105.2,113.9,120.8,125.9$, 128.7, 129.8, 132.1, 142.2, 158.1; HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 295.1518$ found 295.1428. General Procedure 6 was applied with the trimethylsilyl acetylene $\mathbf{6 3 a}(157 \mathrm{mg}, 0.533 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{~g}$,
0.100 mmol). Flash Chromatography (EtOAc:PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 90.0 mg of $63(76 \%, 0.414 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$ $(\mathrm{s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.9,55.3,76.7,83.2,113.9,119.7,128.7$, 128.8, 129.9, 132.5, 142.6, 158.1; HRMS (EI) m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ (M) 222.1 found 221.1
N, N-Diethyl-4-(3-ethynylbenzyl)aniline (64)

General Procedure 5 was applied with the bromide $54(267 \mathrm{mg}, 1.00 \mathrm{mmol})$ and 4-diethylaminophenyl boronic acid ($193 \mathrm{mg}, 1.00 \mathrm{mmol}$). Flash chromatography (EtOAc:PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 215 mg of 64a (64\%, 0.641 mmol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{dt}, J=1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dt}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.6$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dt}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 4 \mathrm{H}), 1.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.23(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 146.4,142.2,132.4,129.7,129.5$, 129.2, 128.2, 127.4, 123.0, 112.2, 105.5, 93.7, 44.4, 40.6, 12.6, 0.1; HRMS (ESI): m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NSi}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 336.2148$ found 336.2141. General Procedure 6 was applied with the trimethylsilyl acetylene 64a (200 mg, $0.596 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{~g}, 0.100 \mathrm{mmol})$. Flash Chromatography (EtOAc:PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 103 mg of $64(66 \%, 0.391 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.96(\mathrm{~m}$, $2 \mathrm{H}), 6.64-6.57(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.7,40.7,44.4,76.8,84.0,112.2,122.0,127.3,128.4,129.5,129.7,129.8,132.6,142.5,146.5$; HRMS (ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right) 264.1752$ found 264.1736

3-(3-((Trimethylsilyl)ethynyl)benzyl)benzaldehyde (65)

General Procedure 5 was applied with the bromide $54(267 \mathrm{mg}, 1.00 \mathrm{mmol})$ and 3-formylphenyl boronic acid (150 $\mathrm{mg}, 1.00 \mathrm{mmol}$). Flash chromatography (EtOAc:PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 161 mg of $65(55 \%, 0.551 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{dt}, J=6.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dt}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.3,141.8,140.2,136.8,135.0,132.4,130.2,129.9,129.2,128.6,128.0,123.5,105.0,94.4,41.4$, 0.3; HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{OSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 293.1362$ found 293.1347

(3-(3-Ethynylbenzyl)phenyl)methanol (66)

A round bottom flask was charged with compound $\mathbf{6 5}(124 \mathrm{mg}, 0.424 \mathrm{mmol})$ and 3.0 mL of anhydrous methanol was added. The solution was then bubbled with argon and $\mathrm{NaBH}_{4}(16 \mathrm{mg}, 0.43 \mathrm{mmol})$ was subsequently added to the solution portion wise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , followed by overnight stirring at room temperature. After the reaction was complete, it was quenched with ice water and concentrated in vacuo. The residue was dissolved in a $1: 1$ mixture of EtOAc and $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$ and the pH was neutralized with a 0.1 M solution of HCl . The aqueous and organic phases were separated, and the aqueous phase was extracted with EtOAc $(2 \times 10 \mathrm{ml})$. The combined organic phases were dried over NaSO_{4} and evaporated in vacuo. The resulting residue was purified by Flash chromatography (EtOAc:PE, $0 \rightarrow 10 \% \rightarrow 20 \% \rightarrow 40 \%$) to yield 70.0 mg of the compound 66 ($73 \%, 0.315 \mathrm{mmol}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, 2 H), $3.04(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 41.6,65.3,77.1,83.7,122.2,125.0,127.5,128.3$, $128.5,128.8,129.5,130.0,132.6,140.9,141.2 ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ONa}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 245.0942$ found 245.0946

N-Ethyl-N-(3-(3-ethynylbenzyl)benzyl)ethanamine (67)

A round bottom flask was vac-filled with argon, before compound $\mathbf{6 5}(100 \mathrm{mg}, 0.342 \mathrm{mmol})$, diethylamine (1.42 $\mathrm{mL}, 1.36 \mathrm{mmol}$) and 2.0 ml MeOH were added. The mixture was stirred for 1 h . at room temperature, before being cooled to $-5^{\circ} \mathrm{C}$. Then $\mathrm{NaBH}_{4}(16.7 \mathrm{mg}, 0.441 \mathrm{mmol})$ was added in portions and the mixture was stirred for 1 h . at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was concentrated in vacuo and the residue was dissolved in EtOAc (5 mL). The solution was washed with brine ($3 \times 5 \mathrm{ml}$), dried over MgSO_{4} and evaporated in vacuo. The residue was purified by Flash chromatography ($\mathrm{MeOH}: \mathrm{DCM}, 0 \% \rightarrow 1 \% \rightarrow 2 \% \rightarrow 5 \%$) to yield 47 mg of the compound $\mathbf{6 7 a}(36 \%, 0.134 \mathrm{mmol})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.08(\mathrm{~m}$, $2 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.17(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 141.3,140.1,132.4,129.9,129.3,128.7,128.2,127.5,124.9,105.2,94.1,77.0$, 65.1, 57.4, 46.6, 41.6, 11.5, 0.1; HRMS (ESI) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NSi}\left(\mathrm{M}+\mathrm{H}^{+}\right) 350.2304$ found 350.2283 . General Procedure 6 was applied with the trimethylsilyl acetylene $\mathbf{6 7 a}(100 \mathrm{mg}, 0.286 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.9 \mathrm{~g}$, 0.050 mmol). Flash Chromatography (EtOAc:PE, $0 \rightarrow 5 \% \rightarrow 10 \%$). Yield: 50 mg of $67(66 \%, 0.180 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H})$, $3.03(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.7,41.6,46.8,57.5$, $76.9,83.2,122.1,126.9,127.3,128.3,128.4,129.5,129.9,132.6,140.3,141.6$; HRMS (ESI) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}\left(\mathrm{M}+\mathrm{H}^{+}\right) 278.1909$ found 278.1917

$+$

A round bottom flask was vac-filled with argon, before thymine ($210 \mathrm{mg}, 1.67 \mathrm{mmol}$), the benzylbromide $\mathbf{5 3}$ (373 $\mathrm{mg}, 1.40 \mathrm{mmol}$) were added and dissolved in 15.0 mL anhydrous dimethylformamide. Then $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($710 \mathrm{mg}, 5.20$ mmol) was added, and the reaction mixture was stirred at room temperature overnight, before it was concentrated in vacuo. The resulting residue was dissolved in 15 mL dichloromethane, washed with brine and dried over MgSO_{4}. The organic solution was evaporated in vacuo and the residue was purified by Flash chromatography (MeOH:DCM, $0 \rightarrow 2 \%$) to yield 165 mg of $\mathbf{6 8}(47 \%, 0.688 \mathrm{mmol}){ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 164.1,151.3,140.2,137.9,133.4,129.7,129.2,128.9,128.3,121.6,111.282 .8$, 81.5, 49.1, 12.5; HRMS (ESI) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+) 240.1$ found 240.3

N1-(3-Ethynyl)benzyl thymine (69)

A round bottom flask was vac-filled with argon, before thymine ($151 \mathrm{mg}, 1.20 \mathrm{mmol}$), the bromide $54(267 \mathrm{mg}, 1.00$ mmol) were added and dissolved in 10.0 mL anhydrous dimethylformamide. Then $\mathrm{K}_{2} \mathrm{CO}_{3}(484 \mathrm{mg}, 5.14 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature overnight, before it was concentrated in vacuo. The resulting residue was dissolved in 15 mL dichloromethane, washed with brine ($2 \times 15 \mathrm{~mL}$) and dried over MgSO_{4}. Then it was evaporated in vacuo and the resulting residue was purified by Flash chromatography ($\mathrm{MeOH}: \mathrm{DCM}, 0 \%$ $\rightarrow 1 \% \rightarrow 2 \%$) to yield 123 mg of $\mathbf{6 9 a}(39 \%, 0.394 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.42$ (m, 1H), $7.38(\mathrm{dt}, J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{td}, J=7.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~s}, 2 \mathrm{H}), 1.89(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,151.3,139.6,135.8$, 132.1, $131.4,129.2,128.2,124.2,111.6,104.3,95.5,50.7,12.5,0.1$; HRMS (ESI) m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 313.1372$ found 313.1350. General Procedure 1 was applied with the trimethylsilyl acetylene $\mathbf{6 9 a}(110 \mathrm{mg}$, $0.352 \mathrm{mmol})$, anhydrous THF (3 mL) and 1 M TBAF in THF $(0.55 \mathrm{~mL}, 0.55 \mathrm{mmol})$. The mixture was stirred at room temperature for 1 h . Purification by Flash chromatography ($\mathrm{MeOH}: \mathrm{DCM}, 0 \% \rightarrow 1 \% \rightarrow 2 \%$) yielded 68.0 mg of the alkyne $69(80 \%, 0.283 \mathrm{mmol}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.25(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{td}, J=1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H})$, $3.12(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,151.1,139.5,135.9,132.1$, 131.4, 129.2, 128.4, 123.1, 111.5, 82.9, 78.1, 50.6, 12.4; HRMS (ESI) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaO}_{2}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$ 263.0796 found 263.0771

N1-(4-Ethynyl)benzyl thymine (70)

A round bottom flask was vac-filled with argon, before thymine ($151 \mathrm{mg}, 1.20 \mathrm{mmol}$), the benzylbromide $\mathbf{5 5}$ (267 $\mathrm{mg}, 1.00 \mathrm{mmol}$) were added and dissolved in 10.0 mL anhydrous dimethylformamide. Then $\mathrm{K}_{2} \mathrm{CO}_{3}(484 \mathrm{mg}, 3.50$ mmol) was added, and the reaction mixture was stirred at room temperature overnight, before it was concentrated in vacuo. The residue was dissolved in 15.0 mL dichloromethane, washed with brine ($2 \times 15 \mathrm{~mL}$), dried over MgSO_{4} and evaporated in vacuo. The resulting residue was purified by Flash chromatography (MeOH:DCM, $0 \% \rightarrow 1 \% \rightarrow$ 2%) to yield 142 mg of 70a ($45 \%, 0.454 \mathrm{mmol}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.47(\mathrm{~d}, 2 \mathrm{H})$, 7.21-7.23 (d, 2H), 6.92-6.94 (q, 1H), $4.88(\mathrm{~s}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1$, 151.2, 139.6, 135.8, 132.7, 127.9, 123.6, 111.6, 104.3, 95.4, 50.8, 12.4, 0.1; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right) 313.1372$ found 313.1369 . General Procedure 1 was applied with the trimethylsilyl acetylene $70 \mathrm{a}(138 \mathrm{mg}, 0.442 \mathrm{mmol})$, anhydrous THF (2.0 mL) and $1 \mathrm{M} \mathrm{TBAF} \mathrm{in} \mathrm{THF} \mathrm{(} 0.69 \mathrm{~mL}, 0.69 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h . Purification by Flash chromatography (MeOH:DCM, $0 \% \rightarrow 1 \% \rightarrow 2 \%$) yielded 82.0 mg of the alkyne $70(78 \%, 0.341 \mathrm{mmol})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.3,50.7,78.1,82.9,111.5,123.5,127.9,132.8,136.1,139.5,151.0,163.8 ;$ HRMS (ESI) m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 241.0977$ found 241.0993

9-(2-Ethynylbenzyl)-9H-purin-6-amine (71)

In a dry flask, adenine ($872 \mathrm{mg}, 6.45 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.72 \mathrm{~g}, 19.7 \mathrm{mmol})$ were dissolved in anhydrous DMF (105 $\mathrm{mL})$ and the solution was stirred for 20 min . before $\mathbf{5 3}(1.32 \mathrm{~g}, 4.96 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight before it was cooled and evaporated in vacuo. The residue was diluted with water (100 mL) and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by Flash Chromatography (MeOH:DCM, $5-10 \%$) to yield 652 mg of $71(53 \%, 2.62 \mathrm{mmol})$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J=7.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 101 MHz) $\delta 156.0,152.6,149.6,140.9,138.5,132.5,129.3,127.8,127.2,120.3,118.6,86.3,80.7$, 44.8; HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 250.1087$ found 250.1084.

9-(3-Ethynylbenzyl)-9H-purin-6-amine (72)

In a dry flask, adenine ($254 \mathrm{mg}, 1.89 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(579 \mathrm{mg}, 4.19 \mathrm{mmol})$ were dissolved in anhydrous DMF (10 $\mathrm{mL})$ and stirred for 15 min . before $54(280 \mathrm{mg}, 1.05 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature overnight before it was cooled and evaporated in vacuo. The residue was diluted with water (25 mL) and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers were washed with brine $(13 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by Flash Chromatography ($\mathrm{MeOH}: \mathrm{DCM}, 5 \%$) to yield 47 mg of 72 ($18 \%, 0.189 \mathrm{mmol}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~m}$, $1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 156.0,152.7$, 149.4, 140.8, 137.7, 131.0, 130.7, 129.1, 128.2, 122.0, 118.7, 83.1, 81.1, 45.7; HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{5}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 250.1087$ found 250.1088

9-(4-Ethynylbenzyl)-9H-purin-6-amine (73)

In a small, dry microwave vial, adenine ($73 \mathrm{mg}, 0.539 \mathrm{mmol}$) was suspended in anhydrous DMF (2.6 mL) before addition of $\mathrm{NaH}(60 \%$ in paraffin oil, $26 \mathrm{mg}, 0.648 \mathrm{mmol}$). The vial was purged with argon and the suspension stirred for 30 min . before $\mathbf{5 6}(100 \mathrm{mg}, 0.513 \mathrm{mmol})$ was added. The mixture was stirred for additional 15 h . before the solvent was removed in vacuo. The residue was re-dissolved in MeOH and evaporated onto Celite 545 and purified by Flash Chromatography (MeOH:DCM, 1-5\%) to yield 62 mg of $73(49 \%, 0.249 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{~s}$, $2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 155.9,152.6,149.4,140.7,137.9,131.9,127.7,121.0,118.6$, 83.0, 80.9, 45.7; HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 250.1087$ found 250.1090 .

6-Chloro-9-(2-ethynylbenzyl)-9H-purine (74)

In a dry flask, 6-chloropurine ($208 \mathrm{mg}, 1.34 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(784 \mathrm{mg}, 5.66 \mathrm{mmol})$ were dissolved in anhydrous DMF (19 mL) and the mixture was stirred for 15 min . before $\mathbf{5 3}(280 \mathrm{mg}, 1.05 \mathrm{mmol})$ was added. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 72 h . before it was cooled and evaporated in vacuo. The residue was diluted with water (25 mL) and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers were washed with brine $(13 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by Flash Chromatography (MeOH:DCM, 5\%) to yield 113 mg of 74
($34 \%, 0.357 \mathrm{mmol}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}:\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s} 1 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H})$ $5.62(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.2,152.1,151.2,145.4,136.7,133.7,131.6,129.8$, 129.4, 129.0, 121.8, 83.5, 81.1, 46.4; MS (EI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{4}(\mathrm{M}+) 268.1$ found 268.1

6-Chloro-9-(3-ethynylbenzyl)-9H-purine (75)

To a dry flask, 6-chloropurine ($225 \mathrm{mg}, 1.34 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(583 \mathrm{mg}, 4.24 \mathrm{mmol})$ were dissolved in anhydrous DMF (15 mL) and the mixture was stirred for 15 min . before $54(280 \mathrm{mg}, 1.05 \mathrm{mmol})$ was added. The mixture was stirred at room temperature overnight evaporated in vacuo. The residue was dissolved in EtOAc (20 mL), washed with brine ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and evaporated in vacuo. The resulting residue was deprotected via General Procedure 1: anhydrous THF (3.0 mL) and 1 M TBAF in THF ($1.45 \mathrm{~mL}, 1.45 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h . Purification by Flash chromatography ($\mathrm{MeOH}: \mathrm{DCM}, 0 \% \rightarrow 2 \%$) yielded 125 mg of the alkyne $70(38 \%, 0.460 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.63-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.56-8.51(\mathrm{~m}, 1 \mathrm{H})$, $7.20-7.07(\mathrm{~m}, 4 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO, 101 MHz) $\delta 151.8,151.7,149.2,147.4,136.6$, 131.3, 130.9, 129.2, 128.4, 126.5, 122.1, 82.9, 81.2, 46.6; HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClN} 4\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 269.0589 found 269.0586

6-Chloro-9-(4-ethynylbenzyl)-9H-purine (76)

In a small, dry microwave vial, 6-chloro- $9 H$-purine ($167 \mathrm{mg}, 1.08 \mathrm{mmol}$) was suspended in anhydrous DMF (5.1 $\mathrm{mL})$ before the addition of $\mathrm{NaH}(60 \%$ in paraffin oil, $52 \mathrm{mg}, 1.30 \mathrm{mmol})$. The vial was purged with argon and the suspension stirred for 30 min . before $56(200 \mathrm{mg}, 1.03 \mathrm{mmol})$ was added. The mixture was stirred for 6 h . before the solvent was removed in vacuo. The residue was re-dissolved in MeOH and evaporated onto Celite 545 and purified by Flash Chromatography (MeOH:DCM, 1-3\%) to yield 150 mg of 76 ($52 \%, 0.558 \mathrm{mmol}$); H NMR (400 MHz , DMSO) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 151.8,151.7,149.2,147.5,136.8,132.1,130.9,127.9,121.4,83.0,81.2,46.7$; HRMS (ESI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClN}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right) 269.0589$ found 269.0584

6-Chloro-9-(2-ethynylbenzyl)-9H-purin-2-amine (77)

In a dry flask, 2-amino-6-chloropurine ($270 \mathrm{mg}, 1.59 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(642 \mathrm{mg}, 4.65 \mathrm{mmol})$ were dissolved in anhydrous DMF (22 mL) and the mixture was stirred for 15 min . before $53(353 \mathrm{mg}, 1.33 \mathrm{mmol})$ was added. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . before it was cooled and evaporated in vacuo. The residue was diluted with water $(25 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The organic layers were washed with brine (13 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by Flash Chromatography (MeOH:DCM, 0$4 \%$) to yield 215 mg of $77(57 \%, 0.758 \mathrm{mmol})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.29 (m, 2H), 7.23-7.20 (m 1H), $5.42(\mathrm{~s}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}) 3.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3$, $154.1,151.6,142.6,137.4,133.5,129.7,128.7,128.7,125.3,121.6,83.3,81.2,45.6 ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 284.1$ found 284.0

6-Chloro-9-(3-ethynylbenzyl)-9H-purin-2-amine (78)

In a dry flask, 2-amino-6-chloropurine ($270 \mathrm{mg}, 1.59 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(642 \mathrm{mg}, 4.65 \mathrm{mmol})$ were dissolved in anhydrous DMF (22 mL) and stirred for 15 min . before $54(353 \mathrm{mg}, 1.33 \mathrm{mmol})$ was added. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 24 h . before it was cooled and evaporated in vacuo. The residue was diluted with water (25 mL) and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layers were washed with brine ($3 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and evaporated in vacuo. The residue was deprotected via General Procedure 1: anhydrous THF (3.0 mL) and 1 M TBAF in THF ($1.45 \mathrm{~mL}, 1.45 \mathrm{mmol}$). The mixture was stirred at room temperature for 1 h . Purification by Flash Chromatography (MeOH:DCM, 0-3\%) yielded 173 mg of 78 ($53 \%, 0.610 \mathrm{mmol}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.25(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{dt}, J=8.3 \mathrm{~Hz}, 1.4,1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dt}, J=7.5 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 6.95$ (br s, 2H), $5.29(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.9,154.0,149.5,143.1,137.2,131.0$, 130.3, 129.2, 127.8, 123.3, 122.1, 83.0, 81.2, 45.6; MS (EI): m / z calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{5}(\mathrm{M}+) 283.1$ found 283.0.
N, N-Diethyl-9-(2-ethynylbenzyl)-9H-purin-6-amine (79)

To a dry round bottom flask, the chloro-purine $74(97 \mathrm{mg}, 0.361 \mathrm{mmol})$ was suspended in anhydrous ethanol (4.0 mL) under argon after which diethylamine ($0.15 \mathrm{~mL}, 1.44 \mathrm{mmol}$) was added. The suspension was refluxed at $75^{\circ} \mathrm{C}$ for 4 h . before it was concentrated in vacuo and the residue was purified by Flash chromatography (MeOH:DCM, $0-$ $1 \%)$ to yield 110 mg of $79(100 \%, 0.361 \mathrm{mmol}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.57-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 3 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}) 1.30(\mathrm{t}, J=8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.0,152.9,150.9,138.5,138.4,133.3,129.7,128.7,128.3,121.4,119.5,83.0,81.4,45.3,43.2$, 13.7; MS (EI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5}(\mathrm{M}+) 305.2$ found 305.0
N, N-Diethyl-9-(3-ethynylbenzyl)-9H-purin-6-amine (80)

To a dry round bottom flask, the chloro-purine $75(143 \mathrm{mg}, 0.534 \mathrm{mmol})$ was suspended in anhydrous ethanol (5.0 mL) under argon after which diethylamine ($0.22 \mathrm{~mL}, 2.13 \mathrm{mmol}$) was added. The suspension was refluxed at $75^{\circ} \mathrm{C}$ for 4 h . before it was concentrated in vacuo and the residue was purified by Flash chromatography (MeOH:DCM, $0-$ $2 \%)$ to yield 151 mg of 79 ($93 \%, 0.496 \mathrm{mmol}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}$: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.43$ $(\mathrm{m}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{br} \mathrm{s}, 4 \mathrm{H}) 1.19(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.0,152.9,150.9,138.5,138.4,133.3,129.7,128.7,128.3,121.4,119.5,83.0,81.4,45.3,43.2,13.7 ;$ MS (EI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5}(\mathrm{M}+) 305.2$ found 305.0
N, N-Diethyl-9-(4-ethynylbenzyl)-9H-purin-6-amine (81)

In a small, dry microwave vial, the chloro-purine $76(45 \mathrm{mg}, 0.167 \mathrm{mmol})$ was suspended in anhydrous ethanol (1.9 $\mathrm{mL})$ after which diethylamine $(0.07 \mathrm{~mL}, 0.670 \mathrm{mmol})$ was added. The vial was sealed and stirred at $75^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was concentrated and the resulting residue was purified by Flash chromatography ($0-3 \%$ $\mathrm{MeOH}: \mathrm{DCM})$ to yield: 51 mg of $81(100 \%, 0.167 \mathrm{mmol})$; H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H})$, $7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 4 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H})$, $1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.9,152.9,150.7,137.9,136.7,132.7,127.9,127.5$,
122.1, 119.5, 83.0, 77.8, 46.6, 43.1, 43.0, 13.5; HRMS (ESI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 306.1713$ found 306.1707
N^{6}, N^{6}-Diethyl-9-(2-ethynylbenzyl)-9H-purine-2,6-diamine (82)

To a dry round bottom flask, the chloro-purine $77(143 \mathrm{mg}, 0.504 \mathrm{mmol})$ was suspended in anhydrous ethanol (5.6 $\mathrm{mL})$ under argon after which diethylamine ($0.21 \mathrm{~mL}, 2.02 \mathrm{mmol}$) was added. The suspension was refluxed at $75^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was concentrated and the resulting residue was purified by Flash chromatography ($\mathrm{MeOH}: D C M, 2-8 \%$) to yield 144 mg of $\mathbf{8 2}(91 \%, 0.459 \mathrm{mmol}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}:\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.54(\mathrm{~s}, 1 \mathrm{H})$, $7.54-7.51(\mathrm{~m}, 1 \mathrm{H}) 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}) 1.30-1.20(\mathrm{t}, J=8$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: (101 MHz, CDCl_{3}) ; MS (EI): m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{6}(\mathrm{M}+) 320.2$ found 320.1
N^{6}, N^{6}-Diethyl-9-(3-ethynylbenzyl)-9H-purine-2,6-diamine (83)

To a dry round bottom flask, the chloro-purine $78(142 \mathrm{mg}, 0.501 \mathrm{mmol})$ was suspended in anhydrous ethanol (5.0 mL) under argon after which diethylamine $(0.21 \mathrm{~mL}, 2.00 \mathrm{mmol})$ was added. The suspension was refluxed at $75^{\circ} \mathrm{C}$ for 4 hours. The reaction mixture was concentrated and the resulting residue was purified by Flash chromatography (MeOH:DCM, 0-2.5\%) to yield 118 mg of $\mathbf{8 3}$ ($73 \%, 0.370 \mathrm{mmol}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~s}, 1 \mathrm{H})$, $7.40(\mathrm{dt}, J=7.6 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17 (s, 2H), 4.61 (br s, 2H), $\left.3.92(\mathrm{~s}, 4 \mathrm{H}), 3.06(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H},) ;{ }^{13} \mathrm{C} \mathrm{NMR:} \mathrm{(101MHz,CDCl}_{3}\right) \delta$ 159.7, 154.4, 153.1, 138.9, 136.3, 133.1, 129.6, 128.3, 127.9, 121.2, 114.6, 82.9, 81.4, 44.8, 42.7, 13.7; HRMS (ESI): m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right) 321.1830$ found 321.1759 .

9-(3-Ethynylbenzyl)-6-(4-methylpiperazin-1-yl)-9H-purine (84)

To a dry round bottom flask, the chloro-purine $75(130 \mathrm{mg}, 0.486 \mathrm{mmol})$ was suspended in anhydrous ethanol (4.9 mL) under argon after which 1-methylpiperazine $(0.22 \mathrm{~mL}, 1.94 \mathrm{mmol})$ was added. The suspension was refluxed at $75{ }^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was concentrated and the resulting residue was purified by Flash chromatography (MeOH:DCM, 1-2\%) to yield 125 mg of $\mathbf{8 4}$ which was used without further purification; H NMR
(400 MHz, DMSO) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 4 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 5 \mathrm{H}), 2.48(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 2.25$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 45.4,45.7,54.3,57.7,81.1,82.9,118.9,121.9,128.2,129.0,130.6,130.9$, 137.5, 139.9, 150.5, 151.9, 153.1; HRMS (ESI) m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5}\left(\mathrm{M}+\mathrm{H}^{+}\right) 333.1953$ found 333.1830

9-(4-Ethynylbenzyl)-6-(4-methylpiperazin-1-yl)-9H-purine (85)

In a small, dry microwave vial, the chloro-purine $76(45 \mathrm{mg}, 0.167 \mathrm{mmol})$ was suspended in anhydrous ethanol (1.9 $\mathrm{mL})$ after which 1-methylpiperazine $(0.08 \mathrm{~mL}, 0.720 \mathrm{mmol})$ was added. The vial was sealed and the mixture was stirred at $75{ }^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was concentrated and the residue was purified by Flash chromatography (MeOH:DCM, 0-3\%) to yield 55 mg of $\mathbf{8 5}(99 \%, 0.166 \mathrm{mmol})$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37$ (s, 1H), $7.70(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 4 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 2.55$ (t, $J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,151.7,150.0,137.0,135.5,131.7,126.5$, 121.2, 118.8, 81.9, 76.9, 54.1, 52.4, 45.7, 45.2, 44.0; HRMS (ESI): m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right) 333.1822$ found 333.1834
N^{1}-(9-(4-Ethynylbenzyl)-9H-purin-6-yl)ethane-1,2-diamine (86)

In a small, dry microwave vial, chloro-purin $76(90 \mathrm{mg}, 0.335 \mathrm{mmol})$ was suspended in anhydrous ethanol (3.72 mL) after which ethylene diamine ($0.09 \mathrm{~mL}, 1.34 \mathrm{mmol}$) was added. The vial was sealed and stirred at $75^{\circ} \mathrm{C}$ for 3.5 h. The reaction mixture was concentrated and the resulting residue was used without further purification (Ethylene diamine still present) Yield: $113 \mathrm{mg}(117 \%)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 2.71 ($\mathrm{s}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 154.6,152.5,140.6,137.8,131.9,127.7,127.6,127.3,121.0,119.0$, 117.2, 83.0, 80.9, 45.8, 40.8; HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right) 293.1509$ found 293.1509

1-(9-(4-Ethynylbenzyl)-9H-purin-6-yl)guanidine (87)

To a suspension of $\mathrm{NaH}(60 \%$ in paraffin oil, $49 \mathrm{mg}, 2.05 \mathrm{mmol}$) in 2:1 MeCN:DMF (6.2 mL), guanidine hydrochloride ($196 \mathrm{mg}, 2.05 \mathrm{mmol}$) was added. The mixture was purged with argon and stirred at room temperature overnight after which it was added directly to a flask containing 76 and DABCO ($42 \mathrm{mg}, 0.375 \mathrm{mmol}$). The
suspension was stirred at room temperature for 6 h . before the solvent was removed in vacuo. The residue was purified by Flash Chromatography (MeOH:DCM, 2-20\%) to yield 103 mg of $87(95 \%, 0.353 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}) \delta 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 156.11,151.34,150.97,150.70,144.38,137.11$, 131.96, 127.82, 121.48, 121.24, 82.90, 81.08, 46.23; HRMS (ESI): m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{7}\left(\mathrm{M}+\mathrm{H}^{+}\right) 292.1305$ found 292.1302.

2-(4-Ethynylbenzyl)isoindoline-1,3-dione (88)

In a small, dry microwave vial, a solution of $\mathbf{5 6}(200 \mathrm{mg}, 1.03 \mathrm{mmol})$ in anhydrous DMF $(0.51 \mathrm{~mL})$ was carefully added potassium phthalimide ($218 \mathrm{mg}, 1.03 \mathrm{mmol}$). The vial was sealed and the mixture stirred at room temperature for 19 h . after which it was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ followed by extraction with $\mathrm{DCM}(5 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by Flash Chromatography (EtOAc:PE, 5-20\%) to afford 215 mg of the title compound $\mathbf{8 8} \mathbf{(8 0 \%}, 0.824$ $\mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.9,137.0,134.1,132.4,132.1,128.5$, 123.4, 121.7, 83.3, 77.5, 41.3; HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NO}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right) 262.0863$ found 262.0966.

4-(Ethynyl)benzyl amine (89)

In a small microwave vial, the phthalimide $\mathbf{8 8}(165 \mathrm{mg}, 0.632 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}(3.26 \mathrm{~mL})$ after which hydrazine hydrate ($50-60 \% \mathrm{w} / \mathrm{w}, 0.075 \mathrm{~mL}, 1.33 \mathrm{mmol}$) was added dropwise. The vial was sealed and stirred at 78 ${ }^{\circ} \mathrm{C}$ for 4 h . before cooling to room temperature. The reaction mixture was filtered and washed with EtOAc. The combined filtrates were evaporated in vacuo to afford $72 \mathrm{mg}(91 \%, 0.354 \mathrm{mmol})$ of $\mathbf{8 9}$ which was used without further purification: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}$, 2 H), 3.15 (br s, 3 H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO) $\delta 144.9$, 131.4, 127.2, 119.4, 83.6, 80.0, 45.1; EI MS m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}(\mathrm{M}+) 131.1$ found 131.0.

2-((Trimethylsilyl)ethynyl)benzonitrile (92)

To a large, dry microwave vial, 2-bromobenzonitrile $90(1.00 \mathrm{~g}, 5.49 \mathrm{mmol})$, copper(I) iodide ($55.8 \mathrm{mg}, 0.440$ $\mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) $(254 \mathrm{mg}, 0.219 \mathrm{mmol})$ were added. The vial was vac-filled with argon (3x) before anhydrous $\mathrm{Et}_{3} \mathrm{~N}(13.7 \mathrm{~mL})$ and trimethylsilyl acetylene ($1.56 \mathrm{~mL}, 11.0 \mathrm{mmol}$) were added under the exclusion of oxygen. The vial was sealed and the mixture stirred at $80^{\circ} \mathrm{C}$ for 1 h . before being cooled to room temperature. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL}), 2 \mathrm{M} \mathrm{HCl}$ $(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated in vacuo. The residue was purified by Flash Chromatography (EtOAc:PE, 0-5\%) to yield 1.10 g of $92(100 \%, 5.49 \mathrm{mmol})$ as white crystals; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (ddd, $J=7.7,1.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (ddd, $J=7.9,1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.52(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=7.8,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $132.9,132.8,132.5,128.8,127.3,117.6,116.2,102.6,100.9,0.0$; HRMS (ESI): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NNaSi}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right) 222.0709$ found 222.0714

2-((Trimethylsilyl)ethynyl)benzonitrile (93)

To a large, dry microwave vial, 3-bromobenzonitrile $91(1.00 \mathrm{~g}, 5.49 \mathrm{mmol})$, copper(I) iodide ($55.8 \mathrm{mg}, 0.440$ $\mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) ($254 \mathrm{mg}, 0.219 \mathrm{mmol}$) were added. The vial was vac-filled with argon (3 x) before anhydrous $\mathrm{Et}_{3} \mathrm{~N}(13.7 \mathrm{~mL})$ and trimethylsilyl acetylene ($1.56 \mathrm{~mL}, 11.0 \mathrm{mmol}$) was added under the exclusion of oxygen. The vial was sealed and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h . before being cooled to room temperature. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL}), 2 \mathrm{M}$ $\mathrm{HCl}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated in vacuo. The resulting residue was purified by Flash Chromatography (EtOAc:PE, 0-5\%) to yield 1.08 g of $93(98 \%$, 5.39 mmol$)$ as white crystals; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{td}, J=1.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}$, $1 \mathrm{H}), 7.42(\mathrm{td}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.2,135.6,131.9,129.4,125.1$, 118.2, 113.1, 102.5, 97.7; EI MS m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NSi}(\mathrm{M}+) 199.1$ found 199.1.

General Procedure 2 was applied with the trimethylsilyl protected acetylene $92(1.10 \mathrm{~g}, 5.49 \mathrm{mmol})$ dissolved in $\mathrm{MeOH}(40 \mathrm{~mL})$ after which $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added (759 mg , 5.49 mmol). The suspension was stirred for 1 h . at room temperature before it was concentrated in vacuo. The residue was purified by Flash Chromatography (EtOAc:PE, 0$10 \%$) to yield 570 mg of $94(81 \%, 4.48 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (ddd, $J=7.7,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 133.0,132.7,132.4,129.0,126.0,117.2,116.0,83.8,79.6$; EI MS m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~N}(\mathrm{M}+) 127.0$ found 127.0.

3-Ethynylbenzonitrile (95)

General Procedure 2 was applied with the trimethylsilyl protected acetylene $93(1.05 \mathrm{~g}, 5.27 \mathrm{mmol})$ dissolved in $\mathrm{MeOH}(38 \mathrm{~mL})$ after which $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added (728 mg , 5.27 mmol). The suspension was stirred for 1 h . at room temperature before it was concentrated in vacuo. The residue was purified by Flash Chromatography (EtOAc:PE, 0$10 \%$) to yield 512 mg of $95(77 \%, 4.03 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dt}, J=$ $7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 136.2,135.5,132.0,129.3,123.8,117.9,113.0,81.2,79.8$; EI MS m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NSi}(\mathrm{M}+)$ 127.0 found 127.0.

2-(Ethynyl)benzyl amine (96)

In a dry microwave vial, a solution of $\mathbf{9 4}(150 \mathrm{mg}, 1.18 \mathrm{mmol})$ in anhydrous THF $(0.47 \mathrm{~mL})$ was added dropwise to a 1 M solution of LiAlH_{4} in THF (2.48 mL). The mixture was stirred at $-10^{\circ} \mathrm{C}$ for 1 h . followed by 1 h . at room temperature. The reaction was quenched by careful addition of $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ and sat. aq. $\mathrm{NaOH}(0.2 \mathrm{~mL})$. The resultant slurry was stirred for 0.5 h . before it was added brine (1 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered over Celite and concentrated in vacuo to yield 130 mg of 96 ($84 \%, 0.991 \mathrm{mmol}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H})$, $3.98(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.1,133.1,129.3,127.4,126.8,120.7$, 81.7, 81.6, 45.5; MS (EI) m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}(\mathrm{M}+) 131.1$ found 131.1. Ref: Formation of indoles,
dihydroisoquinolines, and dihydroquinolines by ruthenium-catalyzed heterocyclizations By Varela-Fernandez, Alejandro et al. Synthesis, 44(21), 3285-3295; 201236
(3-Ethynylphenyl)methanamine (97)

In a dry microwave vial, a solution of $\mathbf{9 3}(200 \mathrm{mg}, 1.57 \mathrm{mmol})$ in anhydrous THF $(0.63 \mathrm{~mL})$ was added dropwise to a 1 M solution of LiAlH_{4} in THF (3.30 mL). The mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 1 h . followed by 1 h . at room temperature. The reaction was quenched by careful addition of $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ and sat. aq. $\mathrm{NaOH}(0.2 \mathrm{~mL})$. The resultant slurry was stirred for 0.5 h . before it was separated in brine (1 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered over Celite and concentrated in vacuo to yield 167 mg of $97(81 \%, 1.27 \mathrm{mmol}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=$ $6.2,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.86(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,130.8,130.6,128.5,127.6,122.3$, 83.6, 77.2, 77.0, 46.1; EI MS m/z calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}(\mathrm{M}+) 131.1$ found 131.1.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR for compound $10-44$

Compound 10

Compound 11

Compound 12

Compound 13

Compound 14

Compound 15

Compound 16

Compound 17

Compound 18

Compound 19

Compound 20

Compound 21

Compound 22

(

Compound 23

Compound 24

Compound 25

Compound 26

Compound 27

Compound 28

Compound 29

Compound 30

Compound 31

Compound 32

Compound 32 13C
ヘn

[^0]

Compound 33

Compound 34

Compound 35

Compound 36

Compound 37

Compound 38

Compound 39

Compound 40

Compound 41

Compound 42

(

Compound 43

Compound 44

HPLC chromatograms for compound 10-44

Compound 10

No.	Ret.Time min		Peak Name	Height mAU	Area mAU* ${ }^{\text {min }}$	$\begin{gathered} \hline \text { Rel.Area } \\ \% \\ \hline \end{gathered}$	Amount	Type
1	12,21	n.a.		1773,171	144,040	100,00	n.a.	BMB*
Total:				1773,171	144,040	100,00	0,000	

Compound 11

$\begin{array}{|r|rrrrrrr|}\hline \text { No. } & \begin{array}{c}\text { Ret.Time } \\ \text { min }\end{array} & & \text { Peak Name } & \begin{array}{c}\text { Height } \\ \text { mAU }\end{array} & \begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array} & \begin{array}{r}\text { Rel.Area } \\ \%\end{array} & \text { Amount }\end{array}$ Type $)$

Compound 12

$\begin{array}{|c|crrrrrr|}\hline \text { No. } & \begin{array}{c}\text { Ret.Time } \\ \text { min }\end{array} & & \text { Peak Name } & \begin{array}{c}\text { Height } \\ m A U\end{array} & \begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array} & \begin{array}{r}\text { Rel.Area } \\ \%\end{array} & \text { Amount }\end{array}$ Type $)$

Compound 13

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	11.93	n.a.	1517.938	115.274	98.53	n.a.	BM *
2	12.08	n.a.	19.506	1.292	1.10	n.a.	MB
3	12.68	n.a.	2.431	0.425	0.36	n.a.	BMB*
Total:			1539.875	116.991	100.00	0.000	

Compound 14

Compound 15

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	9.11	n.a.	1932.634	178.322	96.82	n.a.	BMB*
2	9.62	n.a.	28.845	1.852	1.01	n.a.	BMB*
3	10.50	n.a.	8.692	0.429	0.23	n.a.	BMB*
4	10.82	n.a.	10.796	0.868	0.47	n.a.	BMB*
5	11.70	n.a.	37.929	2.709	1.47	n.a.	BMB*
Total:			2018.896	184.180	100.00	0.000	

Compound 16

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	6,60	n.a.	7,476	0,445	0,32	n.a.	BMB*
2	7,64	n.a.	32,905	1,852	1,34	n.a.	BMB*
3	8,84	n.a.	1984,027	133,507	96,29	n.a.	BMB*
4	9,56	n.a.	28,811	1,899	1,37	n.a.	BMB*
5	11,73	n.a.	8,426	0,642	0,46	n.a.	BMB*
6	12,16	n.a.	4,124	0,302	0,22	n.a.	BMB*
Total:			2065,769	138,647	100,00	0,000	

Compound 17

Compound 18

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	8,30	n.a.	47,506	2,811	2,17	n.a.	BMB* *
2	9,26	n.a.	1929,387	126,954	97,83	n.a.	BMB* *
Total:			1976,893	129,766	100,00	0,000	

Compound 19

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	8,40	n.a.	1931,614	137,744	99,54	n.a.	BMB *
2	8,90	n.a.	9,985	0,630	0,46	n.a.	BMB *
Total:			1941,599	138,374	100,00	0,000	

Compound 20

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	$\begin{gathered} \hline \text { Rel.Area } \\ \% \\ \hline \end{gathered}$	Amount	Type
1	7,31	n.a.	50,835	7,840	3,64	n.a.	BMB*
2	8,42	n.a.	2298,741	206,019	95,59	n.a.	BMB*
3	8,84	n.a.	18,137	1,048	0,49	n.a.	BMB*
4	9,44	n.a.	12,346	0,618	0,29	n.a.	BMB*
Total:			2380,059	215,525	100,00	0,000	

Compound 21

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	10.80	n.a.	714.459	55.586	96.72	n.a.	BMB *
2	11.65	n.a.	20.116	1.887	3.28	n.a.	BMB *
Total:			734.576	57.473	100.00	0.000	

Compound 22

No.	Ret.Time	Peak Name	Height min		Area	Rel.Area	Amount
mAU*min	Type						
1	9,82	n.a.	0,143	0,003	0,00	n.a.	BMB *
2	10,11	n.a.	5,509	0,303	0,12	n.a.	BMB *
3	10,33	n.a.	12,477	0,718	0,30	n.a.	BMB *
4	10,75	n.a.	2226,612	241,763	99,58	n.a.	BMB *
Total:			2244,739	242,787	100,00	0,000	

Compound 23

$\begin{array}{|r|crrrrrr|}\hline \text { No. } & \begin{array}{c}\text { Ret.Time } \\ \text { min }\end{array} & & \text { Peak Name } & \begin{array}{c}\text { Height } \\ \text { mAU }\end{array} & \begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array} & \begin{array}{r}\text { Rel.Area } \\ \%\end{array} & \text { Amount }\end{array}$ Type $)$

Compound 24

$\begin{array}{|r|rrrrrrr|}\hline \text { No. } & \begin{array}{c}\text { Ret.Time } \\ \text { min }\end{array} & & \text { Peak Name } & \begin{array}{c}\text { Height } \\ \text { mAU }\end{array} & \begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array} & \begin{array}{r}\text { Rel.Area } \\ \%\end{array} & \text { Amount }\end{array}$ Type $)$

Compound 25

$\begin{array}{|r|crrrrrr|}\hline \text { No. } & \begin{array}{c}\text { Ret.Time } \\ \text { min }\end{array} & & \text { Peak Name } & \begin{array}{c}\text { Height } \\ \text { mAU }\end{array} & \begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array} & \begin{array}{r}\text { Rel.Area } \\ \%\end{array} & \text { Amount }\end{array}$ Type $)$

Compound 26

No.	Ret.Time min		Peak Name	Height mAU	Area A mAU* \min	Rel.Area \%	Amount	Type
1	12.03	n.a.		1061.127	78.425	95.77	n.a.	BMB*
2	13.28	n.a.		54.571	3.467	4.23	n.a.	BMB*
Total:				1115.698	81.892	100.00	0.000	

Compound 27

No.	Ret.Time min		Peak Name	Height mAU	$\begin{gathered} \text { Area } \\ \text { mAU*min } \end{gathered}$	$\begin{gathered} \hline \text { Rel.Area } \\ \% \end{gathered}$	Amount	Type
1	10.00	n.a.		464.235	27.972	95.60	n.a.	BMB*
2	10.49	n.a.		15.446	0.847	2.90	n.a.	BMB*
3	12.01	n.a.		6.548	0.441	1.51	n.a.	BMB*
Total:				486.228	29.260	100.00	0.000	

Compound 28

No.	Ret.Time	Peak Name	Height maU	Area mAU*min	Rel.Area	Amount	Type
	min		31.094	1.358	0.70	n.a.	BMb* *
1	9.84	n.a.	2054.921	187.358	95.91	n.a.	bMB *
2	9.98	n.a.	31.853	2.474	1.27	n.a.	BMB *
3	13.39	n.a.	51.345	4.153	2.13	n.a.	BMB *
4	13.80	n.a.	2169.213	195.343	100.00	0.000	
Total:							

Compound 29

No.	Ret.Time min	Peak Name	Height mAU	Area mAU* ${ }^{\text {min }}$	Rel.Area \%	Amount	Type
1	12,04	n.a.	11,761	1,001	0,34	n.a.	BMB*
2	12,43	n.a.	2630,330	292,886	99,30	n.a.	BMB*
3	12,82	n.a.	16,396	1,066	0,36	n.a.	BMB*
Total:			2658,486	294,953	100,00	0,000	

Compound 30

No.	Ret.Time min		Peak Name	Height mAU	$\begin{gathered} \text { Area } \\ \text { mAU*min } \end{gathered}$	$\begin{gathered} \hline \text { Rel.Area } \\ \% \end{gathered}$	Amount	Type
1	10,97	n.a.		1431,456	104,590	99,67	n.a.	BMB*
2	11,48	n.a.		4,891	0,346	0,33	n.a.	BMB*
Total:				1436,347	104,935	100,00	0,000	

Compound 31

$\begin{array}{|c|crrrrrr|}\hline \text { No. } & \begin{array}{c}\text { Ret.Time } \\ \text { min }\end{array} & & \text { Peak Name } & \begin{array}{c}\text { Height } \\ \text { mAU }\end{array} & \begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array} & \begin{array}{r}\text { Rel.Area } \\ \%\end{array} & \text { Amount }\end{array}$ Type $)$

Compound 32

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		mAU	mAU*min	$\%$		
1	10.67	n.a.	805.908	58.896	97.50	n.a.	BMb* *
2	10.88	n.a.	10.250	0.597	0.99	n.a.	bMB *
3	11.23	n.a.	7.631	0.599	0.99	n.a.	BMB *
4	12.63	n.a.	5.202	0.318	0.53	n.a.	BMB *
Total:			828.991	60.409	100.00	0.000	

Compound 33

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*	Rel.Area $\%$	Amount	Type
1	7.67	n.a.	18.862	1.022	0.65	n.a.	BMB *
2	9.34	n.a.	2185.385	156.266	99.07	n.a.	BMB *
3	10.50	n.a.	4.371	0.279	0.18	n.a.	BMB *
4	10.98	n.a.	2.827	0.172	0.11	n.a.	BMB *
Total:			2211.445	157.739	100.00	0.000	

Compound 34

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	8.95	n.a.	0.301	0.011	0.03	n.a.	BMB *
2	9.24	n.a.	523.152	32.371	99.67	n.a.	BMB *
3	10.63	n.a.	1.673	0.095	0.29	n.a.	BMB *
Total:			525.126	32.476	100.00	0.000	

Compound 35

$\begin{array}{|c|rrrrrrr|}\hline \text { No. } & \begin{array}{c}\text { Ret.Time } \\ \text { min }\end{array} & & \text { Peak Name } & \begin{array}{c}\text { Height } \\ \text { mAU }\end{array} & \begin{array}{c}\text { Area } \\ \text { mAU*min }\end{array} & \begin{array}{r}\text { Rel.Area } \\ \%\end{array} & \text { Amount }\end{array}$ Type $)$

Compound 36

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	9.76	n.a.	23.032	1.048	0.40	n.a.	BMB* *
2	9.98	n.a.	2719.356	260.202	99.60	n.a.	BMB* $^{\text {BM }}$
Total:			2742.388	261.250	100.00	0.000	

Compound 37

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	9,90	n.a.	2501,118	176,953	100,00	n.a.	BMB *
Total:			2501,118	176,953	100,00	0,000	

Compound 38

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*	Rel.Area $\%$	Amount	Type
1	9.83	n.a.	2466.492	188.633	100.00	n.a.	BMB *
Total:			2466.492	188.633	100.00	0.000	

Compound 39

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	9.97	n.a.	2653.466	211.670	100.00	n.a.	BMB *
Total:			2653.466	211.670	100.00	0.000	

Compound 40

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	9,90	n.a.	2123,090	140,050	100,00	n.a.	BMB *
Total:			2123,090	140,050	100,00	0,000	

Compound 41

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area \%	Amount	Type
1	7.79	n.a.	8.068	0.352	0.75	n.a.	BMB*
2	9.14	n.a.	808.437	46.410	99.25	n.a.	BMB*
Total:			816.505	46.762	100.00	0.000	

Compound 42

No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area $\%$	Amount	Type
1	8.46	n.a.	23.140	1.840	0.52	n.a.	BM *
2	8.53	n.a.	32.764	2.021	0.57	n.a.	MB *
3	9.13	n.a.	2561.243	349.559	98.30	n.a.	BMB *
4	9.91	n.a.	7.371	0.770	0.22	n.a.	BM *
5	10.07	n.a.	13.224	1.410	0.40	n.a.	MB *
Total:			2637.742	355.601	100.00	0.000	

Compound 43

Compound 44

No.	Ret.Time min	Peak Name	Height mAU	$\begin{gathered} \text { Area } \\ \mathrm{mAU} U^{*} \text { min } \end{gathered}$	Rel.Area \%	Amount	Type
1	8.78	n.a.	42.575	2.047	3.39	n.a.	BMB*
2	9.33	n.a.	972.238	57.836	95.72	n.a.	BMB*
3	10.38	n.a.	8.466	0.540	0.89	n.a.	BMB*
Total:			1023.279	60.422	100.00	0.000	

[^0]: -2300

