SUPPORTING INFORMATION

Discovery of the Potent, Selective, Orally available CXCR7 Antagonist

ACT-1004-1239

Sylvia Richard-Bildstein*, Hamed Aissaoui, Julien Pothier, Gabriel Schäfer, Carmela
Gnerre, Eleanor Lindenberg, François Lehembre, Laetitia Pouzol, and Philippe Guerry*
Drug Discovery Chemistry, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH4123 Allschwil, Switzerland

Content

Chemistry S2
Characterization of hits 2 to 6 S3
Preparation of amides 7a-7p S4
Preparation of amides 8a-8n S9
Preparation of amides 9a-9g S13
Preparation of amides 10a-10f S15
Preparation of compounds $11 \mathrm{a}-11 \mathrm{j}$ S20
Preparation of compounds 20a-20q and 21a-21g S26
Preparation of compounds 28a-28e, 28g-31 S36
hKV11.1 ("hERG") assay S44
In Vitro DMPK S44
Inhibition of Cytochrome P450 Enzymes S44
Metabolic Stability in Liver Microsomes S44
Plasma Protein Binding S45
In Vivo DMPK S45
Pharmacokinetic Studies in Rat and Dog S45
Physico-Chemical Properties Measurement S46
Log D7.4 determination S46
pKa determination S46
Solubility determination S47
Differential scanning calorimetry (DSC) S47
Single Crystal X-ray Structure Analysis of ACT-1004-1239 (28f) S47
Data collection and refinement statistics S47
Biological Assays In Vitro S48
CXCR7-agonist $\mathbf{1}$ assay S48
Insurmountability assay S49
CXCR7-CXCL12 assay S49
Determination of the Ki, Kon and Koff constants S50
CXCR7 assay using CXCR7 from various species S51
Human CXCR4 intracellular calcium liberation (FLIPR) Assay S52
Biological Assay In Vivo S53
Target engagement in vivo: S53
References S54
LC-MS traces of compounds 2-31 S55

Chemistry

This supporting information contains experimental details of the synthesis of target compounds and the corresponding building blocks not described in the main text. More details on the synthesis of some derivatives discussed in this account are described in a patent application ${ }^{1}$. LC-MS and NMR equipment and methods are described in the main text. In case NMR spectra were measured using 1 mm Microprobe ${ }^{\circledR}$ tubes, the compounds were dissolved in nondeuterated DMSO. The spectra were then measured with double irradiation for suppression of the DMSO (2.5 ppm) and $\mathrm{H}_{2} \mathrm{O}(3.5 \mathrm{ppm})$ peaks. The number of protons given in the description represent observed values. In some cases, signals close to either of the two solvent signals were not visible as they were suppressed by irradiation. In cases where compounds appear as a
mixture of conformational isomers, tautomers or rotamers particularly visible in their LC-MS spectra, the retention time of the most abundant conformer is given.

Characterization of hits 2 to 6

Rac-1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid (2-diethylamino-2-thiophen-3-yl-ethyl)-amide (2) QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.65 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=384.3$. $\mathrm{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}$ $=383.1780$, found $=384.1860[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO) $\delta: 9.25(\mathrm{~s}, 1 \mathrm{H})$, $8.33(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.13(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.70(\mathrm{~m}, 2 \mathrm{H})$, $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~m}, 6 \mathrm{H})$.

Rac-4-(2,4-Difluoro-phenyl)-N-(2-dimethylamino-2-thiophen-3-yl-ethyl)-4-oxo-

 butyramide (3) QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.50 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=367.1$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.50 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 366.1214, found $=367.1279[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.84$ $\left(\mathrm{td}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50\left(\mathrm{dd}, J_{1}=4.9 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40\left(\mathrm{dd}, J_{1}=2.8\right.$ $\left.\mathrm{Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30\left(\mathrm{ddd}, J_{1}=11.7 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, J_{3}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{td}, J_{1}=8.3\right.$ $\left.\mathrm{Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.01\left(\mathrm{dd}, J_{1}=4.9 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69\left(\mathrm{dd}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=2.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61\left(\mathrm{dd}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.01\left(\mathrm{dd}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=11.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.59-2.66 (m, 1 H), 2.37-2.43 (m, 1 H), 2.18-2.23 (m, 2 H), 1.91 (s, 6 H).
Rac-4-(2,4-Difluoro-phenyl)-N-(4-methyl-morpholin-2-ylmethyl)-4-oxo-butyramide

QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.38 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=237.2$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.38 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=326.1442$, found $=327.1524[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 7.99(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{q}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 1$ H), $3.41(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}$,
$J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.93\left(\mathrm{td}, J_{1}=2.3 \mathrm{~Hz}, J_{2}=11.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.64$ $(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$.

1-(2,4-Difluoro-phenyl)-4-[4-(2-dimethylamino-ethyl)-piperazin-1-yl]-butane-1,4-dione (5) QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.68 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=354.0$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.39 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=353.1915$, found $=354.1999[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO) $\delta: 7.92(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ $(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.69$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.31-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H})$.

5-(4-Bromo-phenyl)-isoxazol-3-yl]-(8-ethyl-1-oxa-4,8-diaza-spiro[4.5]dec-4-yl)methanone (6) QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.72 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=422.3 . \mathrm{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.64 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 419.0845, found $=420.0924[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 7.90(\mathrm{~m}, 2 \mathrm{H}), 7.78$ $(\mathrm{m}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.72\left(\mathrm{td}, J_{1}=12.9 \mathrm{~Hz}\right.$, $\left.J_{2}=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2$ H), $1.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Preparation of amides 7a-7p

General procedure A:

To a solution of the respective carboxylic acid (commercially available) (0.1 mmol) in 1 mL DMF was added the respective amine (commercially available) (0.11 to 0.15 mmol). DIPEA ($0.3 \mathrm{mmol} ; 0.6 \mathrm{mmol}$ if the amine was a hydrochloride salt) was then added followed by HATU or TBTU (0.11 to 0.15 mmol). The reaction mixture was stirred overnight at rt . The crude mixture was directly purified by prep. LC-MS under basic conditions.

4-(2,4-Difluoro-phenyl)-N-(2-dimethylamino-ethyl)-4-oxo-butyramide (7a). General procedure A from 4-(2,4-difluorophenyl)-4-oxobutanoic acid and 2(dimethylamino)ethylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.39 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=285.2$. LC $-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.36$
$\mathrm{min} ; \mathrm{m} / \mathrm{z}=284.1336$, found $=285.1415[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.39(\mathrm{~s}$, $1 \mathrm{H}), 7.78\left(\mathrm{td}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=9.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.27\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, J_{3}=11.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.14\left(\mathrm{td}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.53-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.41$ (m, 2 H$), 2.19-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H})$.

1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid (2-diethylamino-ethyl)-amide (7b). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and 2(diethylamino)ethylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.52 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=302.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.46$ $\mathrm{min} ; \mathrm{m} / \mathrm{z}=301.1903$, found $=302.1983[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 9.21(\mathrm{~s}$, $1 \mathrm{H}), 8.42(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85\left(\mathrm{td}, J_{1}=4.2 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.40-7.44(\mathrm{~m}, 2 \mathrm{H})$, 3.33-3.39 (m, 2 H$), 2.58(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.40-2.43(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

1-(2,4-Difluoro-phenyl)-4-(8-ethyl-1-oxa-4,8-diaza-spiro[4.5]dec-4-yl)-butane-1,4-dione

 (7c). General procedure A from 4-(2,4-difluorophenyl)-4-oxobutanoic acid and 8-ethyl-1-oxa-4,8-diazaspiro[4.5]decane. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.52 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=367.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.46$ $\mathrm{min} ; \mathrm{m} / \mathrm{z}=366.1755$, found $=367.184[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 7.93$ (td, $\left.J_{1}=6.7 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42\left(\mathrm{ddd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, J_{3}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.24(\mathrm{td}$, $\left.J_{1}=2.3 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.95(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-3.16(\mathrm{~m}$, $2 \mathrm{H}), 2.69-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2$ H), $2.01-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
(8-Ethyl-1-oxa-4,8-diaza-spiro[4.5]dec-4-yl)-(1-p-tolyl-1H-[1,2,3]triazol-4-yl)-methanone

 (7d). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and 8-ethyl-1-oxa-4,8-diazaspiro[4.5]decane. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=356.3$. LCHRMS: $\mathrm{t}_{\mathrm{R}}=0.53 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=355.2008$, found $=356.2088[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\right.$ DMSO) $\delta: 9.25(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=6.2 \mathrm{~Hz}$,$2 \mathrm{H}), 4.03(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.87(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 2$ H), $1.51-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
rac-1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid (4-methyl-morpholin-2-ylmethyl)amide (7e). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and (4-methylmorpholin-2-yl)methanamine. LC-MS method $B: \mathrm{t}_{\mathrm{R}}=0.73 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}$ $=316.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.45 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=315.1695$, found $=316.1771[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz, D D_{6}-DMSO) $\delta: 9.23(\mathrm{~m}, 1 \mathrm{H}), 8.55(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.49\left(\mathrm{td}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.29-3.40(m, 1H), 2.68-2.72 (m, 1 H), 2.53-2.60 (m, 2 H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.97$ (td, $\left.J_{1}=3.3 \mathrm{~Hz}, J_{2}=11.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.74(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$.

1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid diethylcarbamoylmethyl-amide (7f). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and 2-amino-N,N-diethyl acetamide hydrochloride. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.92 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=316.3 . \operatorname{LC}-$ HRMS: $\mathrm{t}_{\mathrm{R}}=0.86 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=315.1695$, found $=316.1772[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\right.$ DMSO) $\delta: 9.28$ (s, 1 H), 8.41 (t, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2$ H), 4.11-4.17 (m, 2 H), $3.30-3.37(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00-1.07$ (m, 3 H).

Rac-1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid (1-ethyl-pyrrolidin-2-ylmethyl)-

 amide (7g). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and 2-(aminomethyl)-1-ethylpyrrolidine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.53 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=314.3$. LCHRMS: $\mathrm{t}_{\mathrm{R}}=0.48 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=313.1903$, found $=314.1989[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO, water suppression) $\delta: 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.65$$(\mathrm{m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.69$ $(\mathrm{m}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid (3-diethylamino-propyl)-amide (7h). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and N,N-diethyl-1,3-propanediamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.54 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=316.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.48$ $\mathrm{min} ; \mathrm{m} / \mathrm{z}=315.2059$, found $=316.2143[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 9.15-$ $9.30(\mathrm{~m}, 1 \mathrm{H})$, , 8.78-8.98 (m, 1 H$), ~ 7.68-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.56$ (m, 2 H$), 3.30-3.46(\mathrm{~m}, 1 \mathrm{H})$, 2.91-3.18 (m, 6 H), 2.34-2.43 (m, 3 H), 1.79-1.98 (m, 2 H), 1.21-1.25 (m, 1 H), 1.16 (t, $J=7.2$ Hz, 6 H).

1-(4-Diethylamino-piperidin-1-yl)-4-(2,4-difluoro-phenyl)-butane-1,4-dione (7i). General procedure A from 4-(2,4-difluorophenyl)-4-oxobutanoic acid and 4-diethylamino-piperidine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.47 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=353.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.43 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=352.1962$, found $=353.2035[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}$) $\delta: 7.92\left(\mathrm{td}, J_{1}=7.0 \mathrm{~Hz}, J_{2}=8.9 \mathrm{~Hz} .1 \mathrm{H}\right)$, $7.42\left(\mathrm{ddd}, J_{1}=2.6 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=11.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.24\left(\mathrm{td}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 4.32-4.39 (m, 1 H), 3.92-3.99 (m, 1 H), 3.07-3.19 (m, 2 H), 2.96-3.04 (m, 1 H), 2.66-2.74 (m, 3 H), 2.45-2.49 (m, 4 H), 1.69-1.75 (m, 1 H), 1.61-1.68 (m, 1 H), 1.31-1.42 (m, 1 H), 1.12-1.23 (m, 1 H$), 0.96(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
rac-4-(2,4-Difluoro-phenyl)-N-[2-(1-methyl-pyrrolidin-2-yl)-ethyl]-4-oxo-butyramide (7j). General procedure A from 4-(2,4-difluorophenyl)-4-oxobutanoic acid and 2-(2-aminoethyl)-1-methylpyrrolidine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.47 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=325.3$. LC-HRMS: t_{R} $=0.41 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=325.1727$, found $=325.1727[\mathrm{M}+\mathrm{H}]^{+}$.
rac-1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid [2-(1-methyl-pyrrolidin-2-yl)-ethyl]amide (7k). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and 2-(2-aminoethyl)-1-methylpyrrolidine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.52 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=314.3$.

LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.47 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=313.1903$, found $=314.1982[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, D_{6}-DMSO) $\delta: 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.92-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.14(\mathrm{~m}, 4 \mathrm{H}), 1.83-2.00(\mathrm{~m}, 2$ H), 1.59-1.69 (m, 2 H), 1.40-1.53 (m, 2 H).

4-(2,4-Difluoro-phenyl)-N-(1-methyl-piperidin-4-yl)-4-oxo-butyramide (71). General procedure A from 4-(2,4-difluorophenyl)-4-oxobutanoic acid and 4-amino-1methylpiperidine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.40 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=311.2$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.37 \mathrm{~min} ; \mathrm{m} / \mathrm{z}$ $=311.1565$, found $=311.1571[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO) $\delta: 7.87-7.96(\mathrm{~m}, 1$ H), $7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42\left(\mathrm{ddd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23(\mathrm{td}$, $\left.J_{1}=2.3 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.40-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.13\left(\mathrm{td}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.65-$ 2.71 (m, 2 H), 2.45 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.13 ($\mathrm{s}, 3 \mathrm{H}$), 1.85-1.93 (m, 2 H), 1.63-1.70 (m, 2 H$)$, 1.32-1.43 (m, 2 H).

4-(2,4-Difluoro-phenyl)-N-(1-isopropyl-piperidin-4-yl)-4-oxo-butyramide (7m). General procedure A from 4-(2,4-difluorophenyl)-4-oxobutanoic acid and 1-isopropylpiperidin-4amine dihydrochloride. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.44 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=339.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.41 \mathrm{~min}$; $\mathrm{m} / \mathrm{z}=338.1806$, found $=339.1886[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 7.92\left(\mathrm{td}, J_{1}\right.$ $\left.=6.9 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42\left(\mathrm{ddd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=\right.$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23\left(\mathrm{td}, J_{1}=2.3 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.40-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.13\left(\mathrm{td}, J_{1}=2.7\right.$ $\left.\mathrm{Hz}, J_{2}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.61-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.64-$ 1.73 (m, 2 H), 1.26-1.38 (m, 2 H), 0.94 (d, $J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$).

1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide (7n). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and 1-isopropylpiperidin-4-amine dihydrochloride. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.52 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=328.3$. LCHRMS: $\mathrm{t}_{\mathrm{R}}=0.48 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=327.2059$, found $=328.2135[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\right.$

DMSO) $\delta: 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.71-3.83 (m, 1 H), 2.76-2.86 (m, 2 H), 2.67-2.76 (m, 1 H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.24$ (m, 2 H$), 1.73-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.68(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

4-(2,4-Difluoro-phenyl)-N-(1-cyclohexyl-piperidin-4-yl)-4-oxo-butyramide (70). General procedure A from 4-(2,4-difluorophenyl)-4-oxobutanoic acid and 1-cyclohexylpiperidin-4ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.55 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=379.4$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.50 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 378.2119, found $=379.2190[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 7.92\left(\mathrm{td}, J_{1}=6.8\right.$ $\left.\mathrm{Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, J_{3}=11.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.23\left(\mathrm{td}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.39-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.13\left(\mathrm{td}, J_{1}=2.7 \mathrm{~Hz}, J_{2}\right.$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.29(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.80(\mathrm{~m}$, 6 H), 1.52-1.62 (m, 1 H), 1.26-1.39 (m, 2 H), 1.12-1.26 (m, 4 H), 0.97-1.11 (m, 1 H).

1-p-Tolyl-1H-[1,2,3]triazole-4-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide (7p). General procedure A from 1-(4-methylphenyl)-1H-1,2,3-triazole-4-carboxylic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.62 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=368.4$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.54 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=367.2372$, found $=368.2445[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D} 6-\mathrm{DMSO}\right) ~ \delta:$ $9.20(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.3$ Hz, 2 H), 3.69-3.84 (m, 1 H), 2.80-2.87 (m, 2 H), 2.34-2.43 (m, 3 H), 2.17-2.33 (m, 3 H), 1.68$1.90(\mathrm{~m}, 6 \mathrm{H}), 1.49-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.00-1.13(\mathrm{~m}, 1 \mathrm{H})$.

Preparation of amides 8a-8n

1-Phenyl-1H-[1,2,3]triazole-4-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide (8a). General procedure A from 1-phenyl-1H-1,2,3-triazole-4-carboxylic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.55 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=354.4$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.49 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=353.2216$, found $=354.2286[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ 9.27 (s, 1 H), 8.46 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.66$ (m, 2 H), 7.49-7.57
$(\mathrm{m}, 1 \mathrm{H}), 3.72-3.85(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.35(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.83(\mathrm{~m}, 6 \mathrm{H}), 1.52-$ $1.69(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.03-1.13(\mathrm{~m}, 1 \mathrm{H})$.

5-(4-Bromo-phenyl)-isoxazole-3-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide

 (8b). General procedure A from 5-(4-bromo-phenyl)isoxazole-3-carboxylic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.73 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=432.3 . \operatorname{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=$ $0.64 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=431.1208$, found $=432.1293[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ $8.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.79(\mathrm{~m}, 1$ H), 2.78-2.87 (m, 2 H), 2.18-2.31 (m, 3 H), 1.67-1.81 (m, 6 H), 1.50-1.63 (m, 3 H), 1.13-1.28 (m, 4 H), 1.00-1.12 (m, 1 H).N-(1-Cyclohexyl-piperidin-4-yl)-4-oxo-4-phenyl-butyramide (8c). General procedure A from 3-benzoylpropionic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.49$ $\min ;[\mathrm{M}+\mathrm{H}]^{+}=343.4$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.46 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=342.2307$, found $=343.2383[\mathrm{M}+\mathrm{H}]^{+}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 7.94-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.67(\mathrm{~m}, 1 \mathrm{H})$, 7.50-7.56 (m, 2 H$), 3.40-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.22$ (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.28(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.38(\mathrm{~m}, 2 \mathrm{H})$, 1.12-1.24 (m, 4 H), 1.00-1.11 (m, 1 H).

N-(1-Cyclohexyl-piperidin-4-yl)-4-(4-fluoro-phenyl)-4-oxo-butyramide (8d). General procedure A from 3-(4-fluorobenzoyl)propionic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.52 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=361.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.48 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=360.2213$, found $=361.229[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz, D_{6}-DMSO) $\delta: 8.03-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.7$ Hz, 1 H), 7.32-7.39 (m, 2 H$), 3.40-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.72-2.79 (m, 2 H$)$, $2.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.28(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.37$ (m, 2 H), 1.12-1.24 (m, 4 H), 0.99-1.11 (m, 1 H).

4-(4-Bromo-phenyl)-N-(1-cyclohexyl-piperidin-4-yl)-4-oxo-butyramide (8e). General procedure A from 4-(4-bromo-phenyl)-4-oxobutyric acid and 1-cyclohexylpiperidin-4ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.63 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=421.3 . \operatorname{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.56 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 420.1412, found $=421.1495[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 7.90\left(\mathrm{~m}, J_{1}=4.3\right.$ $\left.\mathrm{Hz}, J_{2}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74\left(\mathrm{~m}, J_{1}=4.3 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.39-$ $3.50(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.28$ $(\mathrm{m}, 3 \mathrm{H}), 1.64-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.31\left(\mathrm{qd}, J_{1}=3.8 \mathrm{~Hz}, J_{2}=11.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.13-$ $1.22(\mathrm{~m}, 4 \mathrm{H}), 0.99-1.11(\mathrm{~m}, 1 \mathrm{H})$.

4-(4-Chloro-2-fluoro-phenyl)-N-(1-cyclohexyl-piperidin-4-yl)-4-oxo-butyramide

General procedure A from 4-(4-chloro-2-fluorophenyl)-4-oxobutyric acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=395.2 . \operatorname{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=$ $0.56 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=394.1823$, found $=395.1906[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta$: $7.84(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.44\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.39-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.13\left(\mathrm{td}, J_{1}=2.6 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.26(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.75(\mathrm{~m}, 6 \mathrm{H})$, $1.52-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.01-1.10(\mathrm{~m}, 1 \mathrm{H})$.

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide

 (8g). General procedure A from 5-(2,4-difluoro-phenyl)-isoxazole-3-carboxylic acid and 1-cyclohexylpiperidin-4-ylamine. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=1.17 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=390.4$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=389.1915$, found $=390.1993[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right)$ $\delta: 8.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59\left(\mathrm{ddd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}\right.$ $\left.=9.5 \mathrm{~Hz}, J_{3}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34\left(\mathrm{td}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67-3.81 (m, 1 H), 2.78-2.88 (m, 2 H), 2.19-2.34 (m, 3 H), 1.65-1.84 (m, 6 H$), 1.46-1.65(\mathrm{~m}$, $3 \mathrm{H}), 1.13-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.00-1.13(\mathrm{~m}, 1 \mathrm{H})$.
5-(2-Fluoro-phenyl)-isoxazole-3-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide

 (8h). General procedure A from 5-(2-fluoro-phenyl)-isoxazole-3-carboxylic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.66 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=372.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=371.2009$, found $=372.2082[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta$: $8.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99\left(\mathrm{td}, J_{1}=1.6 \mathrm{~Hz}, J_{2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.53$ (m, 2 H), $7.17(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.80(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.31(\mathrm{~m}, 3 \mathrm{H})$, $1.68-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.01-1.13(\mathrm{~m}, 1 \mathrm{H})$.
5-(4-Fluoro-phenyl)-isoxazole-3-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide (8i).

 General procedure A from 5-(4-fluoro-phenyl)-isoxazole-3-carboxylic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.66 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=372.4$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.58 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=371.2009$, found $=372.2092[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ $8.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.81(\mathrm{~m}, 1 \mathrm{H})$, 2.76-2.89 (m, 2 H), 2.17-2.30 (m, 3 H), 1.67-1.84 (m, 6 H), 1.50-1.64 (m, 3 H), 1.13-1.32 (m, $4 \mathrm{H}), 0.98-1.12(\mathrm{~m}, 1 \mathrm{H})$.5-Pyridin-3-yl-isoxazole-3-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide (8j). General procedure A from 5-pyridin-3-yl-isoxazole-3-carboxylic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.48 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=355.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.42 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=354.2056$, found $=355.2125[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ 9.14-9.16 (m, 1 H$), 8.70-8.75(\mathrm{~m}, 2 \mathrm{H}), 8.30-8.35(\mathrm{~m}, 1 \mathrm{H}), 7.60\left(\mathrm{dd}, J_{1}=4.8 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 3.67-3.80(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=11.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.66-1.81 (m, 6 H), 1.49-1.64 (m, 3 H), 1.14-1.27 (m, 4 H), 1.00-1.12 (m, 1 H).

Preparation of amides $9 \mathrm{a}-\mathbf{9 g}$

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid (1-acetyl-piperidin-4-yl)-amide (9a). General procedure A from 5-(2,4-difluoro-phenyl)-isoxazole-3-carboxylic acid and 1-acetyl 4-amino-piperidine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.88 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=350.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.83 \mathrm{~min} ; \mathrm{m} / \mathrm{z}$ $=349.1238$, found $=350.1317[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO) $\delta: 8.81-8.87(\mathrm{~m}, 1$ H), 8.01-8.09 (m, 1 H), 7.54-7.61 (m, 1 H), 7.29-7.37 (m, 1 H), 7.15-7.18 (m, 1 H), 4.31-4.40 $(\mathrm{m}, 1 \mathrm{H}), 3.98-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.01$ (s, 3 H), 1.73-1.89 (m, 2 H$), 1.35-1.58(\mathrm{~m}, 2 \mathrm{H})$.

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid piperidin-4-yl-amide hydrochloride (9b). General procedure A from 5-(2,4-difluoro-phenyl)-isoxazole-3-carboxylic acid and 1-N-Boc-(4-amino)-piperidine, followed by N -Boc group deprotection with HCl 2 M in dioxane $/ \mathrm{DCM} 1 / 1$. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.54 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=308.2$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.48 \mathrm{~min} ; \mathrm{m} / \mathrm{z}$ $=307.1132$, found $=308.1213[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO) $\delta: 9.06(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 8.94-8.94(\mathrm{~m}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59\left(\mathrm{ddd}, J_{1}=11.5 \mathrm{~Hz}\right.$, $\left.J_{2}=9.4 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34\left(\mathrm{td}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.22(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1$ H), 4.05-4.16 (m, 1 H$), 3.30(\mathrm{~d}, ~ J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-3.05(\mathrm{~m}, 2 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 2 \mathrm{H})$, 1.77-1.90 (m, 2 H$)$.

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid (1-cyclopentyl-piperidin-4-yl)-amide (9c). General procedure A from 5-(2,4-difluoro-phenyl)-isoxazole-3-carboxylic acid and 1-cyclopentylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.62 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=376.4$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.56 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=375.1758$, found $=376.1837[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ $8.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=\right.$ $\left.9.3 \mathrm{~Hz}, J_{3}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33\left(\mathrm{td}, J_{1}=2.6 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.70-3.84 (m, 1 H), 2.89-3.03 (m, 2 H), 1.90-2.05 (m, 2 H), 1.71-1.88 (m, 4 H), 1.45-1.71 (m, 6 H), 1.18-1.42 (m, 3 H).

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid (1-cyclobutyl-piperidin-4-yl)-amide (9d). General procedure A from 5-(2,4-difluoro-phenyl)-isoxazole-3-carboxylic acid and 1-cyclobutylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=362.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.53 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=361.1602$, found $=362.1687[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta$: $8.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=\right.$ $\left.9.3 \mathrm{~Hz}, J_{3}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.29-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.81(\mathrm{~m}, 1 \mathrm{H})$, 2.77-2.83 (m, 2 H), 2.64-2.71 (m, 1 H$), 1.92-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.65(\mathrm{~m}$, $4 \mathrm{H})$.

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid [1-(2,2-difluoro-ethyl)-piperidin-4-yl]-amide (9e). General procedure A from 5-(2,4-difluoro-phenyl)-isoxazole-3-carboxylic acid and 1-(2,2-difluoro-ethyl)-piperidin-4-ylamine. LC-MS method $B: \mathrm{t}_{\mathrm{R}}=0.95 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}$ $=372.2$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=371.1257$, found $=372.1337[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.77$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.06\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J 2=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.59\left(\mathrm{ddd}, J_{1}=11.6 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, J_{3}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.16(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-6.25(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{td}$, $\left.J_{1}=15.6 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.25\left(\mathrm{td}, J_{1}=11.7 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.72-1.79(\mathrm{~m}, 2 \mathrm{H})$, 1.59-1.68 (m, 2 H).

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid [1-(2-methoxy-ethyl)-piperidin-4-yl]amide (9f). General procedure A from 5-(2,4-difluoro-phenyl)-isoxazole-3-carboxylic acid and 1-(2-methoxy-ethyl)-piperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=366.2$. LCHRMS: $\mathrm{t}_{\mathrm{R}}=0.51 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=365.1551$, found $=366.1633[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}{ }^{-}\right.$ DMSO) $\delta: 8.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=\right.$ $\left.11.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.29-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.81$ (m, 1 H), 3.42 (t, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, 1.98-2.07 (m, 2 H$), 1.70-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 2 \mathrm{H})$.

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid (1-benzyl-piperidin-4-yl)-amide (9g). General procedure A from 5-(2,4-difluoro-phenyl)-isoxazole-3-carboxylic acid and benzylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.67 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=398.3$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 397.1602, found $=398.1684[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1 H), $8.06\left(\mathrm{td}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=11.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 2.77-2.88$ $(\mathrm{m}, 2 \mathrm{H}), 1.95-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.69(\mathrm{~m}, 2 \mathrm{H})$.

Preparation of amides 10a-10f

1-(2,4-Difluoro-phenyl)-1H-pyrazole-4-carboxylic acid (1-cyclohexyl-piperidin-4-yl)amide (10a). General procedure A from 1-(2,4-difluorophenyl)-1H-pyrazole-3-carboxylic acid and 1-cyclohexylpiperidin-4-ylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=389.4$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.50 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=388.2075$, found $=389.2147[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right)$ $\delta: 8.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86\left(\mathrm{td}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=\right.$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61\left(\mathrm{ddd}, J_{1}=2.7 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, J_{3}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26-7.32(\mathrm{~m}, 1 \mathrm{H}), 3.64-$ 3.74 (m, 1 H), 2.79-2.87 (m, 2 H), 2.19-2.32 (m, 3 H), 1.68-1.83 (m, 6 H), 1.54-1.62 (m, 1 H), 1.41-1.52 (m, 2 H$), 1.14-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.01-1.13(\mathrm{~m}, 1 \mathrm{H})$

1-(2,4-Difluoro-phenyl)-1H-[1,2,3]triazole-4-carboxylic acid (1-cyclohexyl-piperidin-4$\mathbf{y l}$)-amide (10b). a) To a solution of ethyl 2-diazo-3-oxopropanoate ${ }^{2}(1.6 \mathrm{~g}, 8.85 \mathrm{mmol})$ in EtOH (3.15 mL) was added glacial acetic acid ($1.27 \mathrm{~mL}, 22.1 \mathrm{mmol}$) followed by $2,4-$ difluoroaniline ($1.22 \mathrm{~g}, 9.47 \mathrm{mmol}$). After stirring overnight, the reaction mixture was concentrated, and the residue was diluted with cold water (40 mL). The precipitate was filtered, washed with cold water (10 mL) and dried under HV to afford 1-(2,4-difluoro-phenyl)-1H-[1,2,3]triazole-4-carboxylic acid ethyl ester as a beige solid ($2.03 \mathrm{~g}, 91 \%$). LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.8 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=254.12$.
b) To a solution of the above ester ($1.93 \mathrm{~g}, 7.62 \mathrm{mmol}$) in THF (16 mL) was added LiOH hydrate (11.4 mmol) dissolved in water (16 mL). After stirring for 45 min , THF was evaporated and the aqueous residue was cooled to $0^{\circ} \mathrm{C}$. A 1 M HCl solution was added until $\mathrm{pH}=2$. The precipitated product was filtered, washed with water (15 mL), and dried under HV. 1-(2,4-difluoro-phenyl)-1H-[1,2,3]triazole-4-carboxylic acid was obtained as a beige powder (1.71 g , $100 \%)$. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.61 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=225.96,[\mathrm{M}+\mathrm{H}+\mathrm{MeCN}]^{+}=267.10$.
c) General procedure A from the above carboxylic acid and 1-cyclohexylpiperidin-4-ylamine to give 10b. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.56 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=390.3 ;$ LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.50 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 389.2027, found $=390.2113[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 9.00(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.93\left(\mathrm{td}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.72\left(\mathrm{~m}, J_{1}=11.1\right.$ $\left.\mathrm{Hz}, J_{2}=8.9 \mathrm{~Hz}, J_{3}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.35-7.42(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.89(\mathrm{~m}, 2 \mathrm{H})$, 2.20-2.33 (m, 3 H), 1.69-1.81 (m, 6 H$), 1.53-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.14-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.02-1.13(\mathrm{~m}$, $1 \mathrm{H})$.

3-(2,4-Difluoro-phenyl)-isoxazole-5-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide (10c)

a) 2,4-Difluorobenzaldehyde oxime ($4.25 \mathrm{~g}, 24.4 \mathrm{mmol}$) was dissolved in THF (50 mL). Then pyridine ($2.46 \mathrm{~mL}, 30.5 \mathrm{mmol}$) was added. The mixture was heated up to $60^{\circ} \mathrm{C}$ and N chlorosuccinimide ($3.58 \mathrm{~g}, 26.8 \mathrm{mmol}$) was added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 45 min and then TEA ($4.11 \mathrm{~mL}, 29.2 \mathrm{mmol}$) and ethyl propiolate $(2.72 \mathrm{~mL}, 26.8 \mathrm{mmol})$ are added. The reaction mixture was stirred overnight at $60^{\circ} \mathrm{C}$ and then concentrated under HV . The residue was taken up in $\operatorname{DCM}(100 \mathrm{~mL})$ and diluted with aq. $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$. The separated organic phase was washed with water $(100 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, filtered and the solvent was evaporated under HV. The crude was purified by flash chromatography using n-heptane/EtOAc $9 / 1$ as eluent to yield ethyl 3-(2,4-difluorophenyl)isoxazole-5-carboxylate ($3.8 \mathrm{~g}, 62 \%$) . LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.92 \mathrm{~min}$.
b) 3-(2,4-Difluoro-phenyl)-isoxazole-5-carboxylic acid was obtained in quantitative yield by saponification of the above ester according to the procedure used for $\mathbf{1 0 b}$. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.68 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 14.48(\mathrm{bs}, 1 \mathrm{H}), 7.99-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.50-$ 7.56 (m, 2 H), $7.30(\mathrm{~m}, 1 \mathrm{H})$.
c) General procedure A from the above carboxylic acid and 1-cyclohexylpiperidin-4-ylamine to give 10c. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.64 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=390.3 . \operatorname{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 389.1915, found $=390.1994[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.88(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01\left(\mathrm{td}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53\left(\mathrm{ddd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=9.0 \mathrm{~Hz}, J_{3}=11.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30\left(\mathrm{td}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66-3.77(\mathrm{~m}, 1 \mathrm{H})$, 2.80-2.88(m, 2 H), 2.20-2.32 (m, 3 H), 1.67-1.84 (m, 6 H), 1.48-1.62 (m, 3 H$), 1.13-1.28(\mathrm{~m}$, 4 H), 0.98-1.13 (m, 1 H$)$.

5-(2,4-Difluoro-phenyl)-[1,2,4]oxadiazole-3-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide (10d)
a) Ethyl 2-amino(hydroxyimino)acetate ($1.07 \mathrm{~g}, 8.1 \mathrm{mmol}$) dissolved in 2,6-dimethylpyridine ($2.93 \mathrm{~mL}, 24 \mathrm{mmol}$) was treated dropwise with a solution of 2,4-difluorobenzoyl chloride (0.66 $\mathrm{mL}, 5.38 \mathrm{mmol})$ in $\mathrm{DCM}(15 \mathrm{~mL})$. The reaction mixture was stirred overnight. The beige suspension was dissolved with $\mathrm{DCM}(150 \mathrm{~mL})$ and washed with water $(50 \mathrm{~mL})$, then 1 M HCl $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and the solvent evaporated. The intermediate white powder ethyl 2-(2,4-difluorobenzamido)-2(hydroxyimino)acetate was then heated 1 h at $200^{\circ} \mathrm{C}$ in a DrySyn metal block (from Asynt Ltd.). After cooling down, the residue was purified by flash chromatography using a gradient of 2% to 20% EtOAc in n-heptane as eluent to yield ethyl 5-(2,4-difluorophenyl)-1,2,4-oxadiazole-3-carboxylate ($1.20 \mathrm{~g}, 88 \%$). LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.85 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=255.02$.
b) 5-(2,4-Difluoro-phenyl)-[1,2,4]oxadiazole-3-carboxylic acid was obtained by saponification of the above ester according to the procedure used for $\mathbf{1 0 b}(0.83 \mathrm{~g}, 78 \%)$. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.27(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~m}, 1 \mathrm{H})$. c) General procedure A from the above carboxylic acid and 1-cyclohexylpiperidin-4-ylamine to give 10d. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=391.4$. $\mathrm{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.52 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 390.1867, found $=391.1943[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz, D_{6}-DMSO) $\delta: 8.95(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.28\left(\mathrm{td}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.67\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=11.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39-7.44(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=10.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.68-1.82(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.13-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.99-1.12(\mathrm{~m}, 1 \mathrm{H})$.

5-(2,4-Difluoro-phenyl)-[1,3,4]oxadiazole-2-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide (10e)
a) To a solution of 2,4-difluorobenzoic acid hydrazide ($2.65 \mathrm{~g}, 15.4 \mathrm{mmol}$) in 50 mL DCM was added TEA ($9.67 \mathrm{~mL}, 69.4 \mathrm{mmol}$). The mixture was cooled to $0^{\circ} \mathrm{C}$ and ethyl chlorooxoacetate $(2.44 \mathrm{~mL}, 21.2 \mathrm{mmol})$ was added. The mixture was stirred 2 h at $0^{\circ} \mathrm{C}$. Then, toluene-4-sulfonyl chloride ($4.40 \mathrm{~g}, 23.1 \mathrm{mmol}$) was added and stirring was continued overnight at rt . A sat. aq. NaHCO_{3} solution $(50 \mathrm{~mL})$ was added and the reaction mixture was extracted twice with DCM ($2 \times 50 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography using a gradient of eluent heptane/AcOEt (9:1 to 4:1) to give 5-(2,4-difluoro-phenyl)-[1,3,4]oxadiazole-2-carboxylic acid ethyl ester as a light yellow solid $(2.43 \mathrm{~g}, 60 \%)$. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.80 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=255.13$, $[\mathrm{M}+\mathrm{H}+\mathrm{MeCN}]^{+}=296.10$.
b) To a solution of 1-cyclohexylpiperidin-4-amine ($38 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 0.4 mL toluene cooled to $0^{\circ} \mathrm{C}$ was added trimethylaluminium 2.0 M in toluene $(0.1 \mathrm{~mL}, 0.2 \mathrm{mmol})$. After stirring for 30 min . a solution of the above ester $(25.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ in toluene $(0.4 \mathrm{~mL})$ was added. The reaction was stirred for 3 h and quenched with 1.25 M HCl in $\mathrm{MeOH}(0.240 \mathrm{~mL}, 0.3 \mathrm{mmol})$.

The solvents were evaporated and the residue purified by prep. HPLC under basic conditions to yield 10e $(21 \mathrm{mg}, 54 \%)$. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]+=391.3 . \mathrm{LC}-H R M S: \mathrm{t}_{\mathrm{R}}=0.50$ $\min ; \mathrm{m} / \mathrm{z}=390.1867$, found $=391.1945[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 9.28$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18\left(\mathrm{td}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63\left(\mathrm{ddd}, J_{1}=11.3 \mathrm{~Hz}, J_{2}=9.5\right.$ $\left.\mathrm{Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.39\left(\mathrm{td}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.33$ (m, 3 H), 1.67-1.83 (m, 6 H$), 1.52-1.67$ (m, 3 H$), 1.13-1.29(\mathrm{~m}, 4 \mathrm{H})$, $1.00-1.13(\mathrm{~m}, 1 \mathrm{H})$.

6-(2,4-Difluoro-phenyl)-pyrimidine-4-carboxylic acid (1-cyclohexyl-piperidin-4-yl)amide (10f).
a) To a degassed solution of 2,4-difluorophenylboronic acid pinacol ester ($1.47 \mathrm{~g}, 6.13 \mathrm{mmol}$) and methyl-6-chloropyrimidine-4-carboxylate $(0.96 \mathrm{~g}, 5.57 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ were added $\mathrm{K}_{3} \mathrm{PO}_{4}(1.67 \mathrm{~g}, 7.8 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} . \mathrm{DCM}(0.91 \mathrm{~g}, 1.11 \mathrm{mmol})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 18 h . A sat. aq. NaHCO_{3} solution $(50 \mathrm{~mL})$ was added and the reaction mixture was extracted twice with $\mathrm{DCM}(2 \times 50 \mathrm{~mL})$. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4}, filtered and evaporated. The residue was purified by flash chromatography using a gradient of heptane/AcOEt (7:3 to $1: 1$) as eluent to give 6 -(2,4-difluoro-phenyl)-pyrimidine-4-carboxylic acid methyl ester as a light yellow solid (0.96 g , 69%). LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.80 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=251.08 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $9.46(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{q}, ~ J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~m}, 1 \mathrm{H})$, 4.10 (s, 3 H).
b) 6-(2,4-difluoro-phenyl)-pyrimidine-4-carboxylic acid ($0.878 \mathrm{~g}, 97 \%$) was obtained by saponification of the above ester according to the procedure used for $\mathbf{1 0 b}$. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.66 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=237.07 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 13.92-14.31(\operatorname{broad~s}, 1$
H), $9.48(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{q}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H})$.
c) General procedure A from the above carboxylic acid and 1-cyclohexylpiperidin-4-ylamine to yield 10f. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.64 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=401.4$. $\mathrm{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=$ 400.2075 , found $=401.215[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta: 9.38-9.43(\mathrm{~m}, 1 \mathrm{H}), 8.83-$ $8.91(\mathrm{~m}, 1 \mathrm{H}), 8.30-8.37(\mathrm{~m}, 1 \mathrm{H}), 8.18-8.29(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 1 \mathrm{H})$, 3.71-3.85 (m, 1 H$), 2.77-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.36(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.81(\mathrm{~m}, 9 \mathrm{H}), 1.12-1.29(\mathrm{~m}$, 4 H), 0.96-1.12 (m, 1 H).

Preparation of compounds 11a-11j

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid benzyl-(1-cyclohexyl-piperidin-4-yl)amide (11a).1-Cyclohexylpiperidin-4-amine ($18.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ eq), benzaldehyde (13 mg , $0.12 \mathrm{mmol})$ and $\mathrm{AcOH}(0.012 \mathrm{~mL}, 0.21 \mathrm{mmol})$ were dissolved in $\mathrm{DCM}(1 \mathrm{~mL})$. Sodium triacetoxyborhydride ($42.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added and the mixture was stirred overnight. Aq. $1 \mathrm{M} \mathrm{NaOH}(1 \mathrm{~mL})$ and $\mathrm{DCM}(2 \mathrm{~mL})$ were added, the organic phase was separated, and the solvent evaporated under high vacuum. The obtained amine was then coupled according to general procedure A with 1-(2,4-difluorophenyl)-1H-pyrazole-3-carboxylic acid. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=1.39 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=480.1$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.74 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=479.2384$, found $=480.2471[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz, D_{6}-DMSO) $\delta: 7.93-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.60(\mathrm{~m}, 1$ H), 6.99-7.37 (m, 7 H), 4.74 (s, 2 H), 3.78-4.25 (m, 1 H$), 2.74-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.28(\mathrm{~m}, 2$ H), 1.99-2.08 (m, 1 H$), 1.60-1.76(\mathrm{~m}, 8 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.23(\mathrm{~m}, 4 \mathrm{H}), 0.97-1.05$ (m, 1 H).

General Scheme for the Preparation of Compounds 11b to 11e and 11j

Reagents and conditions (a) HATU, DIPEA, DMF, rt, 18 h ; (b) HCl 4 N in dioxane, DCM, rt, 30 min ; (c) cyclohexanone, $\mathrm{NaBH}(\mathrm{OAc})_{3}$, $\mathrm{AcOH}, \mathrm{DCM}, \mathrm{rt}, 24 \mathrm{~h}$.

5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid (1-cyclohexyl-3,3-difluoro-piperidin-4-yl)-amide (11b)
a) To a solution of 5-(2,4-difluorophenyl)isoxazole-3-carboxylic acid ($67.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) in 2 mL DMF was added 4-amino-1-boc-3,3-difluoropiperidine ($85 \mathrm{mg}, 0.36 \mathrm{mmol}$). DIPEA $(0.26 \mathrm{~mL}, 1.5 \mathrm{mmol})$ was then added followed by HATU ($143 \mathrm{mg}, 0.37 \mathrm{mmol}$). The reaction mixture was stirred overnight at rt . The crude mixture was directly purified by prep. LC-MS under basic conditions to yield tert-butyl 4-(5-(2,4-difluorophenyl)isoxazole-3-carboxamido)-3,3-difluoropiperidine-1-carboxylate ($89 \mathrm{mg}, 67 \%$). LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=1.64 \mathrm{~min}$; $\left[\mathrm{M}+\mathrm{NH}_{3}\right]^{+}=361.1$.
b) The above-mentioned amide ($89 \mathrm{mg}, 0.2 \mathrm{mmol}$) was dissolved in $\mathrm{DCM}(1 \mathrm{~mL}) . \mathrm{HCl}$ in dioxane $4 \mathrm{M}(1 \mathrm{~mL}, 4 \mathrm{mmol})$ was added dropwise. The mixture was stirred at rt for 1 hour. The solvents were evaporated, and the residue was dried on high vacuum to deliver 5-(2,4-difluorophenyl)-N-(3,3-difluoropiperidin-4-yl)isoxazole-3-carboxamide hydrochloride (77 $\mathrm{mg}, 100 \%)$. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=0.86 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=344.0$.
c) To a suspension of the above-mentioned amine hydrochloride ($38 \mathrm{mg}, 0.1 \mathrm{mmol}$) in DCM $(0.5 \mathrm{~mL})$ at rt was added cyclohexanone $(15 \mathrm{mg}, 0.15 \mathrm{mmol})$ followed by acetic acid $(0.007$ $\mathrm{mL}, 0.125 \mathrm{mmol})$ and sodium triacetoxyborohydride $(32 \mathrm{~g}, 0.15 \mathrm{mmol})$. The reaction mixture
was stirred overnight at rt . The reaction mixture was evaporated. The crude compound was purified by prep. LC-MS under basic conditions to give $\mathbf{1 1 b}$ ($14 \mathrm{mg}, 33 \%$). LC-MS method B: $\mathrm{t}_{\mathrm{R}}=1.19 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=426.1$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.72 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=425.1726$, found $=426.1807$ $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO, solvent suppression) $\delta: 8.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ $\left(\mathrm{td}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.57\left(\mathrm{ddd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30-$ $7.36(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.91(\mathrm{~m}$, $1 \mathrm{H}), 2.55-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.90(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.29$ (m, 4 H), 1.01-1.12 (m, 1 H).

Rac-5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid ((3S*,4S*)-1-cyclohexyl-3-methoxy-piperidin-4-yl)-amide (11c). Prepared in analogy to compound 11b from tert-butyl trans-4-amino-3-methoxy-piperidine-1-carboxylate. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=1.09 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}$ $=420.2$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.60 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=419.2020$, found $=420.21[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $(500$ MHz, D6-DMSO) $\delta: 8.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59$ (ddd, $\left.J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34\left(\mathrm{td}, J_{1}=2.2 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.14-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.79(\mathrm{~m}, 1 \mathrm{H})$, 2.50-2.55 (m, 2 H$), 2.30-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.81(\mathrm{~m}$, 4 H), 1.46-1.62 (m, 2 H), 1.14-1.27 (m, 4 H), 1.02-1.12 (m, 1 H).

Rac-5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid ((3S*,4S*)-1-cyclohexyl-3-ethoxy-piperidin-4-yl)-amide (11d). Prepared in analogy to compound 11b from tert-butyl trans-4-amino-3-ethoxy-piperidine-1-carboxylate. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=1.16 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}$ $=434.1$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.64 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=433.2177$, found $=434.2258[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO, solvent suppression) $\delta: 8.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.62$ (m, 1 H), 7.28-7.39 (m, 1 H$), 7.13$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.14(\mathrm{~m}, 1 \mathrm{H})$, 2.66-2.80 (m, 1 H$), 2.26-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.82(\mathrm{~m}$, 5 H), 1.46-1.62 (m, 2 H), 1.12-1.25 (m, 4 H), 0.97-1.12 (m, 4 H).

Rac-5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid ((3S*,4S*)-1-cyclohexyl-3-hydroxy-piperidin-4-yl)-amide (11e). Prepared in analogy to compound 11b from tert-butyl trans-4-amino-3-hydroxy-piperidine-1-carboxylate. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.55 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=$ 406.2 . LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.55 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=405.1864$, found $=406.1939[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.96\left(\mathrm{td}, J_{1}=6.3 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-7.10$ $(\mathrm{m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.68\left(\mathrm{td}, J_{1}=4.2 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.08-3.16 (m, 1 H$), 2.81-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.07-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.91(\mathrm{~m}$, 4 H), 1.60-1.72 (m, 2 H), 1.19-1.34 (m, 4 H), 1.05-1.19 (m, 1 H).

Rac-5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid ((3S*,4S*)-1-cyclohexyl-3-hydroxymethyl-piperidin-4-yl)-amide (11f). To a solution of ester $\mathbf{1 1 g}(0.67 \mathrm{~g}, 1.5 \mathrm{mmol})$ in 17.1 mL dry THF was added $\mathrm{LiCl}(0.51 \mathrm{~g}, 12 \mathrm{mmol})$, followed by $\mathrm{NaBH}_{4}(0.23 \mathrm{~g}, 6 \mathrm{mmol})$ and 8 mL dry EtOH . After stirring for $44 \mathrm{~h}, 20 \mathrm{~mL}$ water was added, THF and EtOH were evaporated under high vacuum and the mixture was diluted with 50 mL DCM. The organic phase was separated dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated under high vacuum to yield $11 \mathrm{f}(0.50 \mathrm{~g}, 79 \%)$. LC-MS method $\mathrm{B} \mathrm{t}_{\mathrm{R}}=1.03 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=420.23$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.56$ $\mathrm{min} ; \mathrm{m} / \mathrm{z}=419.2020$, found $=420.2098[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.73$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $8.06\left(\mathrm{td}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.3\right.$ $\left.\mathrm{Hz}, J_{3}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34\left(\mathrm{td}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ ($\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52-3.62 (m, 1 H), 3.43-3.50 (m, 1 H), 3.16-3.24 (m, 1 H$), 3.03-3.09(\mathrm{~m}$, $1 \mathrm{H}), 2.78-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.82(\mathrm{~m}, 6 \mathrm{H})$, 1.54-1.66 (m, 2 H), 1.14-1.27 (m, 4 H), 1.02-1.13 (m, 1 H$)$.

1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-4-

 carboxylic acid amide (11j). Prepared in analogy to compound 11b from tert-butyl 4-amino-4-carbamoylpiperidine-1-carboxylate. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.64 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=433.4 . \mathrm{LC}-$ HRMS: $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=432.1973$, found $=433.2047[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\right.$DMSO) $\delta: 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=\right.$ $\left.9.5 \mathrm{~Hz}, J_{3}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 2.66(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-2.25(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.77$ (m, 4 H), 1.51-1.59 (m, 1 H), 1.10-1.25 (m, 4 H), 1.00-1.10 (m, 1 H).

Preparation of racemic ester 11g, and carboxylic acid 11h

rac-($3 R^{*}, 4 R^{*}$)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid methyl ester (11g)
a) To a solution of $\mathrm{rac}-\left(3 R^{*}, 4 R^{*}\right)$-4-tert-butoxycarbonylamino-piperidine-3-carboxylic acid methyl ester ($3.0 \mathrm{~g}, 11.3 \mathrm{mmol}$) in DCM (56 mL) was added cyclohexanone ($1.42 \mathrm{~mL}, 13.5$ $\mathrm{mmol})$ followed by acetic acid ($0.966 \mathrm{~mL}, 16.9 \mathrm{mmol}$) and sodium triacetoxyborohydride (3.39 $\mathrm{g}, 15.2 \mathrm{mmol}$). After stirring for 5 h , additional cyclohexanone ($0.23 \mathrm{~mL}, 2.3 \mathrm{mmol}$), acetic acid $(0.17 \mathrm{~mL}, 2.8 \mathrm{mmol})$ and sodium triacetoxyborohydride $(0.59 \mathrm{~g}, 2.8 \mathrm{mmol})$ were added. The reaction mixture was stirred overnight. The reaction mixture was diluted with DCM (200 mL) and treated with aq. sat. $\mathrm{NaHCO}_{3}(250 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and evaporated. Compound rac-methyl $\quad\left(3 R^{*}, 4 R^{*}\right)$-4-((tert-butoxycarbonyl)amino)-1-cyclohexylpiperidine-3-carboxylate was used in the next step without further purification (3.85 $\mathrm{g}, 100 \%) ;$ LC-MS method $\mathrm{B} \mathrm{t}_{\mathrm{R}}=1.09 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=341.19$.
b) The above-mentioned compound ($3.85 \mathrm{~g}, 11.3 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(56.5 \mathrm{~mL})$. A 4 M solution of HCl in dioxane ($56.5 \mathrm{~mL}, 226 \mathrm{mmol}$) was added and the reaction was stirred for 1 h . The reaction mixture was concentrated, dissolved in DCM (250 mL) and treated with aq. sat. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$. The organic layer was separated, and the aqueous phase was extracted with $\mathrm{DCM}(150 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and evaporated. The crude rac-methyl ($3 R^{*}, 4 R^{*}$)-4-amino-1-cyclohexylpiperidine-3-carboxylate hydrochloride was obtained as a yellow oil (2.64g, 92%); LC-MS method $B t_{R}=0.79 \mathrm{~min}$;
$[\mathrm{M}+\mathrm{H}]^{+}=241.20 .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta: 7.28(\mathrm{~s}, 1 \mathrm{H}), 3.61-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.06-3.13$ $(\mathrm{m}, 1 \mathrm{H}), 2.83-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.04-1.93(\mathrm{~m}, 18 \mathrm{H})$.
c) General procedure A from the above amine hydrochloride and 5-(2,4-difluorophenyl)isoxazole-3-carboxylic acid to yield 11 g . LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=1.15 \mathrm{~min}$; $[\mathrm{M}+\mathrm{H}]^{+}=447.92$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.60 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=447.1970$, found $=448.2046[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 7.97\left(\mathrm{td}, J_{1}=6.3 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.11(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.04-7.10 (m, 1 H$), 7.01\left(\mathrm{ddd}, J_{1}=2.4 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, J_{3}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 3 \mathrm{H}), 3.05-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.74(\mathrm{~m}$, $1 \mathrm{H}), 2.56-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.91$ (m, 4 H), 1.57-1.72 (m, 2 H), 1.18-1.37 (m, 4 H), 1.06-1.19 (m, 1 H).

Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

piperidine-3-carboxylic acid (11h). Prepared in analogy to compound 19 from ester 11g. LCMS method $B: \mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=433.82$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.62 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=433.1813$, found $=434.1896[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 11.76-12.73(\mathrm{~m}, 1 \mathrm{H}), 8.92(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.08\left(\mathrm{td}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}\right.$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.16$ $(\mathrm{m}, 1 \mathrm{H}), 2.84-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.54(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.90(\mathrm{~m}, 5 \mathrm{H}), 1.52-$ 1.69 (m, 2 H), 1.18-1.24 (m, 4 H), 1.07-1.10 (m, 1 H).

Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid dimethylamide (11i). Prepared in analogy to compound $(3 S, 4 S)-11 i$ from carboxylic acid 11h. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=1.0 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=460.95 . \mathrm{LC}-$ HRMS: $\mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=460.2286$, found $=461.2372[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\right.$ DMSO) $\delta: 8.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=\right.$ $\left.11.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33\left(\mathrm{td}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.13\left(\mathrm{td}, J_{1}=10.7 \mathrm{~Hz}, J_{2}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.91$(m, 2 H), 2.77 ($\mathrm{s}, 3 \mathrm{H}), 2.23-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.67-$ $1.79(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.99-1.13(\mathrm{~m}, 1 \mathrm{H})$.

(3R,4R)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid dimethylamide ($\mathbf{3 R}, \mathbf{4 R}$)-11i. Prepared in analogy to compound (3S,4S)-11i, starting from ($3 R, 4 R$)-4-((R)-1-phenyl-ethylamino)-piperidine-1,3-dicarboxylic acid 1-tert-butyl ester 3-ethyl ester 19^{39}. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.71 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=461.23$. Chiral HPLC: $\mathrm{t}_{\mathrm{R}}=9.1 \mathrm{~min} ; 95.6$ \% ee; Column: Regis (R, R) Whelk-O1, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Detector wavelength: 254 nm ; Eluent: 30\% Heptane 0.05\% DEA; 70\% Ethanol 0.05\% DEA; Flow: $0.8 \mathrm{~mL} / \mathrm{min}$; BPR: 150 bar ; Temperature: $25^{\circ} \mathrm{C}$. Injection volume: $2.5 \mu \mathrm{~L}$. LC-HRMS: t_{R} $=0.60 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=460.2285$, found $=461.2362[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ $8.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{q}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09-7.11 (m, 1 H$), 4.03-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.57(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.12-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.04-1.11(\mathrm{~m}, 1 \mathrm{H})$.
Preparation of compounds 20a-20q and 21a-21g

The compounds were prepared in analogy to compound ($\mathbf{3 S}, \mathbf{4 S}$)-11i from carboxylic acid 11 h and the corresponding amine.

Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid amide (20a). Prepared from ammonium chloride. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=0.88 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=433.18$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.53 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=432.1973$, found $=433.205[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05\left(\mathrm{td}, J_{1}\right.$ $\left.=6.5 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33\left(\mathrm{td}, J_{1}\right.$ $\left.=2.1 \mathrm{~Hz}, J_{2}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.90-4.03(\mathrm{~m}$,$1 \mathrm{H}), 2.87-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.35(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.89$ $(\mathrm{m}, 5 \mathrm{H}), 1.42-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.30(\mathrm{~m}, 5 \mathrm{H}), 0.98-1.13(\mathrm{~m}, 1 \mathrm{H})$.

Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid methylamide (20b). Prepared from methylamine hydrochloride. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=0.95 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=446.95$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.55 \mathrm{~min}$; $\mathrm{m} / \mathrm{z}=446.2129$, found $=447.2209[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO) $\delta: 8.57(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05\left(\mathrm{td}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.56-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 1 \mathrm{H})$, $7.11(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-4.05(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.55$ $(\mathrm{m}, 3 \mathrm{H}), 2.21-2.35(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.13-$ $1.28(\mathrm{~m}, 4 \mathrm{H}), 1.01-1.13(\mathrm{~m}, 1 \mathrm{H})$.Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid ethyl-methyl-amide (20c). Prepared from Nethylmethylamine. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=1.04 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=474.91$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.62$ $\min ; \mathrm{m} / \mathrm{z}=474.2442$, found $=475.2526[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.69(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.01-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.58\left(\mathrm{ddd}, J_{1}=11.4 \mathrm{~Hz}, J_{2}\right.$ $\left.=9.1 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.08\left(\mathrm{dd}, J_{1}=6.1 \mathrm{~Hz}, J_{2}=\right.$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.67(\mathrm{~m}, 0.5 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 0.5 \mathrm{H}), 3.21-3.29(\mathrm{~m}, 0.5$ H), 3.05-3.16 (m, 1.5 H), 3.01-3.05 (m, 1.5 H), 2.79-2.91 (m, 2 H), 2.72-2.77 (m, 1.5 H), 2.192.36 (m, 3 H), 1.59-1.85 (m, 6 H), 1.51-1.59 (m, 1 H), 1.15-1.27 (m, 4 H), 1.11-1.15 (m, 1.5 H), 1.01-1.11 (m, 1 H$), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1.5 \mathrm{H})$.

Rac-5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid [(3R*,4R*)-3-(azetidine-1-carbonyl)-1-cyclohexyl-piperidin-4-yl]-amide (20d). Prepared from azetidine. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=0.93 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=473.15$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=472.2286$, found $=473.2365[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}\right.$
$\left.=6.4 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59\left(\mathrm{ddd}, J_{1}=2.6 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32-7.37$ $(\mathrm{m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.06(\mathrm{~m}, 1 \mathrm{H})$, 3.69-3.84 (m, 2 H), 2.79-2.93 (m, 2 H), 2.63-2.72 (m, 1 H), 2.05-2.37 (m, 5H), 1.78-1.86 (m, $1 \mathrm{H}), 1.68-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.00-1.13(\mathrm{~m}, 1 \mathrm{H})$.

Rac-5-(2,4-Difluoro-phenyl)-isoxazole-3-carboxylic acid [(3 $\left.R^{*}, 4 R^{*}\right)$-1-cyclohexyl-3-

 (pyrrolidine-1-carbonyl)-piperidin-4-yl]-amide (20e). Prepared from pyrrolidine. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=1.03 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=486.92$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.62 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=486.2442$, found $=487.252[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05\left(\mathrm{td}, J_{1}\right.$ $\left.=6.5 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=2.5 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, J_{3}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33\left(\mathrm{td}, J_{1}\right.$ $\left.=2.1 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.80(\mathrm{~m}, 1 \mathrm{H})$, 3.33-3.40(m, 1 H), 3.16-3.26 (m, 2 H), 2.88-2.96(m, 2 H), 2.80-2.86 (m, 1 H), 2.19-2.36 (m, $3 \mathrm{H}), 1.85-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.29$ (m, 4 H$), 1.01-1.13(\mathrm{~m}, 1 \mathrm{H})$.
Rac-($3 R^{*}, 4 R^{*}$)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid (2-methoxy-ethyl)-methyl-amide (20f). Prepared from 2-methylamino-ethanol. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=1.05 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=504.91$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.62 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=504.2548$, found $=505.2622[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) ~ \delta:$ $8.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 8.45-8.52(\mathrm{~m}, 0.5 \mathrm{H}), 8.05\left(\mathrm{td}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58$ (ddd, $\left.J_{1}=2.4 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, J_{3}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33\left(\mathrm{td}, J_{1}=2.2 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.96(\mathrm{~m}, 0.5 \mathrm{H}), 3.43-3.56(\mathrm{~m}, 1.5 \mathrm{H}), 3.20-3.31$ $(\mathrm{m}, 3.5 \mathrm{H}), 3.10-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.10(\mathrm{~m}, 3 \mathrm{H}), 2.88-2.94(\mathrm{~m}, 0.5 \mathrm{H}), 2.81-2.88(\mathrm{~m}, 1.5 \mathrm{H})$, $2.77(\mathrm{~s}, 1.5 \mathrm{H}), 2.15-2.36(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.53-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.01-1.13(\mathrm{~m}, 1 \mathrm{H})$.Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (2-hydroxy-ethyl)-amide (20g). Prepared from (2-hydroxy-ethyl)-amine. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=0.89 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=476.89$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.52 \mathrm{~min}$; $\mathrm{m} / \mathrm{z}=476.2235$, found $=477.2316[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.56(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58\left(\mathrm{ddd}, J_{1}=\right.$ $\left.11.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.33\left(\mathrm{td}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.11(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.12(\mathrm{~m}, 2 \mathrm{H})$, 2.83-2.91(m, 1 H$), 2.77-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.40(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.49\left(\mathrm{ddd}, J_{1}=3.7 \mathrm{~Hz}, J_{2}=12.1 \mathrm{~Hz}, J_{3}=24.1\right.$ Hz, 1H), 1.12-1.27 (m, 4 H), 1.00-1.12 (m, 1 H).

Rac-($3 R^{*}, 4 R^{*}$)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid benzylamide (20h). Prepared from benzylamine. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=1.05 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=523.17$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.67 . \mathrm{min} ; \mathrm{m} / \mathrm{z}=522.2442$, found $=523.2515[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO) $\delta: 8.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.21$ $(\mathrm{m}, 1 \mathrm{H}), 8.07\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60\left(\mathrm{ddd}, J_{1}=11.4 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=2.4\right.$ Hz, 1H), 7.32-7.38 (m, 1 H), 7.12-7.17 (m, 2 H), 7.04-7.12 (m, 4 H), 4.36-4.44 (m, 1 H), 3.984.12 (m, 2 H), 2.88-2.97 (m, 1 H), 2.80-2.88 (m, 1 H), 2.67-2.75 (m, 1 H), 2.25-2.43 (m, 3 H), 1.80-1.89 (m, 1 H), 1.69-1.80 (m, 4 H), 1.49-1.63 (m, $2 H$), 1.15-1.28 (m, 4 H), 1.02-1.14 (m, $1 \mathrm{H})$.
Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid phenylamide (20i). Prepared from aniline. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=1.10 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=509.12$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.69 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=508.2286$, found $=509.2355$ $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{td}$, $\left.J_{1}=6.4 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.54-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.07$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.97-7.03 (m, 1 H$), 4.06-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.02-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.91(\mathrm{~m}$,$2 \mathrm{H}), 2.28-2.42(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.30$ (m, 4 H$), 1.02-1.14(\mathrm{~m}, 1 \mathrm{H})$.

Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid (pyridin-2-ylmethyl)-amide (20j). Prepared from pyridin-2ylmethanamine. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=0.98 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=523.86 . \operatorname{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.54$ $\min ; \mathrm{m} / \mathrm{z}=523.2395$, found $=524.2479[\mathrm{M}+\mathrm{H}]^{+} .1 \mathrm{H}$ M-NMR (400 MHz , DMSO, water suppression) $\delta: 8.69-8.76(\mathrm{~m}, 1 \mathrm{H}), 8.35-8.41(\mathrm{~m}, 1 \mathrm{H}), 8.30-8.35(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.11(\mathrm{~m}, 1 \mathrm{H})$, 7.55-7.64 (m, 1 H), 7.38-7.45 (m, 1 H), 7.31-7.38 (m, 1 H), 7.15-7.22 (m, 1 H), 7.08-7.13 (m, 2 H), 4.40-4.49 (m, 1 H), 4.16-4.23 (m, 1 H), 3.96-4.08 (m, 1 H), 2.91-2.98 (m, 1 H), 2.79-2.86 (m, 1 H$), 2.67-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.43(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.50-$ 1.62 (m, 2 H), 1.14-1.28 (m, 4 H), 1.02-1.14 (m, 1 H).
Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid phenethyl-amide (20k). Prepared from phenethylamine. LCMS method B: $\mathrm{t}_{\mathrm{R}}=1.13 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=537.16$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.71 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=536.2599$, found $=537.2678[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ $\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58\left(\mathrm{ddd}, J_{1}=2.6 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}\right.$, $\left.J_{3}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 4 \mathrm{H}), 3.92-4.03(\mathrm{~m}, 1$ H), 3.17-3.31 (m, 2 H), 2.74-2.84 (m, 2 H), 2.56-2.70 (m, 3 H), 2.20-2.33 (m, 3 H), 1.79-1.87 (m, 1 H), 1.66-1.79 (m, 4 H), 1.45-1.63 (m, 2 H), 1.13-1.28 (m, 4 H), 1.02-1.13 (m, 1 H).
Rac-(3R*,4R*)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid methyl-phenethyl-amide (201). Prepared from N-methyl-2phenylethylamine. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=1.18 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=551.17 . \mathrm{LC}-\mathrm{HRMS}: \mathrm{t}_{\mathrm{R}}=0.75$ $\min ; \mathrm{m} / \mathrm{z}=550.2755$, found $=551.2838[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.69(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}), 8.04\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.57\left(\mathrm{~m}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}\right.$,1 H), 7.30-7.36 (m, 2 H), 7.19-7.29 (m, 2 H), 7.12-7.18 (m, 2 H), 7.07-7.12 (m, 1 H), 4.01-4.14 $(\mathrm{m}, 1 \mathrm{H}), 3.87-4.00(\mathrm{~m}, 0.5 \mathrm{H}), 3.51-3.63(\mathrm{~m}, 0.5 \mathrm{H}), 3.29-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.13(\mathrm{~m}, 1 \mathrm{H})$, 2.94-3.00 (m, 1.5 H), 2.86-2.94 (m, 0.5 H), 2.76-2.86(m, 1.5 H), 2.72-2.76(m, 1.5 H), 2.60$2.72(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.35(\mathrm{~m}, 2.5 \mathrm{H}), 2.03-2.15(\mathrm{~m}, 0.5 \mathrm{H}), 1.50-1.87(\mathrm{~m}, 7 \mathrm{H}), 0.99-1.28(\mathrm{~m}, 5$ H).

Stereoisomeric mixture ($3 R^{*}, 4 R^{*}$)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl|-amino\}-piperidine-3-carboxylic acid ((R*)-1-pyridin-2-yl-ethyl)-amide (20m). Prepared from 1-(2-pyridyl)ethylamine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.67 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=538.20$ and t_{R} $=0.68 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=538.20$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=537.2551$, found $=538.2631$ $[\mathrm{M}+\mathrm{H}]^{+}$.
(3R,4R)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid ((\boldsymbol{R})-1-pyridin-2-yl-ethyl)-amide (20n) was synthesised by HATU amidation of $(3 R, 4 R)-1$-cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino $\}$-piperidine-3-carboxylic acid with (R)-1-(pyridin-2-yl)ethanamine. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.63 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=538.33$. Chiral HPLC: $\mathrm{t}_{\mathrm{R}}=11.3 \mathrm{~min} ;>99 \%$ ee; column: ChiralPak IB 4.6x250 mm, $5 \mu \mathrm{M}$; detector wavelength: 254 nm ; eluent: 90% heptane 0.05% DEA; 10% ethanol 0.05% DEA; flow: $0.8 \mathrm{~mL} / \mathrm{min}$; BPR: 150 bar; temperature: $25^{\circ} \mathrm{C}$; injection volume: 4μ. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=537.2551$, found $=538.2631[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, D_{6}-DMSO) $\delta: 8.69(\mathrm{~m}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.08(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.35\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.24(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 4.87$ (quint, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75\left(\mathrm{td}, J_{1}=3.5 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38(\mathrm{~m}, 1$ H), 2.26-2.34 (m, 2 H), 1.80-1.84 (m, 1 H$), 1.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.49-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (d, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.26(\mathrm{~m}, 5 \mathrm{H})$.

(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid ((R)-1-pyridin-2-yl-ethyl)-amide (200) was synthesised by HATU amidation of (3S,4S)-1-cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]amino $\}$-piperidine-3-carboxylic acid 19 with (R)-1-(pyridin-2-yl)ethanamine. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.64 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=538.21$. Chiral HPLC: $\mathrm{t}_{\mathrm{R}}=15.8 \mathrm{~min} ;>99 \%$ ee; column: ChiralPak IB 4.6x250 mm, $5 \mu \mathrm{M}$; detector wavelength: 254 nm ; eluent: 90% heptane $0.05 \% \mathrm{DEA} ; 10 \%$ ethanol 0.05% DEA; flow: $0.8 \mathrm{~mL} / \mathrm{min}$; BPR: 150 bar; temperature: $25^{\circ} \mathrm{C}$; injection volume: $5 \mu \mathrm{l}$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=537.2551$, found $=538.2633[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $(400$ MHz, D ${ }_{6}$-DMSO) $\delta: 8.71$ (d, $\left.J=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.50-8.51$ (m, 1 H$), 8.16$ (d, $\left.J=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.06\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.72\left(\mathrm{td}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58\left(\mathrm{ddd}, J_{1}=\right.$ $\left.11.5 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, J_{3}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25\left(\mathrm{ddd}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}\right.$, $\left.J_{3}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 2.70-$ $2.74(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.47(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.58(\mathrm{~m}, 2 \mathrm{H})$, 1.17-1.22 (m, 7 H), 1.02-1.09 (m, 1 H).
(3R,4R)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid ((S)-1-pyridin-2-yl-ethyl)-amide (20p) was synthesised by HATU amidation of $(3 R, 4 R)-1$-cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid with (S)-1-(pyridin-2-yl)ethanamine. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.65 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=538.23$. Chiral HPLC: $\mathrm{t}_{\mathrm{R}}=13.6 \mathrm{~min} ; 96.5 \%$ ee; column: ChiralPak IB 4.6x250 mm, $5 \mu \mathrm{M}$; detector wavelength: 260 nm ; eluent: 90% heptane 0.05% DEA; 10% ethanol 0.05% DEA; flow: $0.8 \mathrm{~mL} / \mathrm{min}$; BPR: 150 bar; temperature: $25^{\circ} \mathrm{C}$; injection volume: $2.5 \mu \mathrm{l}$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=537.2551$, found $=538.2628[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (400 MHz, D_{6}-DMSO) $\delta: 8.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{q}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=7.8$Hz, 1 H$), 3.96-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.42(\mathrm{~m}, 3 \mathrm{H}), 1.86-$ $1.91(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.78(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.23(\mathrm{~m}, 6 \mathrm{H})$, 1.04-1.10 (m, 1 H$)$.

(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid ((S)-1-pyridin-2-yl-ethyl)-amide (20q) was synthesised by HATU amidation of (3S,4S)-1-cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]amino $\}$-piperidine-3-carboxylic acid 19 with (S)-1-(pyridin-2-yl)ethanamine. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.67 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=538.28$. Chiral HPLC: $\mathrm{t}_{\mathrm{R}}=17.3 \mathrm{~min} ; 96 \%$ ee; column: ChiralPak IB $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{M}$; detector wavelength: 260 nm ; eluent: 90% heptane $0.05 \% \mathrm{DEA} ; 10 \%$ ethanol 0.05% DEA; flow: $0.8 \mathrm{~mL} / \mathrm{min}$; BPR: 150 bar; temperature: $25^{\circ} \mathrm{C}$; injection volume: $3 \mu \mathrm{l}$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=537.2551$, found $=538.2631[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $(400$ MHz, D_{6}-DMSO) $\delta: 8.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1$ $\mathrm{H}), 8.08\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.35\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1\right.$ H), $7.22-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 4.88$ (quint, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74\left(\mathrm{td}, J_{1}=10.8 \mathrm{~Hz}, J_{2}=\right.$ $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.82\left(\mathrm{dd}, J_{1}=12.5 \mathrm{~Hz}, J_{2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.74$ (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$), 1.48-1.59 (m, 2 H), $1.35(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~m}, 4 \mathrm{H}), 1.06-1.11(\mathrm{~m}$, $1 \mathrm{H})$.
(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

piperidine-3-carboxylic acid benzylamide (21a) was synthesised by HATU amidation of the chiral acid 19 with benzyl amine. LC-MS method $A: \mathrm{t}_{\mathrm{R}}=0.76 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=523.20$. LCHRMS: $\mathrm{t}_{\mathrm{R}}=0.68 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=522.2442$, found $=523.2525[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\right.$ DMSO) $\delta: 8.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.35\left(\mathrm{td}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.13-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11$
$(\mathrm{d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07\left(\mathrm{dd}, J_{1}=5.1 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.07\left(\mathrm{dd}, J_{1}=15.4\right.$ $\left.\mathrm{Hz}, J_{2}=5.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.92(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.73(\mathrm{~m}, 1 \mathrm{H})$, 2.27-2.43 (m, 3 H), $1.84(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.51-1.59(\mathrm{~m}, 2 \mathrm{H})$, 1.15-1.23 (m, 5 H), 1.03-1.11 (m, 1 H$)$.

(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid ((\boldsymbol{R})-1-phenyl-ethyl)-amide (21b) was synthesised by HATU amidation of the chiral acid 19 with $(R)-(+)-\alpha$-methylbenzyl amine. QC LC-MS: $\mathrm{t}_{\mathrm{R}}=0.81$ $\min ;[\mathrm{M}+\mathrm{H}]^{+}=537.50$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.73 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=536.2598$, found $=537.2678[\mathrm{M}+$ $\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta: 7.96(\mathrm{q}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 3 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2$ H), 6.99-7.09 (m, 4 H), 5.12 (m, 1 H$), ~ 4.23-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.87(\mathrm{~m}, 1$ H), 2.67-2.73 (m, 2 H), 2.56 (m, 1H), 2.35-2.45 (m, 1 H), 2.01-2.07 (m, 1 H), 1.79-1.88 (m, 7 H), 1.64-1.67 (m, 1 H$), 1.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~m}, J=10.1 \mathrm{~Hz}, 4 \mathrm{H})$.(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid ((S)-2-hydroxy-1-phenyl-ethyl)-amide (21c) was synthesised by HATU amidation of the chiral acid 19 with (S)-2-amino-2-phenyl-ethanol. LC-MS method $B: \mathrm{t}_{\mathrm{R}}=0.98 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=553.21$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.64 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=552.2548$, found $=$ $553.2634[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.06(\mathrm{~m}, 2$ H), $7.58(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.77(\mathrm{~m}, 2 \mathrm{H}), 3.99-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.73(\mathrm{~m}, 1$ H), 2.26-2.38 (m, 2 H), 1.84-1.90(m, 1 H$), 1.67-1.77(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.26$ (m, 6 H$), 1.02-1.09(\mathrm{~m}, 1 \mathrm{H})$.
(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (2-pyridin-2-yl-ethyl)-amide (21d) was synthesised by HATU amidation of the chiral acid 19 with 2-(pyridin-2-yl)ethan-1-amine. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=$ $0.99 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=538.22$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.47 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=537.2551$, found $=538.2631[\mathrm{M}$
$+\mathrm{H}] .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.05(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.11$ (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-4.02(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.84(\mathrm{~m}, 5 \mathrm{H}), 2.23-2.29(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.06-1.12$ (m, 1 H).
(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-methyl-1-pyridin-2-yl-ethyl)-amide (21e) was synthesised by HATU amidation of the chiral acid 19 with 2-(pyridin-2-yl)propan-2-amine. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.68 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=552.23$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.61 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=551.2707$, found $=552.2778[\mathrm{M}+\mathrm{H}] .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.96(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.68-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.37(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.60$ (m, 1 H$), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 4 \mathrm{H})$.
(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyridin-2-yl-cyclopropyl)-amide (21f) was synthesised by HATU amidation of the chiral acid 19 with 1-(pyridin-2-yl)cyclopropan-1-amine. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=0.98 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]+=550.22$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=549.2551$, found $=550.2618[\mathrm{M}+\mathrm{H}] .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~m}, 1$ H), 8.35 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 2$ H), $7.18(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.98-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.84(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.42(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.52-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.35(\mathrm{~m}, 1 \mathrm{H})$, , $1.20-$ $1.26(\mathrm{~m}, 4 \mathrm{H}), 1.00-1.11(\mathrm{~m}, 3 \mathrm{H})$.

(3S,4S)-1-Cyclohexyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (21g) was synthesised in analogy to 7 b by HATU amidation of the chiral acid 15 with 1-(pyrimidin-2-yl)cyclopropan-1-amine. LC-MS method B: $\mathrm{t}_{\mathrm{R}}=0.94 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]+=551.21$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.61 \mathrm{~min} ; \mathrm{m} / \mathrm{z}$ $=550.2551$, found $=551.2581 .[\mathrm{M}+\mathrm{H}] .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.50$ $(\mathrm{s}, 2 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.16-7.19 (m, 2 H), 3.94-3.97 (m, 1 H), 2.96 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.60-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.40(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.52-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~m}, 3 \mathrm{H}), 1.07-1.11(\mathrm{~m}, 3 \mathrm{H})$.
Preparation of compounds 28a-28e, 28g-31

(3S,4S)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-1-methyl-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28a) was synthesised in analogy to $\mathbf{2 8 f}$ by reductive amination of $(3 S, 4 S)$-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]amino \}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide hydrochloride 27 with formaldehyde 36.5% aq. solution. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.65 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=483.08$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.55 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=482.1878$, found $=483.1951[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, D_{6}-DMSO) $\delta: 8.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{~m}, 1 \mathrm{H})$, 7.56-7.62 (m, 1 H$), 7.34\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18(\mathrm{~d}, J=4.8, \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-4.01(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=9.0 \mathrm{~Hz} .1 \mathrm{H}), 2.76-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1$ H), 2.18-2.24 (m, 3 H$), 2.07(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83\left(\mathrm{dd}, J_{1}=12.8\right.$ $\left.\mathrm{Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.63(\mathrm{~m}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.04-$ 1.12 (m, 2 H).
(3S,4S)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-1-ethyl-piperidine-3carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28b) was synthesised by reductive
amination of the amine hydrochloride 27 with acetaldehyde. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.65 \mathrm{~min}$; $[\mathrm{M}+\mathrm{H}]^{+}=497.03$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.56 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=496.2034$, found $=497.2105[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR (500 MHz, D6-DMSO) $\delta: 8.57$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.46(\mathrm{~s}, 1$ H), $8.08(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1$ H), $7.17(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.94(\mathrm{~m}, 1$ H), 2.69-2.75 (m, 1 H), 2.37-2.40(m, 2 H), 2.06-2.12 (m, 1 H), 1.95-2.01 (m, 1 H), 1.86 (d, J $=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.06-1.10(\mathrm{~m}, 1$ H), $1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
(3S,4S)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-1-propyl-piperidine-3carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28c). To a solution of (3S,4S)-4- \{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide hydrochloride 27 ($70 \mathrm{mg}, 0.14 \mathrm{mmol}$ in EtOH (4 mL) was added 1-iodopropane ($0.0137 \mathrm{~mL}, 0.14 \mathrm{mmol})$ followed by DIPEA ($0.0712 \mathrm{~mL}, 0.416 \mathrm{mmol}$). The mixture was stirred overnight at $65^{\circ} \mathrm{C}$. The mixture was concentrated, the residues dissolved in DMF and purified by prep. HPLC under basic conditions to yield 28c (35 mg , $50 \%)$ as a white solid. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.69 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=511.28$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=$ $0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=510.2191$, found $=511.2266[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ $8.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.08\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=\right.$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (m, 1 H$), 2.99(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.73$ (m, $1 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84\left(\mathrm{dd}, J_{1}=12.8\right.$ $\left.\mathrm{Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~m}, 2 \mathrm{H})$, $0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
(3S,4S)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-1-isopropyl-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28d) was synthesised
by reductive amination of the amine hydrochloride 27 with acetone. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=$ $0.68 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=511.27$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.56 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=510.2191$, found $=511.2275[\mathrm{M}$ $+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H})$, $8.44(\mathrm{~s}, 1 \mathrm{H}), 8.08\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=\right.$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~m}, 1 \mathrm{H}), 3.96$ (m, 1 H$), 2.92(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.80$ (m, 2 H), 2.62-2.68 (m, 1 H), 2.29 (t, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.55$ $\left(\mathrm{dd}, J_{1}=11.9 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.05-1.13(\mathrm{~m}, 2$ H), 0.99 (d, $J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$
(3S,4S)-1-Cyclopropyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide hydrochloride (28e) was synthesised by reductive amination of the amine hydrochloride 27 with (1ethoxycyclopropoxy)trimethylsilane. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=0.88 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=509.15 . \mathrm{LC}-$ HRMS: $\mathrm{t}_{\mathrm{R}}=0.63 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=508.2034$, found $=509.2120[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\right.$ DMSO) $\delta: 8.88$ (m, 1 H$), 8.79$ (s, 1 H$), 8.53$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~m}, 1 \mathrm{H})$, 7.31-7.35 (m, 2 H$), 7.21(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.51(\mathrm{~m}, 3 \mathrm{H}), 2.80-2.87$ (m, 1 H$), 1.99-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.06-1.16(\mathrm{~m}, 5 \mathrm{H}), 0.81$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$).
(3S,4S)-1-Cyclobutyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28g) was synthesised by reductive amination of the amine hydrochloride 27 with cyclobutanone. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.68 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=523.04$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=522.2191$, found $=523.2266$ $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO $) \delta: 8.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2$ H), $8.45(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18$ (m, 1 H), 7.16 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=10.8$ Hz, 1 H), 2.63-2.74 (m, 2 H$), 1.99$ (d, $J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.92$ (m, 5 H$), 1.60-1.65(\mathrm{~m}, 2 \mathrm{H})$,
$1.55\left(\mathrm{dd}, J_{1}=12.1 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.04-1.12(\mathrm{~m}$, 2 H).
(3S,4S)-1-Cyclobutylmethyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide hydrochloride (28h) was synthesised by reductive amination of the amine hydrochloride 27 with cyclobutanecarbaldehyde. LC-MS method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=0.97 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=537.17$. LC-HRMS: t_{R} $=0.60 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=536.2347$, found $=537.2430[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ 10.62-10.67 (m, 1 H$), 8.91$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.83$ (s, 1 H), 8.52 (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.06$ (m, 1 H$)$, 7.55-7.60 (m, 1 H$), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.26(\mathrm{~m}, 1 \mathrm{H})$, 3.10-3.29 (m, 5 H$), 2.80-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.13(\mathrm{~m}, 5 \mathrm{H}), 1.76-1.93(\mathrm{~m}, 5 \mathrm{H}), 1.50\left(\mathrm{dd}, J_{1}=\right.$ $\left.9.8 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.34-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.11(\mathrm{~m}, 2 \mathrm{H})$.

(3S,4S)-1-Cyclopentyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-

 piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide hydrochloride (28i) was synthesised by reductive amination of the amine hydrochloride 27 with cyclopentanone. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.75 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=537.19$. LC $-H R M S: \mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=536.2347$, found $=537.2423[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 10.66-10.77(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.07\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1\right.$ H), $7.59(\mathrm{~m}, 1 \mathrm{H}), 7.35\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J$ $=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.30(\mathrm{~m}, 3 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 4 \mathrm{H})$, $1.83(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.11(\mathrm{~m}, 2 \mathrm{H})$. (3S,4S)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-1-(1-methyl-cyclopropylmethyl)-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28j) was synthesised by reductive amination of the amine hydrochloride 27 with 1-methylcyclopropane-1-carbaldehyde._LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.71 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=537.04$. LCHRMS: $\mathrm{t}_{\mathrm{R}}=0.59 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=536.2347$, found $=537.2416[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\right.$DMSO) $\delta: 8.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.08\left(\mathrm{td}, J_{1}=8.7\right.$ $\left.\mathrm{Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.19(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.12\left(\mathrm{dd}, J_{1}=11.1 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.00$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73\left(\mathrm{td}, J_{1}=10.9 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=11.9$ Hz, 1 H), 2.04 (m, 1 H), 1.84-1.94 (m, 2 H), 1.57-1.67 (m, 1 H), 1.48-1.52 (m, 1 H), 1.35-1.39 $(\mathrm{m}, 1 \mathrm{H}), 1.07-1.11(\mathrm{~m}, 5 \mathrm{H}), 0.26-0.32(\mathrm{~m}, 4 \mathrm{H})$.

(3S,4S)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-1-(1-fluoro-

 cyclopropylmethyl)-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28k) was synthesised by reductive amination of the amine hydrochloride 27 with 1-fluorocyclopropane-1-carbaldehyde._LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.71 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=541.24$. LCHRMS: $\mathrm{t}_{\mathrm{R}}=0.58 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=540.2097$, found $=541.2179[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\right.$ DMSO) $\delta: 8.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~m}, 1 \mathrm{H}), 7.60$ $(\mathrm{m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.78(\mathrm{~m}, 3 \mathrm{H})$, $2.31(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.02-1.10(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.68(\mathrm{~m}$, $2 \mathrm{H})$.(3S,4S)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-1-(3-fluoro-propyl)-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (281) was synthesised by N -alkylation of the amine hydrochloride 27 with 1-bromo-3-fluoro-propane. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.67 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=529.06$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=528.2097$, found $=529.2179[\mathrm{M}+\mathrm{H}]^{+} .1 \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 11.01-11.12(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.93(\mathrm{~m}$, $1 \mathrm{H}), 8.79-8.82(\mathrm{~m}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.36 (m, 2 H$), 7.20(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$,
4.22-4.32 (m, 1 H$), 3.54-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.26(\mathrm{~m}, 4 \mathrm{H}), 1.99-2.26(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.51(\mathrm{~m}$, $1 \mathrm{H}), 1.35-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.05-1.13(\mathrm{~m}, 2 \mathrm{H})$.
(3S,4S)-1-(3,3-Difluoro-cyclobutyl)-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28m) was synthesised by reductive amination of the amine hydrochloride 27 with 3,3-difluorocyclobutan-1-one._LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.69 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=558.96$. LC-HRMS: t_{R} $=0.63 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=558.2003$, found $=559.2068[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta:$ $8.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.08\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.79(\mathrm{~m}, 4$ H), 2.33-2.47 (m, 2 H), $2.04(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.46-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.04-1.14(\mathrm{~m}, 2 \mathrm{H})$.
(3S,4S)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-1-(2-methoxy-ethyl)-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (28n) was synthesised by N -alkylation of the amine hydrochloride 27 with 1-bromo-2-methoxyethane. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.63 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=527.20$. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.56 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=526.2140$, found $=527.2198[\mathrm{M}+\mathrm{H}]^{+} .1 \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.34\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1\right.$ H), $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3$ H), $3.01(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70\left(\mathrm{td}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=11.0 \mathrm{~Hz}, 1\right.$ H), $2.57(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83\left(\mathrm{dd}, J_{1}=2.8 \mathrm{~Hz}\right.$, $\left.J_{2}=12.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.54-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.04-1.13(\mathrm{~m}$, 2 H).
(3S,4S)-1-Acetyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (280) was synthesised by N -acylation
of the amine hydrochloride $\mathbf{2 7}$ with acetic anhydride in DCM in the presence of triethylamine. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.75 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=511.04 . \operatorname{LC}-H R M S: \mathrm{t}_{\mathrm{R}}=0.79 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=510.1827$, found $=511.1913[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 8.61(\mathrm{~m}, 1 \mathrm{H}), 8.56(\mathrm{~s}, 1 \mathrm{H})$, $8.53(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.05-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1$ H), 7.15-7.21 (m, 2 H), 4.57 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.21-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (d, $J=13.0 \mathrm{~Hz}, 1$ H), $3.18(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~m}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.56(\mathrm{~m}$, $2 \mathrm{H}), 1.35-1.43$ (m, 1 H$), 1.04-1.17$ (m, 2 H$)$.
(3R,4R)-1-Cyclopropylmethyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (29) was synthesised by reductive amination of (3R,4R)-4-\{[5-(2,4-Difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide hydrochloride with cyclopropanecarboxaldehyde. LC-MS method A: $\mathrm{t}_{\mathrm{R}}=0.69 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=523.03$. Chiral HPLC: $\mathrm{t}_{\mathrm{R}}=4.6 \mathrm{~min} ; 99 \%$ ee; column: ChiralPak IC $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{M}$; detector wavelength: 254 nm ; eluent: 10% heptane 0.05% DEA; 90% ethanol 0.05% DEA; flow: $1.2 \mathrm{~mL} / \mathrm{min}$; BPR: 150 bar; temperature: $25^{\circ} \mathrm{C}$; injection volume: 6μ. LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min} ; \mathrm{m} / \mathrm{z}=522.2191$, found $=523.2270[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO) $\delta: 8.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.51$ (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.08\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.34$ $\left(\mathrm{td}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}$, $1 \mathrm{H}), 3.14(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72\left(\mathrm{td}, J_{1}=11.0 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.87(\mathrm{~m}, 1 \mathrm{H})$, $1.61(\mathrm{~m}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~m}, 2 \mathrm{H}), 0.82-0.88(\mathrm{~m}$, $1 \mathrm{H}), 0.46-0.51(\mathrm{~m}, 2 \mathrm{H}), 0.10(\mathrm{~m}, 2 \mathrm{H})$.
(3R,4S)-1-Cyclopropylmethyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (30) was synthesised by reductive amination of ($3 R, 4 S$)-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino \}-
piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide hydrochloride with cyclopropanecarboxaldehyde. LC-MS method A: $\mathrm{tR}=0.81 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]+=523.31$. Chiral HPLC: $\mathrm{tR}=12.0 \mathrm{~min} ;>99 \%$ ee; column: ChiralPak IC $4.6 \mathrm{x} 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$; detector wavelength: 254 nm ; eluent: 10% heptane 0.05% DEA; 90% ethanol 0.05% DEA; flow: 1.2 $\mathrm{mL} / \mathrm{min}$; BPR: 150 bar; temperature: $25^{\circ} \mathrm{C}$; injection volume: $6 \mu \mathrm{l}$.LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.62 \mathrm{~min}$; $\mathrm{m} / \mathrm{z}=522.2191$, found $=523.2273[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}-\mathrm{DMSO}\right) \delta: 9.38-9.47(\mathrm{~s}$, $1 \mathrm{H}), 8.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.10-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.04\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.58(\mathrm{~m}, 1 \mathrm{H}), 7.33\left(\mathrm{td}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.27(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.17-4.23 (s, 1 H), 3.11-3.24 (m, 1 H), 2.81-2.96 (m, 1 H), 2.73 (m, 1 H), 2.38-2.44 (m, 1 H), 2.24-2.36 (m, 4 H), 1.81-1.91 (m, 1 H$), 1.46-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.87-$ 0.96 (m, 1 H), 0.45-0.55 (m, 2 H), 0.08-0.18 (m, 2 H).
(3S,4R)-1-Cyclopropylmethyl-4-\{[5-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino\}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide (31) was synthesised by reductive amination of ($3 S, 4 R$)-4- $\{[5$-(2,4-difluoro-phenyl)-isoxazole-3-carbonyl]-amino \}-piperidine-3-carboxylic acid (1-pyrimidin-2-yl-cyclopropyl)-amide hydrochloride with cyclopropanecarboxaldehyde. LC-MS method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=0.71 \mathrm{~min} ;[\mathrm{M}+\mathrm{H}]^{+}=523.18$. Chiral HPLC: $\mathrm{t}_{\mathrm{R}}=18.4 \mathrm{~min} ;>99 \%$ ee; column: ChiralPak IC $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$; detector wavelength: 254 nm ; eluent: 10% heptane 0.05% DEA; 90% ethanol 0.05% DEA; Flow: 1.2 $\mathrm{mL} / \mathrm{min}$; BPR: 150 bar; temperature: $25^{\circ} \mathrm{C}$; injection volume: $6 \mu \mathrm{~L}$.LC-HRMS: $\mathrm{t}_{\mathrm{R}}=0.62 \mathrm{~min}$; $\mathrm{m} / \mathrm{z}=522.2191$, found $=523.2275[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO) $\delta: 9.39-9.47(\mathrm{~s}$, $1 \mathrm{H}), 8.65$ (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.10 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04\left(\mathrm{td}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1\right.$ H), $7.55-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.33\left(\mathrm{td}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.20(\operatorname{broad~s}, 1 \mathrm{H}), 3.12-3.24(\operatorname{broad~s}, 1 \mathrm{H}), 2.82-2.93(\mathrm{~m}, 1 \mathrm{H})$, $2.72(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.24\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=\right.$
$4.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.30(\mathrm{~m}, 2 \mathrm{H})$, $0.88-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.48(\mathrm{~m}, 2 \mathrm{H}), 0.12(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H})$.

hKV11.1 ("hERG") assay

hKV11.1 ("hERG") assay. Compounds were evaluated for block of hKV11.1 channels using CHO cells stably expressing the hERG gene (bSys, Witterswil, Switzerland) and the QPatch platform (Sophion, Ballerup, Denmark). $\mathrm{K}+$ tail currents were measured at -40 mV following a 500 ms depolarization to +20 mV from a holding voltage of -80 mV . The external solution contained $150 \mathrm{mM} \mathrm{Na}+, 4 \mathrm{mM} \mathrm{K}+, 1 \mathrm{mM} \mathrm{Mg} 2+$, and $1.2 \mathrm{mM} \mathrm{Ca} 2+$. Compound effects were quantified 3 min after application to the cells.

In Vitro DMPK

Inhibition of Cytochrome P450 Enzymes. The potential of the compounds for inhibition of the main human P450 isoforms, i.e., 2C9, 2D6, and 3A4, was evaluated using human liver microsomes and specific marker reactions for each enzyme. Diclofenac 4'-hydroxylation was used for CYP2C9, dextromethorphan O-demethylation was used for CYP2D6 and midazolam-1'-hydroxylation and testosterone 6β-hydroxylation were used for CYP3A4. Experiments were performed around the respective Km values of the marker substrates, and metabolite formation was monitored by LC-MS/MS. Inhibitor concentrations up to $50 \mu \mathrm{M}$ were added, and the performance of the assay was controlled by the use of specific inhibitors for each P450 isoform.

Metabolic Stability in Liver Microsomes. Incubation with human, rat and dog liver microsomes were performed to assess metabolic stability at a single substrate concentration of $1 \mu \mathrm{M}$. A $1 \mu \mathrm{~L}$-aliquot of the compounds stock solutions in DMSO were added to 100 mM phosphate buffer (pH 7.4) containing the liver microsomes at a concentration of $0.5 \mathrm{mg} / \mathrm{mL}$
and the mixture was incubated at $37^{\circ} \mathrm{C}$ in an Eppendorf thermomixer at 450 rpm . The reaction was initiated by addition of $100 \mu \mathrm{~L}$ of NADPH-regenerating system containing the glucose-6phosphate dehydrogenase and at the pre-defined time points, $0,2.5,5,10,15,20,30$ and 45 $\min , 100 \mu \mathrm{~L}$ of the incubation was transferred in $100 \mu \mathrm{~L}$ of ice-cold methanol to stop the reaction. Samples were centrifuged at $3220 g$ for 20 min at $4^{\circ} \mathrm{C}$ and the supernatants were submitted to LC/MS-MS analysis.

Plasma Protein Binding. The binding to plasma proteins was determined by equilibrium analysis using a Pierce rapid equilibrium dialysis (RED) device (Thermo Fisher Scientific, Reinach, Switzerland) and incubating on a shaker at $37^{\circ} \mathrm{C}$ for 4 h . The device was comprised of two compartments (protein compartment and buffer compartment) separated by a dialysis membrane with a molecular weight cut-off of 8 kDa , which allowed unbound test compound but not proteins, to traverse the membrane and equilibrate between the two compartments. The donor compartment was either human, rat or dog plasma. Donor and receiver (containing phosphate buffer, pH 7.4) were analyzed by LC-MS/MS.

In Vivo DMPK

Pharmacokinetic Studies in Rat and Dog. The amorphous hydrochloric salt of ACT-10041239 was used. Male Wistar rats with a body weight of ca. 200-250 g were used for pharmacokinetic experiments. For intravenous sampling, a jugular vein catheter was implanted 2 days prior to drug dosing under aseptic conditions. After recovery from general isoflurane anesthesia, animals were housed individually with free access to water and food during the recovery period and the entire duration of the experiment. For intravenous use the compound was formulated as an aqueous solution in 5% mannitol and water and for oral gavage as a solution in purified water. For both formulations, pH was adjusted to a value of 5.2 and 3.6, respectively with an NaOH solution. Male Beagle dogs with body weights of $13.4-16.0 \mathrm{~kg}$ at
the start of treatment were used in a crossover design with a washout period of 7 days. All experiments were performed in fasted state, and gastric pH was controlled by giving intramuscular pentagastrin at a dose of $6 \mathrm{mg} / \mathrm{kg} 30$ minutes after oral dosing For intravenous use the compound was formulated as an aqueous solution in 5% mannitol and water and for oral gavage as a solution in purified water and pH was adjusted to a value of 5.0 in both cases with an NaOH solution. Serial blood samples of 0.25 ml (rats) or 2 ml (dogs) were taken over a period of 24 hours and transferred into vials fortified with EDTA as anticoagulant. Blood samples after oral dosing to rats were taken under light isoflurane anesthesia. Plasma was generated by centrifugation and stored at $-20^{\circ} \mathrm{C}$ pending analysis. Analysis was performed using liquid chromatography coupled to mass spectrometry (LC-MS-MS) after protein precipitation with methanol and centrifugation at 3220 g for 20 min at $4^{\circ} \mathrm{C}$. Pharmacokinetic parameters were estimated with the WinNonlin software (Pharsight Corporation, Mountain View, CA, USA) using non-compartmental analysis.

Physico-Chemical Properties Measurement

Log D7.4 determination. The distribution coefficient $\operatorname{LogD}_{7.4}$ of a compound was determined by a miniaturized shake-flask method in screening mode. After overnight equilibration at room temperature in the 1-octanol/phosphate buffer saline pH 7.4 system, the $\operatorname{LogD}_{7.4}$ was calculated from the HPLC peak area ratio of both phases without pH control LogD values higher than 4.1 were reported as >4.1 due to HPLC detection limit.
pKa determination. The ionization constant pKa of a compound was determined using SiriusT3 instrument and software from Pion, Inc. Measurement was done by potentiometric or spectroscopic titration, depending on chromophore, from pH 2 to 12 or from pH 12 to 2 , at $25^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$ in a 0.1 M KCl solution at concentrations respectively between 0.7 mM to 2 mM , introduced as powder, and 0.01 mM to 0.1 mM , introduced as $2 \mu \mathrm{~L}$ to $5 \mu \mathrm{~L}$ DMSO stock
solution of 10 mM to 30 mM . During titration, solution was stirred using a paddle under nitrogen flow at the liquid surface. In case of precipitation, the use of a co-solvent may have been needed.

Solubility determination. The solubility of a compound was determined by the screening solubility assay. Starting material was a 10 mM DMSO stock solution, from which the solvent was evaporated and then the medium of interest was added. The approximate solubility (in $\mu \mathrm{g} / \mathrm{mL}$) up to around $1000 \mu \mathrm{~g} / \mathrm{mL}$ (depending on molar mass) of a compound was determined in the medium of interest after 24 h of equilibration at $25^{\circ} \mathrm{C}$ and filtration of the possible solid remaining. Solubility was determined in the following medium: FaSSIF-V1, FeSSIF-V1, phosphate buffer saline pH 7.4 or phosphate buffer pH 7 .

Differential scanning calorimetry (DSC). DSC data were collected on a Mettler Toledo STARe System (DSC822e module, measuring cell with ceramic censor and STAR software version 9.20) equipped with a 34 -position auto-sampler. The instrument was calibrated for energy and temperature using certified indium. Typically, $1-5 \mathrm{mg}$ of each sample, in an automatically pierced aluminium pan, was heated at $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$, unless stated otherwise, from $-20^{\circ} \mathrm{C}$ to $280^{\circ} \mathrm{C}$. A nitrogen purge at $20 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ was maintained over the sample. Peak temperatures were reported for melting points.

Single Crystal X-ray Structure Analysis of ACT-1004-1239 (28f)

Data collection and refinement statistics

Crystals of $40\left(\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{3} \cdot \mathrm{MeOH}\right)$ formed in the orthorhombic chiral space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$. A total of 3644 reflections were collected at 253 K . Molecules/unit cell $\mathrm{Z}=2$, cell dimensions $\mathrm{a}=4.8267(1) \AA, \mathrm{b}=21.2971(6) \AA, \mathrm{c}=26.260(8) \AA ; \mathrm{V}=2699.4(1) \AA^{3} ;$ calculated density $=1.286 \mathrm{~g} \mathrm{~cm}^{-3}$. The final R-factor of 4.83% was obtained for 2177 observed reflections
(I $>4 \sigma(\mathrm{I})$) for a resolution of $1.05 \AA$; largest difference peak and hole were 0.34 and $-0.28 \mathrm{e}^{-}$ \AA^{-3}, respectively. Crystallographic file has been deposited under the number CCDC 1993933.

The terminal cyclo-propyl ring is disordered over two positions. With a free variable and fixed Uiso both partitions refine to a $52 / 48$ ratio. In the final refinement they were fixed to 50/50 with EADP for each partition. They were left isotropic. If they are refined anisotropic, R1 goes down to app. 3.5%, but the shifts of the atoms are big and they doesn't remain stable. To avoid introduction of constrains for the thermal parameters, these disordered positions were refined isotropic to achieve displacement shifts to be zero.

There is a MeOH which is disordered over at least 3 positions. Due to the "not so good" data quality, the solvate positions can't be fully refined, nor found completely. Therefore, to avoid such problems and instability of the refinement, the MeOH solvate was SQUEEZED out.

Biological Assays In Vitro

CXCR7-agonist 1 assay: CHO-K1 CXCR7 β-arrestin cells were detached from culture dishes with a cell dissociation buffer (Invitrogen, Catalogue \#13151-014) and collected in their culture medium. Cells (5000 per well in $20 \mu \mathrm{~L}$) were seeded in 384 -well plates (Greiner, Catalogue \#781098). The plates were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 24 h . The medium of each well was replaced with $20 \mu \mathrm{~L}$ of OPTIMEM (Invitrogen, Catalogue \#31985) for 3-4 h. Test compounds were dissolved at a concentration of 10 mM in DMSO and either tested at 10 uM or serially diluted in DMSO to 200X of the final concentration to be used for dose-response testing. Compounds were then further diluted 1:33.3 in 1X HBSS. The diluted compounds ($5 \mu \mathrm{~L} /$ well) were added to the assay plates and incubated for 15 minutes or 3 h at $37^{\circ} \mathrm{C}$. Next, the agonist 1 was diluted in HBSS $/ 20 \mathrm{mM}$ HEPES $/ 0.2 \%$ BSA to 6 X of the final concentration to be used (the final concentration used was 5 nM , equivalent to its EC_{80} value) and $5 \mu \mathrm{~L} /$ well was added to the assay plate. The effect of each compound was calculated as a percentage of the maximum
assay signal. The mean minimum and maximum values were obtained from control wells in the same plate and were set at 0% and 100%.

Insurmountability assay: For the insurmountability assay, serial dilution of CXCL12 or CXCL11 were used instead of 1 . The plates were incubated for another 90 minutes at $37^{\circ} \mathrm{C}$. The detection reagent ($12 \mu \mathrm{~L}$; Detection Kit, DiscoveRx, \#93-0001) was then added to the wells and the plates were incubated for 1 h at room temperature. The resulting luminescent signal was read in a microplate reader (Envision, Perkin Elmer). Of note, the calculated IC_{50} values fluctuated depending on the daily performance of the cellular assay.

CXCR7-CXCL12 assay: CXCR7-bla U2OS cells were detached from culture dishes with 0.05% trypsin-EDTA and collected in growing medium (McCoy's 5A 90\% (v/v), dialyzed fetal calf serum (FCS) $10 \%(\mathrm{v} / \mathrm{v}), 0.1 \mathrm{mM}$ non-essential amino acids (NEAA), 25 mM HEPES (pH 7.3), 1 mM sodium pyruvate, $\mathrm{P} / \mathrm{S} 1 \%(\mathrm{v} / \mathrm{v}) 50 \mu \mathrm{~g} / \mathrm{ml}$ Hygromycin, $100 \mu \mathrm{~g} / \mathrm{ml}$ Geneticin, $200 \mu \mathrm{~g} / \mathrm{ml}$ Zeocin), spinned down and resuspended in assay medium (McCoy's 5A 90\% (v/v), dialyzed FCS $1 \%(\mathrm{v} / \mathrm{v}), 0.1 \mathrm{mM}$ NEAA, 25 mM HEPES (pH7.3), P/S 1\% (v/v)). $10 ’ 000$ cells per well (in $30 \mu \mathrm{l}$) were seeded in a 384 well plate (black-walled, clear bottom). The plates were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 24 hours. Test compounds were dissolved to 10 mM in DMSO and serially diluted in DMSO to 500X of the final concentration for dose response curves. Compounds were then diluted 1:100 in assay medium to 5 X of the final concentration. $10 \mu \mathrm{l} /$ well of diluted compounds were added to the assay plate and incubated for 15 minutes at $37^{\circ} \mathrm{C}$. Thereafter CXCL12 α was diluted in assay medium to 5 X of the final concentration (Final concentration: 30 nM). This corresponds to its EC80 value for receptor activation) and $10 \mu \mathrm{l} /$ well were added to the assay plate. The plate was incubated for 22 hrs at $37^{\circ} \mathrm{C} .10 \mu \mathrm{l} /$ well of detection reagent (LiveBLAzerTM-FRET B/G (CCF4-AM) substrate) was transferred to the assay plate and the plate was incubated for 2 hours at room temperature protected from light. Fluorescent counts were determined (Scan1: Ex 409/20nm, Em 460/30nm, Scan 2: Ex
$409 / 20 \mathrm{~nm}$, Em $530 / 30 \mathrm{~nm}$). The calculated emission ratio was used for IC50 determination. The effect of each compound was calculated as a percentage of the maximum assay signal. The mean minimum and maximum values were obtained from control wells in the same plate and were set at 0% and 100%. The calculated IC50 values may fluctuate depending on the daily cellular assay performance.

Determination of the Ki, Kon and Koff constants: HEK-SNAP.hCXCR7.NLuc cells were washed once with PBS and 100 nM SNAP Lumi4-Tb (Cisbio, Catalogue \#SSNPTBC) prepared in 1x Tag-lite ${ }^{\circledR}$ buffer (TLB, Cisbio, Catalogue \#LABMED) was added and further incubated for 1 h at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. Excess SNAP-Lumi4- Tb was removed by washing cells 3 times with TLB 1x. Cells were detached from culture dishes with cell dissociation buffer (Gibco Catalogue \#13151), resuspended in TLB and counted. Cells were then centrifuged at 200xg for 5 min , the supernatant was removed by aspiration and cell pellets were resuspended in 1 x TLB at a density of 0.4 million cells $/ \mathrm{mL}$. Cells were gently mixed by pipetting up and down several times. Cells were frozen in FCS 90\%/DMSO 10% as ready-to-use labeled cells. The day of the assay, cells were thawed, resuspended in 10 mL TLB 1 x and centrifuged for 5 min at 200 xg . The supernatant was removed by aspiration and cell pellets were resuspended in TLB 1 x at 0.4 million cells/mL. Cells were gently mixed by pipetting up and down several times. ACT-1004-1239A was dissolved to 10 mM in DMSO and serially diluted in DMSO to 400x of the final concentration for dose-response curves. Compounds were further diluted $1 / 100$ in TLB to 4 x of the final concentration. $5 \mu \mathrm{~L}$ of this solution were transferred to a white low volume plate, where $5 \mu \mathrm{~L}$ of labeled ligand (3 nM CXCL12 AF647 diluted in TLB 1x to obtain a 4-fold concentrated solution) and $10 \mu \mathrm{~L}$ of cells (4000 cells per well) were added. The final percentage of DMSO in each well was 0.25%. The binding kinetics were measured immediately on a Pherastar FSX (measurement began 30 seconds after addition of the cells) every 30 seconds for 3 h at room temperature.

CXCR7 assay using CXCR7 from various species: we established stable in vitro systems where CXCR7 from different species and human β-arrestin were overexpressed either in Chinese hamster ovary (CHO), U2OS or human embryonic kidney cells 293 (HEK293) cell lines (thereafter the " β-Arrestin CXCR7 cell lines"). In these systems, cells are engineered to co-express a ProLink ${ }^{\mathrm{TM}}(\mathrm{PK})$ tagged CXCR 7 and an Enzyme Acceptor (EA) tagged β-arrestin (Table S1).

Table S1: List of the CXCR7 $\boldsymbol{\beta}$-arrestin stable cell lines

$\boldsymbol{\beta}$-Arrestin CXCR7 cell lines	Medium	Idorsia cell Bank number
CHO-K1 humanCXCR7 β-arrestin	Ham's F12	CC548
HEK293 ratCXCR7 β-arrestin clone\#2	DMEM	CC423
CHO-K1 guinea pigCXCR7 β-arrestin clone\#41	Ham's F12	CC422
CHO-K1 macaqueCXCR7 β-arrestin clone\#48	Ham's F12	CC420
CHO-K1 dogCXCR7 β-arrestin clone\#12	Ham's F12	CC421
U2OS mouseCXCR7 β-arrestin	MEM	CC549

The β-arrestin CXCR7 cell lines were grown to near confluency in the indicated medium (Table S1) supplemented with 10% fetal calf serum containing penicillin and streptomycin (100 units/mL each) under standard mammalian cell culture conditions at $37^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$. Cells were detached from culture dishes with a cell dissociation buffer (Invitrogen, Catalogue \#13151-014) and collected in their growing medium. Cells (5000 cells per well in $20 \mu \mathrm{~L}$ for all cell lines except HEK293 ratCXCR7, which were seeded at 20,000 cells per well in 20 uL) were seeded in a 384 well plate (Greiner, Catalogue \#781098). HEK293 ratCXCR7 cells were seeded on poly-L-Lysine (Cultrex, Catalogue \# 3438-100-01)-coated 384 well plates. The plates were incubated at $37^{\circ} \mathrm{C} / 5 \% \mathrm{CO}_{2}$ for 24 h . The medium was replaced with $20 \mu \mathrm{~L}$ OPTIMEM (Invitrogen Catalogue \#31985) for 3 to 5 h . ACT-1004-1239 was dissolved at a concentration of 10 mM in DMSO and serially diluted in DMSO to 200X of the final concentration to be used for the dose response experiments. ACT-1004-1239 was then diluted 1:33.3 in Hank's balanced salt solution (HBSS) 1X. Diluted compounds ($5 \mu \mathrm{~L} /$ well) were added to the assay plates and incubated for 15 min at $37^{\circ} \mathrm{C}$. Next, CXCL12 (Peprotech,

Catalogue \# 300-28A) was diluted in HBSS/20 mM HEPES/0.2\% BSA (Sigma, Catalogue\# A7030) to 6 X of the final concentration (its EC_{80} value) and $5 \mu \mathrm{~L} /$ well was added to the assay plates. The plates were incubated for 90 min at $37^{\circ} \mathrm{C}$. The detection reagent $(12 \mu \mathrm{~L}$; Detection Kit, DiscoveRx, \#93-0001) was transferred to the assay plate and the plate was incubated for 1 h at room temperature. The luminescent signal was read in a microplate reader (Envision, Perkin Elmer).

Human CXCR4 intracellular calcium liberation (FLIPR) Assay: Molt4 cells were grown to near confluency in Roswell Park Memorial Institute (RPMI) medium supplemented with 10% fetal calf serum containing penicillin and streptomycin (100 units $/ \mathrm{mL}$ each) under standard mammalian cell culture conditions at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$. Cells were centrifuged and resuspended in Dye Buffer (1X HBSS, $0.0375 \% \mathrm{NaHCO}_{3}, 20 \mathrm{mM}$ HEPES, 5.25 mM probenecid, 10 nM Fluoro-4). The cells were incubated for 45 min at $37^{\circ} \mathrm{C}$. Cells were then washed 2 times with Wash Buffer (1X HBSS, $0.0375 \% \mathrm{NaHCO}_{3}, 20 \mathrm{mM}$ HEPES, 2.5 mM probenecid, 0.1% BSA), resuspended in Wash Buffer and 50000 cells in 50 $\mu \mathrm{L}$ per well, were seeded onto a 384 -well clear-bottom black assay plate (Greiner), and sedimented by centrifugation. Stock solutions of ACT-1004-1239 were made up at a concentration of 10 mM in DMSO and serially diluted in assay buffer to concentrations required for dose-response curves. CXCL12 (Peprotech, Catalogue \# 300-28A) was used as an agonist. A FLIPRII instrument (Molecular Devices) was operated following the manufacturer's instructions. ACT-1004-1239 (10 $\mu \mathrm{L}$) was added to each well and incubated for 20 min . Cells were activated by a final concentration of 17.5 nM CXCL12 dissolved in the wash buffer. Fluorescence emission was recorded during test compound and CXCL12 addition, and emission peak values above base level after CXCL12 addition were exported. Values were normalized to high-level control (no antagonist added) after subtraction of baseline value control (no CXCL12 added).

Biological Assay In Vivo

Target engagement in vivo: Male DBA/1 mice (body weight at study start: $22-27 \mathrm{~g}$) were purchased from Janvier Laboratories (Le Genest-Saint-Isle, France) and allowed to acclimatize for at least 7 days before use. All animals were housed in climate-controlled conditions within a 12 h light/dark cycle and had free access to normal chow and drinking water, in accordance with the guidelines of the Swiss Animal Protection Law. All animal experiments were carried out in accordance with the Swiss animal protection law, under protocols approved by the Basel Cantonal Veterinary Office.

The compound was formulated in 20% volume of Solutol HS15 and in 80% volume of 0.25% (w/w) methylcellulose/water. Oral single doses of ACT-1004-1239 (1, 10, 30 or $100 \mathrm{mg} / \mathrm{kg}$) or vehicle were given to healthy DBA/1 mice p.o. $(\mathrm{n}=3-5$ per time point) in a volume of $5 \mathrm{~mL} / \mathrm{kg}$. Blood samples were collected $0.5,6$ and 24 h post-administration of a single oral dose. Blood was centrifuged ($20,000 \mathrm{~g}, 5$ minutes at $4^{\circ} \mathrm{C}$) to prepare plasma samples and concentrations of CXCL12 were measured using a commercial mouse CXCL12/SDF1 α Quantikine enzyme-linked immunosorbent assay kit (R\&D Systems, catalog no. MCX120) according to manufacturer's instructions. All data are presented as mean + SEM. Statistical analysis were performed by One-way ANOVA followed by Dunnett's multiple comparisons test, using Graphpad Prism software (version 8).

References

1. Aissaoui,A.; Guerry, P.; Lehembre, F.; Pothier, J.; Pouzol, L.; Richard-Bildstein, S.; Yuan, S.; Piperidine CXCR7 Receptor Modulators, World Patent WO 2018/019929, 2018.
2. Linder, J; Garner, T. P.; Williams, H. E. L.; Searle, M. S.; Moody, C. J. Telomestatin: Formal Total Synthesis and Cation-Mediated Interaction of Its seco-Derivatives with G-Quadruplexes. J. Am. Chem. Soc. 2011, 133, 1044-1051.

LC-MS traces of compounds 2-31

The LC-MS methods used correspond to the descriptions in the chemistry part.

Compound 2:

Compound 3:
Sample Name: LCMSH384-20200528-1_K01
ACT No: ACT-651159
Instrument: UPLC_SYNAPT1
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT
ELN Nr: EXT-933089
Acquisition time: 6/2/2020 3:06 PM
Result
Possible Rotamers
GOOD
100.0000
367.1291
0.5010

Poak 2g0.482 min $\mathbf{m 3 (+)}$ Es
62807.8 onte

Compound 4:

Sample Name: LCMSH384-20200609-
1_M05
ACT No: ACT-655552 Instrument:

Expression
Auto-Comments
Auto-Sumnary
Purity
Target Mass
Target RT

ELN Nr: ELN098-0668_A03
Acquisition time: 6/12/2020 11:26 AM

Result

Possible Rotamers
GOOD
100.0000
327.1524
0.3770

UV214 [8:2E06]

Compound 5:

Sample Name: LCMS384-20171009-7_105
ACT No: ACT-650870
Instrument: ACQ-SQD\#B09SQD437W
Expression
Auto-Corrments
Auto-Summary
Purity
Target Mass

ELN Nr: ELNO98-0868.A04
Acquisition time: 10/10/2017 2:52 PM
Result

GOOD
100.0000
354.0000

Compound 6:
Sample Name: LCMS384-20200624-1_M01
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT
UV[212216]

Compound 7a:
3: UV Detector: 212_216
6.025

R

Range: 6.455

$T_{00}^{T i m e}$
1: MS ES+ : 285.141 1.0000Da
7. $6 e+007$

2: MS ES- : 283.126 1.0000Da

2: (Time: 0.39) Combine (44:49-(24:26+66:69))
1:NS ES+
5. $6 e+007$

P

Compound 7b:
Sample Name: LCMSP384-20200528-1_K07
ACT No: ACT-707103 Instrument: ICHALW-DL00021-SQD
Expression
Auto-Comments

Compound 7c:
Sample Name: LCMS384-20200803-5_G23
Expression

Auto-Comments
 Auto-Summary

Purity
Target Mass
Target RT
ACT No: ACT-707785
Instrument: ICHALW-DLO0012-TQD

UV[212218]

Peak 1 ge. $632 \mathrm{~min} \mathrm{~m} 3(+) \mathrm{Es} \quad 4.7 \mathrm{E}=0$ onts

Compound 7d:

Compound 7e:

Compound 7f:
Sample Name: LCMSP384-20200528-1_O03 ACT No: ACT-707106 Instrument: ICHALW-DL00021-SQD

Expression

Auto-Comments

Auto-Summary GOOD

Purity
Target Mass
Target RT
Targetr

Poak $1 \mathrm{~g} 0.825 \mathrm{mln} \mathrm{m}(+$) Es
$2.4 E 07$ onts

Compound 7g:

Sample Name: LCMSP384-20200528-1_K05
ACT No: ACT-707109
Instrument: ICHALW-DL00021-SQD

Expression

Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT

UN214[44E06]

ELN Nr: ELNO98-0663.B02
Acquisition time: 5/28/2020 9:32 AM Result

GOOD
100.0000
314.3000
0.5280

Poak 2g0. $535 \mathrm{~min} \mathrm{~ms}(+$) ES
3.8E07 onte

Compound 7h:

Sample Name: LCMS384-20200715-2_C01

Expression

Auto-Comments

Auto-Sumnary

Purity
Target Mass
Target RT

ELN Nr: ELN026-2083_A04
Acquisition time: 7/15/2020 12:14 PM Result
ACT No: ACT-709860
Instrument: ICHALW-DL00012-TQD

Compound 7i:

Compound 7j:

Sample Name: LCMS384-20200803-5_A23
ACT No: ACT-709678 Instrument: ICHALW-DL00012-TQD
Expression
Auto-Comments
Auto-Sumnary
Purity
Target Mass
Target RT

Poak 2g0.458 min M3(+) E3
$4.3 E 08$ onts

Poak 3g0.473 min m3(+) E3
8.1E08 onts

Compound 7k:

Sample Name: LCMS384-20200512-1_105
ACT No: ACT-709631
Instrument: ICHALW-DL00021-SQD
Expression
Auto-Comments

Auto-Summary	GOOD
Purity	100.0000
Target Mass	314.3000
Target RT	0.5220

Purity

Target RT
0.5220

ELN Nr. ELNO26-2066_A01
Acquisition time: 5/12/2020 4:51 PM Result

GOOD
100.0000
314.3000

UV214 [4EEDE]

Compound 71:

3: UV Detector: 212_216

1: MS ES+ :311.157 1.0000Da
7. 7e+007

2: MS ES- : 309.141 1.0000Da
$6.6 e+005$

(1) ELSD Signal
206.664

2: (Time: 0.40$)$ Combine (47:52-(28:30+70:73))
1:NS ES+
200

3: (Time: 0.40) Combine (48:52-(26:29+78:81))
1:MS ES+

Compound 7m:

3: UV Detector: 212_216

1: MS ES+ : 339.188 1.0000Da
$8.0 e+007$

2: MS ES- : 337.173 1.0000Da
8. $7 e+005$
0.44
(100)
(1) ELSD Signal
221.044

3:(Time: 0.44) Combine (58:63-(39:41+81:84))
1:MS ES+
4. $8 e+007$

4: (Time: 0.44$)$ Combine ($59: 63-(37: 40+85: 88)$)
1:MS ES+
er 100

Compound 7n:

Compound 7o:

Sample Name: LCMSP384-20200528-1_O09 ACT No: ACT-709853

Instrument:

Expression

Auto-Comments
Auto-Sumnary GOOD
Purity
Target Mass
Target RT

Peak 1g0.657 min $\mathbf{M 3 (+)} \mathrm{Es} \quad 3.6 E 07$ onts

Compound 7p:

Sample Name: LCMS384-20200803-5_M23
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT

ELN Nr: ELN227-1507.A04
Acquisition time: $8 / 3 / 2020$ 10:17 PM Result

Compound 8a:

2: MS ES- : 352.214 1.0000Da
$1.5 e+005$

3: (Time: 0.55) Combine (85:89-(64:67+113:116))
1:MS ES+
5.4e+007

600.0
1000.0

Compound 8b:

Sample Name: LCMS384-20200713-3_K01
ACT No: ACT-710148
Instrument: ICHALW-DLOOO21-SQD

ELN Nr: ELNO26-2083.BO1
Acquisition time: 7/13/2020 3:31 PM

Auto-Comments
Auto-Summary
Purty
Target Mass
Target RT

Result
GOOD
100.0000
0.0000
0.7360

UV214 [47ED8]

> eid-11 430.1130 (4297130-430.5130) w-0.8000
> T1-EIC(F|MM-H|[10)

Compound 8 c :

3: UV Detector: 212_216 Smooth (SG, 1x3)

品

1: MS2 ES+ : $365.231+343.239$ 1.0000Da Smooth (SG, 2x1)
$6.3 e+007$

2: MS2 ES- : 387.231+341.223 1.0000Da Smooth (SG, 2×1)

1. $7 \mathrm{e}+004$

1:(Time: 0.49) Combine (71:76-(54:56+96:99))

Compound 8d:

3: UV Detector: 212_216 Smooth (SG, 1x3)

8

1: MS2 ES+ :383.221+361.229 1.0000Da Smooth (SG, 2x1)
$7.5 e+007$

2: MS2 ES- : 405.221+359.214 1.0000Da Smooth (SG, 2x1)
4. $6 e+004$

(2) ELSD Signal

1:(Time: 0.51) Combine (76:81-(60:62+102:105))

Compound $\mathbf{8 e}$:

Sample Name: LCMS384-20200713-3_M01
ACT No: ACT-73064 Instrument: ICHALW-DLO0021-SQD

Expression

Auto-Comments

Auto-Summary	GOOD
Purity	98.3000
Target Mass	423.3000
Target RT	0.6300

Target RT
0.6300

ELN Nr: ELNO26-2064.A05
Acquisition time: 7/13/2020 3:34 PM
Result

GOOD
88.3000

Pask 2g0.as min M3(+) E8
2.8507 onts

Compound 8f:

Sample Name: LCMSH384-20200720-1_AO1
ACT No: ACT-730645 Instrument:
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT

ELN Nr: ELN026-2083.A03
Acquisition time: 7/24/2020 2-54 PM Result

GOOD
96.6000
385.1903
0.5800

UV214[.1E00]

Poak 1g0.000 min m3(+) Es
84183.8 onte

Poak 2g0. 578 mln M3(+) E3
2.3E06 onts

Compound 8g:

Compound 8h:

2: MS2 ES- : 416.201+370.193 1.0000Da Smooth (SG, 2x1)

1. $6 e+004$

1: (Time: 0.65$)$ Combine (112:117-(94:97+139:142))
1:MS2 ES+ 5. 0 e+007

- ${ }^{100}$ 3.3
.0 \qquad 1000.0

Compound 8i:

Sample Name: LCMS384-20200803-5_K23
Expression
Auto-Comments
Auto-Summary GOOD
Purity
Target Mass
$\begin{array}{ll}\text { Target RT } & 0.6590\end{array}$

Compound $\mathbf{8 j}$:

Compound 9a:

Sample Name: LCMS384-20191018-2_E05
ACT No: IDOR-1119-5082
Instrument: ICHALW-DL00021-SQD
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT
Targetr

Compound 9b:

Compound 9c:

Sample Name: LCMSP384-20200528-1_C11
ACT No: ACT-735356 Instrument: ICHALW-DLO0021-SQD
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT

ELN Nr: ELNO26-1200.B01
Acquisition time: 5/28/2020 10:29 AM Result

GOOD
98.2000
376.4000
0.6200

UV214[44E08]

Compound 9d:
Sample Name: LCMSP384-20200528-1_E01
ACT No: ACT-735355
Instrument: ICHALW-DLO0021-SQD
Expression
Auto-Comments
Auto-Summary GOOD
Purity
Target Mass
Target RT
Target RT [0.3010

Compound 9e:

Compound 9f:

Compound 9g:

Sample Name: LCMSH384-20200714-1_K01
ACT No: ACT-735364
Instrument: UPLC_SYNAPT1
Expression
Auto-Comments
Auto-Summary
Purty
Target Mass
Target RT

ELN Nr: ELNO26-2066.A07
Acquisition time: 7/15/2020 2-42 PM Result

GOOD
98.8000
398.1675
0.5930

UV214 [BEE06]

Compound 10a:

3: UV Detector: 212_216

100%	$\mathbf{7 . 4 5 2}$
0.58	Range: 7.502
4488	

品

1: MS2 ES+ : 411.207+389.215 1.0000Da Smooth (SG, 2x1)
$8.4 e+007$

2: MS2 ES- : 433.207+387.2 1.0000Da Smooth (SG, 2x1)
2. $5 e+004$

(2) ELSD Signal
103. 169

1:(Time: 0.58) Combine (93:98-(76:79+118:121))
1 :MS2 ES+
$5.5 e+007$
(100
1,1

Compound 10b:

Compound 10c:

Sample Name: LCMS384-20200615-4_G05
ACT No: ACT-736695 Instrument: ICHALW-DLO0021-SQD
Expression
Auto-Comments

Auto-Sumnary	GOOD
Purity	100.0000
Target Mass	390.4000
Target RT	0.6350

Target RT 0.6350

Poak $1 \mathrm{~g} 0.335 \mathrm{~min} \mathrm{~ms}(+\mathrm{E} \mathrm{Es}$

Compound 10d:

Sample Name: LCMSP384-20200528-1_G01 ACT No: ACT-736699
Instrument: ICHALW-DL00021-SQD

Expression

Auto-Comments
Auto-Sumnary
Purity
Target Mass
Target RT

ELN Nr: ELNOO8-1108.G02
Acquisition time: 5/28/2020 8:41 AM Result

Poak 日g0. $579 \mathrm{~min} \mathrm{~m} 3(+1 \mathrm{Es}$
3.8 E 07 onte

Compound 10e:

Sample Name: LCMS384-20191128-1_E01
ACT No: ACT-761438
Instrument: ICHALW-DL00021-SQD
Expression
Auto-Comments
Auto-Summary GOOD
Purity
Target Mass
Target RT
ELN Nr: ELN057-0939.1
Acquisition time: 11/28/2019 2:10 PM Result
100.0000
391.3000
0.5700

Peak $7 @ 0.571 \mathrm{~min} \mathrm{MS}(+) \mathrm{ES} \quad 3.3 \mathrm{E} 07 \mathrm{cnts}$

Compound 10f:

Sample Name: LCMSP384-20200528-1_C01
ACT No: ACT-737915 Instrument:
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT

ELN Nr: ELN057-0929.B03
Acquisition time: 5/28/2020 8:35 AM Result

GOOD
97.3000
401.4000
0.8450

UV214[44E00]]
Peak 2
Peak $=2$
Rt 0.645 Area Perc 97.3\% Area Perc 97.3%
ST1

Poak 2g0.e45 min ms(+) Es
3.7 E07 onts

Poak $12 \mathrm{~g} 0.578 \mathrm{mln} \mathrm{Ma}(+) \mathrm{Es}$
48084.0 onte

Compound 11a:

Compound 11b:

Compound 11c:

Compound 11d:

Compound 11e:

Sample Name: LCMSH384-20200609-1_C03
ACT No: ACT-747595 Instrument:
Expression
Auto-Comments

Auto-Sumnary	GOOD
Purity	85.6000
Target Mass	406.1939
Target RT	0.5500

Target RT
0.5500

Poak 2g0. $547 \mathrm{mln} \mathrm{Ma}(+) \mathrm{ES} \quad 1.6 E 06$ onte

Compound 11f:

Compound 11g:

Compound 11h:

Compound 11i:

Compound (R,R)-11i:

Sample ID:	b446957a-20dd-11e5-ac35-001e2abd2a4c	
Sample Name:	ELN281-0032.1	Date: 02.07.15
Sample Number:	4	
Time Base:	CHIRALLC04	
Datasource Name:	HPLC003_local	
Sequence Name:	ELN281-0032.1	
Sequence Dir.	DatalCHIRALLC04lerharmi1\CXCR7	
Quantif. Method:	default	
Injection Volume:	5.00 ul Comment: $1 \mathrm{mg} / \mathrm{ml}$ Heptane/EtOH 1:1	
Eluent A :	30.0 \% Heptane 0.05\% DEA	
Eluent B:	70.0 \% Ethanol 0.05\% DEA	
Flow:	$0.800 \mathrm{ml} / \mathrm{min}$	
Column:	(R,R) Whelk-01 $250 \times 4.6 \mathrm{~mm}$ ID,5um	
Serial number:	100487	
Temperature:	$25.0{ }^{\circ} \mathrm{C}$	
Detection:	210 nm	

Compound (S,S)-11i:

Sample ID:	9c585f7c-3b68-11e5-ac35-001e2abd2a4c	
Sample Name:	ELN057-1144.2	Date: 05.08 .15
Sample Number:	7	
Time Base:	CHIRALLC04	
Datasource Name:	HPLC003_local	
Sequence Name:	ELN057-1144.1	
Sequence Dir.	DatalCHIRALLC04lerharmi1\CXCR7	
Quantif. Method:	default	
Injection Volume:	2.50 ul Comment: $1.2 \mathrm{mg} / \mathrm{ml}$ Heptane/EtOH 1:1	
Eluent A :	30.0 \% Heptane 0.05\% DEA	
Eluent B:	70.0 \% Ethanol 0.05\% DEA	
Flow:	$0.800 \mathrm{ml} / \mathrm{min}$	
Column:	(R,R) Whelk-01 $250 \times 4.6 \mathrm{~mm}$ ID,5um	
Serial number:	100487	
Temperature:	$25.0{ }^{\circ} \mathrm{C}$	
Detection:	210 nm	

Peak No. UV_VIS_1	$\begin{gathered} \text { Ret.Time } \\ \text { UV_VIS_1 } \\ \text { min } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Height } \\ \text { UV_VIS_1 } \\ \text { mAU } \\ \hline \end{gathered}$	$\begin{gathered} \text { Rel.Area } \\ \text { UV_VIS_1 } \\ \% \end{gathered}$	Area UV_VIS_1 mAU*min	Resolution UV_VIS_1	Asymmetry UV_VIS_1	$\begin{gathered} \text { Plates } \\ \text { UV_VIS_1 } \end{gathered}$
1	6.8	582	100.0	127.438	n.a.	1.0	7525
Total:			100.0	127.4			

Compound 11j:

Sample Name: LCMSP384-20200528-1_A05
ACT No: ACT-747599
Instrument: ICHALW-DL00021-SQD
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass
Target RT

ELN Nr: ELNO26-1219_A04
Acquisition time: 5/28/2020 9:18 AM Result

GOOD
100.0000
433.4000
0.6380

Compound 20a:

Compound 20b:

Compound 20c:

Compound 20d:

Compound 20e:

Compound 20f:

Compound 20g:

Compound 20h:

Compound 20i:

Compound 20j:

Compound 20k:

Compound 201:

Compound 20m:

Sample Name: LCMS96-20150114-3_A03
Location: 4:3
Expression
Auto-Comments
Auto-Summary
Purity
Target Mass

Peak 2 ge. 679 min MS(+) ES

Compound 20n:

Sample ID:	322471f3-20d3-11e5-ba0c-0022191a3ba4	
Sample Name:	ELN281-0033.1	Date: 02.07 .15
Sample Number:	4	
Time Base:	U3000	
Datasource Name:	LCMSCHEM03_local	
Sequence Name:	ELN281-0033.1	
Sequence Dir.	Datalerharmi11SamplesiCXCR7	
Quantif. Method:	default	
Injection Volume:	4.00 ul Comment: $1 \mathrm{mg} / \mathrm{mL}$ Heptan/Ethanol 1:1	
Eluent A :	90.0 \% Heptane 0.05\% DEA	
Eluent B:	10.0 \% Ethanol 0.05\% DEA	
Flow:	$0.800 \mathrm{ml} / \mathrm{min}$	
Column:	Chiralpak IB 250x4.6mm ID, 5um	
Serial number:	IB00CE-LI036	
Temperature:	$25.0{ }^{\circ} \mathrm{C}$	
Detection:	210 nm	

Peak No.	Ret.Time UV_VIS_1 UV_VIS_1 min	Height UV_VIS_1 mAU	Rel.Area UV_VIS_1 $\%$	Area UV_VIS_1 mAU*min	Resolution UV_VIS_1	Asymmetry UV_VIS_1	Plates UV_VIS_1	
1	11.3	319	100.0	107.963	n.a.	1.7	7759	
Total:				100.0	108.0			

Compound 200:

Sample ID:	b0cd9997-1981-11e5-ba0c-0022191a3ba4	
Sample Name:	ELN281-0029.1	Date: 23.06 .15
Sample Number:	4	
Time Base:	U3000	
Datasource Name:	LCMSCHEM03_local	
Sequence Name:	ELN281-0029.1	
Sequence Dir:	Datalerharmi11Samples\CXCR7	
Quantif. Method:	default	
Injection Volume:	5.00 ul Comment: $1 \mathrm{mg} / \mathrm{mL}$ Heptan/Ethanol 3:1	
Eluent A :	90.0 \% Heptane 0.05\% DEA	
Eluent B:	10.0 \% Ethanol 0.05\% DEA	
Flow:	$0.800 \mathrm{ml} / \mathrm{min}$	
Column:	Chiralpak IB 250x4.6mm ID, 5 um	
Serial number:	IB00CE-LI036	
Temperature:	$25.0{ }^{\circ} \mathrm{C}$	
Detection:	210 nm	

Peak No. UV_VIS_1	Ret.Time UV_VIS_1 min	Height UV_VIS_1 mAU	Rel.Area UV_VIS_1 $\%$	Area UV_VIS_1 mAU*min	Resolution UV_VIS_1	Asymmetry UV_VIS_1	Plates UV_VIS_1
1	9.8	2	0.4	0.612	10.2	n.a.	7675
2	15.8	304	98.2	148.244	n.a.	1.8	7460
3	17.7	3	1.4	2.167	n.a.	n.a.	n.a.
Total:				100.0	151.0		

Compound 20p:

Sample ID:	048242ea-679b-11ea-a9dc-4ccc6a34d1c7	
Sample Name:	ELN186-4425.1	Date: 16.03.20
Sample Number:	5	
Time Base:	U3000	
Datasource Name:	LCMSCHEM03_local	
Sequence Name:	ELN186-4402.1+4425.1	
Sequence Dir.	Datalerharmi11Samples ${ }^{-}$	
Quantif. Method:	default	
Injection Volume:	2.50 ul Comment: $1 \mathrm{mg} / \mathrm{mL}$ Heptan/Ethanol 1:1	
Eluent A :	90.0 \% Heptane 0.05\% DEA	
Eluent B:	10.0 \% Ethanol 0.05\% DEA	
Flow:	$0.800 \mathrm{ml} / \mathrm{min}$	
Column:	Chiralpak IB $250 \times 4.6 \mathrm{~mm}$ ID, 5 um	
Serial number:	IB00CE-LI036	
Temperature:	$25.0{ }^{\circ} \mathrm{C}$	
Detection:	260 nm	

Compound 20q:

Sample ID:	da238cdf-679e-11ea-a9dc-4ccc6a34d1c7	
Sample Name:	ELN186-4402.1	Date: 16.03.20
Sample Number:	6	
Time Base:	U3000	
Datasource Name:	LCMSCHEM03_local	
Sequence Name:	ELN186-4402.1+4425.1	
Sequence Dir.	Datalerharmi11Samples ' .	
Quantif. Method:	default	
Injection Volume:	3.00 ul Comment: $1 \mathrm{mg} / \mathrm{mL}$ Heptan/Ethanol 1:1	
Eluent A:	90.0 \% Heptane 0.05\% DEA	
Eluent B :	10.0 \% Ethanol 0.05\% DEA	
Flow:	$0.800 \mathrm{ml} / \mathrm{min}$	
Column:	Chiralpak IB 250x4.6mm ID, 5um	
Serial number:	IB00CE-LI036	
Temperature:	$25.0{ }^{\circ} \mathrm{C}$	
Detection:	260 nm	

Compound 21a:

Compound 21b:

Sample Name: LCMSP384-20200430-
1_M05
ACT No: ACT-1003-6905 Instrument: ICHALW-DL00021-SQD

ELN Nr: ELN281-0048.1
Acquisition time: 5/4/2020 3:24 PM
Expression
Auto-Comments
Auto-Summary GOOD
Purity
Target Mass
Target RT

Result
96.7000
537.5000
0.8120

Compound 21c:

Compound 21d:

Compound 21d:

Compound 21e:

Peak No. UV_VIS_1	Ret.Time UV_VIS_1 min	Area UV_VIS	$\begin{gathered} \hline \text { Rel.Area } \\ 1 \text { UV_VIS_1 } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Mass } 01 \\ \text { UV_VIS_1 } \\ \text { amu } \end{gathered}$	$\begin{gathered} \hline \text { Mass } 02 \\ \text { UV_VIS_1 } \\ \text { amu } \end{gathered}$	$\begin{gathered} \hline \text { Mass 03 } \\ \text { UV_VIS_1 } \\ \text { amu } \\ \hline \end{gathered}$	UV Match UV_VIS_1
1	0.68	3821	98.1	552.25	297.34	553.24	999
2	0.76	73	1.9	473.38	107.47	104.04	995
Total:	100.0						

Compound 21f:

Compound 21g:

Compound 27:

Compound 28a:

Compound 28b:

Compound 28c:

Compound 28d:

Compound 28e:

Compound 28f

Method A

Sample ID:	78d6da9a-9f8c-11e6-ba18-0022191a3ba4	
Sample Name:	ELN114-2575.1	Date: 31.10.16
Sample Number:	3	
Time Base:	U3000	
Datasource Name:	LCMSCHEM03_local	
Sequence Name:	ELN114-2575.1	
Sequence Dir.	Datalerharmi11Samples\CXCR7	
Quantif. Method:	default	
Injection Volume:	2.00 ul Comment: $1.2 \mathrm{mg} / \mathrm{mL} \mathrm{EtOH}$	
Eluent A:	10.0 \% Heptane 0.05\% DEA	
Eluent B :	90.0 \% Ethanol 0.05\% DEA	
Flow:	$1.200 \mathrm{ml} / \mathrm{min}$	
Column:	Chiralpak IC $250 \times 4.6 \mathrm{~mm}$ ID, 5 um	
Serial number:	IC00CE-OC010	
Temperature:	$25.0{ }^{\circ} \mathrm{C}$	
Detection:	210 nm	

Peak No. UV_VIS_1	Ret.Time UV_VIS_1 min	Height UV_VIS_1 mAU	Rel.Area UV_VIS_1 $\%$	Area UV_VIS_1 mAU*min	Resolution UV_VIS_1	Asymmetry UV_VIS_1	Plates UV_VIS_1
Total:	7.0	355	100.0	107.276	n.a.	1.1	3463

Compound 28g:

Compound 28h:

Compound 28i:

Compound 28j:

Compound 28k:

Compound 281:

Compound 28m:

Compound 28n:

Compound 280:

Compound 29:

Compound 30:

Compound 31:

