Supporting information

Solvothermal Reaction and Piezoelectric Response of Oriented KNbO_{3} Polycrystal

Dandan Yang ${ }^{\dagger}$, Yan Wang ${ }^{\dagger}$, Lijie Li ${ }^{\dagger}$, Minggang Yao^{\dagger}, Wenxiong Zhang ${ }^{\S}$, Hongxi
Gu^{\dagger}, Sheng Zhang ${ }^{\dagger}$, Mingjin Fan †, Galhenage Asha Sewvandi ${ }^{\dagger}$, Dengwei $\mathrm{Hu}^{*}{ }^{\star} \dagger$

${ }^{\dagger}$ Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi -Tech Avenue, Baoji,Shaanxi, 721013 P. R. China.
§ Institute for Solid State Physics, The University of Tokyo, Koto, Sayo, Hyogo 679-5148, Japan
ϕ Department of Materials Science and Engineering, Faculty of Engineering, University of Moratuwa, Katubedda, Sri Lanka
*Corresponding Author
E-mail: hdwpolymer@yahoo.co.jp; Fax: +86 (0)917-356-6366; Tel: +86 (0)917-356-6055

Figure S1. XRD patterns of the specimens obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/isopropylamine mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h ,
respectively.

Figure S2. XRD patterns of the specimens obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/propylamine mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S3. XRD patterns of the specimens obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/ethyacetate mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S4. SEM images of the specimens obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/isopropylamine mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S5. SEM images of the specimens obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/propylamine mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S6. SEM images of the specimens obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/ethyacetate mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S7. EDS images of the specimens obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/ethylnediamine mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$ and (c) $12: 15$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively, (d), (e) and (f) are the element maps of (a), (b) and (c).

Figure S8. (a) and (e) TEM images of cuboid KN particles. (b-d) and (f-g) TEM images are the enlarged views of (a) and (e) images, respectively. The KN particles obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/ethylnediamine mixed solvent with volume ratios of (a) $0: 27$ and (b) $2: 25$ at $230^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S9. (A-a-b and B-a-b) HRSEM images, (A-c and B-c) TEM images, (A-d,h,j and B-d,h,j) HRTEM images, and (A-e-g,i,k and B-e-g,i,k) Fast Fourier Transform
(FFT) patterns of sliced cuboid KN particles obtained via the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/ethylnediamine mixed solvent with volume ratios of (A) $0: 27$ and (B) $2: 25$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively. The (A-d,h,j and B-d,h,j) HRTEM images are derived from the black dotted bordered rectangle in the (A-c and B-c) TEM images, respectively. The (A-e-g,i,k and B-e-g,i,k) FFT patterns are derived from the red square in the (A-d,h,j and B-d,h,j) HRTEM images, respectively.

Figure S10. (a) TEM images and (b) SAED patterns of the samples obtained by solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/ethylnediamine (12:15) at $230^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S 11 . AFM topography images of cuboid $\mathrm{K}_{2} \mathrm{Nb}_{2} \mathrm{O}_{6} \cdot \mathrm{nH}_{2} \mathrm{O}$ polycrystals.

Figure S12. Raman spectra of the specimens obtained using the solvothermal treatment of 3 mL of PHN solution in 27 mL of the water/isopropylamine mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S13. Raman spectra of the specimens obtained using the solvothermal treatment of 3 mL of PHN solution in 27 mL of the water/propylamine mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S14. Raman spectra of the specimens obtained using the solvothermal treatments of 3 mL of PHN solution in 27 mL of the water/ethyacetate mixed solvent with volume ratios of (a) $0: 27$, (b) $2: 25$, (c) $12: 15$, (d) $17: 10$ at $230{ }^{\circ} \mathrm{C}$ for 12 h , respectively.

Figure S 15 . TG profiles of $\mathrm{K}_{2} \mathrm{Nb}_{2} \mathrm{O}_{6} \cdot \mathrm{nH}_{2} \mathrm{O}$ specimen.

Figure S 16 . TG profiles of $\mathrm{K}_{4} \mathrm{Nb}_{6} \mathrm{O}_{17} \cdot \mathrm{nH}_{2} \mathrm{O}$ specimen.

In this study, values of physical properties for the mentioned solvents are derived from reference [S1], and summarized in Table S1.

Table S1 Values of physical properties for the mentioned solvents ${ }^{[51]}$

Molecular formulat	$\mathrm{p} K_{l}$	$\mathrm{p} K_{2}$	Viscosity	$\begin{gathered} D^{\mathrm{a}} \\ (\mathrm{C} \cdot \mathrm{~m}) \end{gathered}$	Surface tension	
			(mN • $\mathrm{s} \cdot \mathrm{m}-1)$		a/ (dyn/cm)	b/ [dyn/(cm $\left.\left.\cdot{ }^{\circ} \mathrm{C}\right)\right]$
$\mathrm{H}_{2} \mathrm{~N} \leadsto \mathrm{NH}_{2}$	6.85 (+2)	$9.92(+1)$	1.54	1.99	44.77	0.1398
$\sim \mathrm{NH}_{2}$	$10.568(+1)$	-	0.353	1.26	24.86	0.1243
	10.64 (+1)	-	0.36	-	19.91	0.09719
	-	-	0.455	1.81	26.29	0.1161
	-	-	1.078	1.69	24.05	0.0832

${ }^{\square} D$: dipole moment
(S1) LANGE’ S HANDBOOK OF CHEMISTRY. James G. Speight, Ph.D. Library of Congress Catalog Card Number 84-643191, ISSN 0748-4585, 1998.

