Supporting Materials for

Simultaneous Functionalization of Methane and Carbon Dioxide Mediated by Single Platinum Atomic Anions

Gaoxiang Liu^{[a]#}, Isuru R. Ariyarathna^[b], Sandra M. Ciborowski^[a], Zhaoguo Zhu^[a], Evangelos Miliordos^{[b]*}, Kit H. Bowen^{[a]*}

[a] Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218 (USA) E-mail: kbowen@jhu.edu

[b] Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849 (USA) E-mail: ezm0048@auburn.edu

Present Address: Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, Barker Hall, Berkeley, CA, 94720 (USA).

Figure S1 Photoelectron spectrum of H₃C-Pt-H⁻ and D₃C-Pt-D⁻.

Figure S2 A more complete reaction profile for the reactions among Pt^- , CH_4 , and CO_2 , showing the route where Pt^- reacts first with CO_2 then with CH_4 , and the path that involves breaking multiple C-H bonds in CH_4 .

Figure S3 Photoelectron spectrum of $[PtCO_2(CH_4)]^-$ made by reacting Pt⁻ first with CO₂ in the laser vaporization source then with CH₄ in the reaction cell.

Figure S4 A complete reaction profile for the reactions between Pt^- , CH_4 , and CO_2 , showing routes that involves the breakage of C=O bond in CO_2 .

Table S1. MRCI+Q excitation energies (eV) for the neutral counterparts of structures A, B, C, and D. The calculated vertical detachment energies to corresponding excited states are listed on the right of the MRCI+Q results

	Α	В	С	D
$\mathbf{S} = 0$	0.00/3.86	0.00/3.88	0.00/2.50	0.00/2.71
	0.22/4.08	0.14/4.02	0.88/3.38	1.54/4.25
	0.59/4.45	0.62/4.50	1.56/4.06	2.18/4.89
	0.91/4.77	0.79/4.67	1.78/4.28	2.56/5.27
		0.96/4.84	2.66/5.16	3.59/6.30
S = 1	0.00/5.27	0.00/4.02	0.66/3.46	0.00/4.02
	0.22/5.49	0.28/4.30	1.16/4.62	1.25/5.27

0.62/5.89	0.37/4.39	1.30/4.76	1.73/5.75
	0.72/4.74	2.57/6.03	2.15/6.17

Table S2. Cartesian coordinates (Å) and harmonic vibrational frequencies (cm⁻¹) for the B3LYP/aug-cc-pVTZ(C,H,O), aug-cc-pVTZ-PP(Pt) optimal structures of all intermediates. Note that the nomenclature of these structures is derived from Figure S2.

CH₂PtC(OH)₂⁻

Pt	-0.388622	-0.000033	0.000041
С	-2.381911	0.000110	-0.000187
H	-3.020001	0.893999	0.000603
Н	-3.020439	-0.893452	-0.001193
2	1.542325	0.000014	0.000003
О	2.368390	-1.079393	0.000006
О	2.368265	1.079544	-0.000141
Н	1.748685	-1.821140	-0.000110
H	1.748539	1.821243	-0.000292

$CH_2PtH_2CO_2^-$

Pt	-0.358553	-0.223487	0.067231
С	-1.514023	1.334976	-0.566371
Н	-1.437368	2.331530	-0.118394
Н	-2.290101	1.308933	-1.333873
С	1.663119	0.237549	-0.074285
0	2.515050	-0.153944	-0.819729
0	1.439817	1.046332	0.833565
Н	-1.221435	-1.225012	-0.726885
Н	0.382513	-1.557683	0.668344

CH₂PtHCOOH-

Pt	-0.379083	-0.026033	-0.000044
Н	1.947797	-1.685997	0.000077
С	-2.358863	0.160449	0.000177
Н	-2.986697	0.215104	-0.896722

Н	-2.986422	0.215538	0.897244
С	1.662977	0.185218	0.000064
0	2.218483	1.268641	0.000053
0	2.534653	-0.921846	0.000047
Н	-0.255977	-1.562473	0.000569

CH₃PtCOOH-

Pt	0.342368	-0.180624	-0.000001
Н	-1.284066	1.921480	0.000028
С	2.227109	0.719082	0.000006
Н	2.393647	1.329755	0.891754
Н	2.393633	1.329788	-0.891722
Н	2.962284	-0.099541	-0.000017
С	-1.641085	0.076497	-0.000025
0	-2.096041	1.396612	0.000000
0	-2.489749	-0.792395	0.000015

CH₃Pt(H)CO₂⁻

Pt	0.342466	-0.254052	0.042185
Н	0.017626	-1.208275	1.300527
С	1.748139	1.250024	-0.316098
Н	1.663923	2.041278	0.428869
Н	1.555698	1.670519	-1.310528
Н	2.759757	0.832402	-0.297515
С	-1.668805	0.346364	-0.036259
0	-1.884579	1.482398	0.333650
0	-2.263590	-0.619669	-0.495852

CH₄...PtCO₂-

Pt	-0.878927	-0.246202	0.001785
С	4.899077	-0.662683	0.010571
Н	5.365811	-0.318025	0.933160
Н	4.980696	-1.747774	-0.050036
Н	5.412671	-0.215350	-0.840265
Н	3.849406	-0.372903	-0.000394
С	0.578913	1.061711	-0.007127
0	0.554204	2.275090	0.010737
0	1.455766	0.157860	-0.036028

HPtOCOCH₃-

Pt	-0.849882	-0.015525	-0.019213
С	2.285606	1.360921	0.018237
Н	1.907967	1.751272	0.964268
Н	1.632391	1.750389	-0.762714
Н	3.309595	1.693082	-0.142510
Н	-2.065128	0.969088	0.234760
0	1.060049	-0.690684	0.259960
С	2.224662	-0.164409	0.028102
0	3.245497	-0.825811	-0.144112

CH₃PtOCOH-

Pt	-0.464294	-0.096563	-0.046932
С	-2.367256	0.565975	0.189529
Н	-2.810639	0.276873	1.148100
Н	-2.957730	0.084639	-0.606828
Н	-2.469154	1.648462	0.062115
0	1.536080	-0.417098	0.287944
С	2.475104	0.425354	-0.006461
0	3.674774	0.183364	-0.010804
Н	2.118528	1.443864	-0.258240

PtCO₂⁻

Pt	-0.497553	-0.037089	0.000000
0	1.479956	1.260347	0.000004
0	2.273962	-0.900597	0.000005
С	1.462963	0.002496	-0.000015

HPtCH₃⁻

Pt	0.210398	0.019524	0.000000
Н	1.485757	-0.970370	0.000000
С	-1.861084	-0.066488	0.000000
Н	-2.221063	0.975366	-0.000000
Н	-2.254617	-0.564453	0.892562
Н	-2.254617	-0.564453	-0.892562

TS1

Н	-2.144965	1.123187	-1.379407
С	-2.207085	0.438343	-0.525851
Н	-2.801700	-0.424262	-0.853123
Н	-2.774959	0.950824	0.258559
Н	0.861265	-0.927862	0.892369
0	1.459684	1.328173	0.215430
С	1.726293	0.142372	-0.096346
0	2.671515	-0.460928	-0.545307
Pt	-0.298775	-0.142874	0.095562

Т	C	2
	D	4

Pt	0.000000	0.293656	0.000000
Н	0.383554	1.835714	0.000000
С	-0.995125	2.254539	0.000000
Н	-1.600374	2.141675	0.899397
Н	-0.589182	3.272133	0.000000
Н	-1.600374	2.141675	-0.899397
С	0.398596	-1.751036	0.000000
0	1.580146	-2.098956	0.000000
0	-0.706952	-2.315719	0.000000

TS3

Pt	-0.309656	0.073689	-0.026651
Н	0.710271	1.392694	0.138874
С	-2.351144	-0.427613	0.113311
Н	-2.936247	0.155518	-0.605507
Н	-2.743463	-0.266464	1.120734
Н	-2.450778	-1.488493	-0.140379
С	1.683278	-0.253192	0.021765
0	2.036734	1.034582	0.076931
0	2.410841	-1.216598	0.017397

TS4

Pt	0.426580	-0.220396	-0.000048
Н	-1.341017	1.918313	-0.000623
С	1.515687	1.355935	0.000303
Н	2.043888	1.633551	0.915119
Н	2.045263	1.633308	-0.913759
Н	1.928971	-0.830931	0.000000
С	-1.655540	0.050756	-0.000008
0	-2.136859	1.370056	-0.000202
0	-2.502048	-0.820495	0.000353

Т	[S5]

Pt	0.402791	0.019254	-0.000018
Н	-3.188443	-0.150832	0.000095
С	2.371431	-0.170546	-0.000010
Н	2.996014	-0.212514	-0.898787
Н	2.996203	-0.212851	0.898627
С	-1.640867	-0.016707	-0.000112
0	-2.351617	-1.118331	0.000180
0	-2.516479	0.949478	-0.000147
Н	0.339893	1.548734	0.001944

TS6

Н	1.890665	-0.940799	-0.284640
С	-1.051173	1.545047	0.376854
0	-1.229045	-1.073184	0.932240
С	-1.566914	-0.287392	0.009806
0	-2.438307	-0.269573	-0.832800
Pt	0.596732	-0.019491	-0.054840
Н	-0.191268	2.003171	0.879925
Н	-1.874225	1.567937	1.090374
Н	-1.322961	2.086105	-0.523634

TS7

Pt	-0.330620	-0.097126	-0.118469
Н	0.565630	-1.019752	-1.105935
С	-2.077688	0.460098	0.716748
Н	-2.909041	0.867390	0.136425
Н	-2.430357	0.102465	1.686763
Н	-1.678581	-0.976538	0.047997
С	1.770151	0.111946	0.134636
0	1.674982	1.319808	-0.129853
0	2.585761	-0.673562	0.550729

Frequencies

CH ₂ PtC(OH) ₂ ⁻	CH ₂ PtH ₂ CO ₂ -	CH ₂ PtHCOOH-	CH ₃ PtCOOH-	CH ₃ Pt(H)CO ₂ ⁻
53.4	51.0	67.8	51.0	50.0
109.2	137.3	108.9	72.9	66.0
122.4	186.6	144.8	100.6	119.6
296.5	258.6	263.8	272.3	213.2
322.2	280.4	272.0	291.2	261.0
532.0	492.3	285.0	476.5	321.5
557.7	519.9	506.4	505.4	470.0
587.8	549.0	515.2	576.0	498.8
632.5	578.6	547.6	617.1	638.1
648.8	615.5	578.7	675.6	683.6
662.3	688.8	667.2	676.7	705.3
696.5	716.1	698.6	976.6	714.1
1039.1	725.2	718.5	1122.9	1133.5
1088.8	830.1	959.8	1247.7	1245.2
1320.7	1213.3	1235.1	1425.5	1430.8
1386.4	1389.6	1390.7	1449.0	1446.5
1394.4	1910.7	1685.8	1692.3	1839.5
2964.7	1951.5	2261.2	2945.4	1925.2
3003.2	2346.7	2985.1	3020.6	2971.6
3738.1	3002.6	3035.6	3047.7	3033.6
3746.0	3075.9	3784.5	3729.8	3082.9

CH ₄ PtCO ₂ ⁻	HPtOCOCH ₃ -	CH ₃ PtOCOH-	PtCO ₂ ⁻	HPtCH ₃ -
-4.4	66.1	66.6	228.4	195.4
10.0	89.7	86.0	322.5	425.2
14.3	103.6	111.2	596.7	479.3
64.8	258.8	141.8	737.4	669.8
126.7	296.1	172.9	1194.6	678.2
129.3	410.6	316.3	1767.0	1117.0
229.3	463.4	511.3		1421.0
324.0	602.3	641.3		1445.9
596.8	657.8	754.2		1908.7
740.9	916.6	786.2		2923.8
1194.1	1021.0	1055.7		2998.2
1316.0	1057.9	1180.7		3023.4
1355.1	1320.2	1278.4		
1355.5	1377.0	1388.5		
1561.2	1462.5	1416.6		
1561.2	1472.1	1452.3		
1762.8	1669.0	1681.3		
3010.3	2120.5	2876.5		
3106.6	3032.1	2931.8		
3106.9	3093.5	3001.5		
3126.1	3113.3	3027.9		

TS1	TS2	T83	TS4	TS5	TS6	TS7
-186.7	-788.4	-1367.7	-78.7	-1832.6	-402.6	-945.2
58.6	61.6	32.6	78.1	72.8	140.0	54.0
75.6	71.6	82.6	154.6	110.7	190.9	122.2
135.0	75.8	89.7	204.0	128.4	244.7	240.3
318.6	116.8	292.6	257.5	267.8	345.5	260.5
330.6	258.0	397.3	330.2	279.1	370.0	268.5
527.3	291.8	464.9	599.8	284.9	459.4	460.7
563.6	476.0	486.2	636.4	484.4	553.8	491.1
587.4	545.3	528.6	652.6	490.0	566.9	579.0
689.7	723.3	614.2	668.9	564.7	662.5	612.3
706.5	840.8	645.8	705.0	696.8	788.2	660.2
735.5	899.5	724.2	765.7	730.6	844.5	693.1
1159.9	1221.8	1074.1	788.1	949.4	1178.1	792.3
1217.0	1223.7	1117.7	956.6	1152.7	1195.8	849.3
1426.7	1450.6	1434.8	1261.3	1266.7	1439.1	1206.2
1431.4	1461.7	1442.7	1332.3	1350.7	1454.8	1393.7
1855.0	1665.7	1697.4	1689.6	1390.9	1772.6	1839.0
2085.2	2216.9	1768.4	1992.8	2103.6	2055.0	1962.1
2991.7	2986.1	2975.4	2998.4	2333.2	2979.6	2032.1
3040.0	3045.4	3038.4	3085.8	2994.7	3072.3	3021.7
3053.2	3101.0	3052.4	3736.3	3046.4	3142.3	3081.7