Supporting Information

Photopolymerization of zeolite/polymer based composites: towards 3D and 4D printing applications

Yijun Zhang^{1,2}, Ludovic Josien^{1,2} Jean-Pierre Salomon^{1,2,3,4}, Angélique Simon-

Masseron^{1,2*}, Jacques Lalevée^{1,2*}

¹Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France ²Université de Strasbourg, France ³Faculty of Dentistry, University of Lorraine, France. ⁴Oregon Health and Science University, Portland, Oregon, U.S.A.

*Corresponding author:

Angélique Simon-Masseron, angelique.simon-masseron@uha.fr

Jacques Lalévee, jacques.lalevee@uha.fr,

Scheme S1. Chemical structures of photoinitiators

Table S1. Details for the seven types of zeolites used as fillers in this work

Filler	Framework Type Code	Supplier	Si/Al	Na/Al	Crystal Size (av diam, µm)	Framework Density (T = Si, Al)
LTA-5A	LTA	Union Carbide	0.9	0.3	2.6	14.2 T/1000 Å ³
EMT	EMT	Self- synthesized	3.7	1.0	1.3	13.3 T/1000 Å ³
FAU1	FAU	Crossfield	2.7	1.0	0.6	14.2 T/1000 Å ³
FAU2	FAU	Zeocat	2.7	< 0.03	0.6	13.3 T/1000 Å ³
FAU-13X	FAU	Sigma- Aldrich	1.2	1.1	2.7	13.3 T/1000 Å ³
BEA1	* BEA	Clariant	88.0	-	0.3	15.3 T/1000 Å ³
BEA2	* BEA	Clariant	75.5	-	0.3	15.3 T/1000 Å ³

Figure S1. SEM images for (a) LTA-5A, (b) FAU-13X, (c) EMT, (d) FAU1, (e) FAU2, (f) BEA1 and (g)BEA2.

Figure S2. Experimental setup illustration for the homogeneous mixing of monomer, filler, photoinitiator and ethanol.

Formulation	Monomer/ %	Filler/ %	Initiator/ %	Total sample/ g	Ethanol/ g ^a
	90	9	1	2.22	I
2	<mark>79</mark>	20	1	<mark>2.53</mark>	I
8	<mark>66</mark>	33	1	<mark>3.03</mark>	I
4	<mark>49</mark>	<mark>50</mark>	I	4.04	I
5	<mark>39</mark>	<mark>60</mark>	I	<mark>5.05</mark>	I
6	32	<mark>67</mark>	1	<mark>6.12</mark>	I.
7	<mark>29</mark>	70	I	6.73	I.
9	24	75	1	8.08	0.513

 Table S2. Formulation used to prepare composites

^a: After light-curing@405 nm, ethanol was removed by heating at 50 °C for 24 h for the access to high fillers content. Therefore, the weight of ethanol was not included in the total sample weight.

Figure S3. SEM images for composites containing LTA-5A: (a) PEG-diacrylate-LTA-5A @50%, (b) PEG-diacrylate-LTA-5A @60%, (c) PEG-diacrylate-LTA-5A @67%, (d) PEG-diacrylate-LTA-5A @75%.

Figure S4. SEM images for composites containing FAU-13X: (a) PEG-diacrylate-FAU-13X@50%, (b) PEG-diacrylate-FAU-13X@60%.

Filler (%) ^a	LTA-5A	0	9.0	20.0	33.1	49.3	59.4	66.0	69.3	74.2 ^b
Т _{тах} (°С) ^с	-	422	418	417	415	416	415	415	418	413
WL1 (%) (50-350°C)	16.0	0	1.7	4.0	5.2	7.2	8.2	9.5	9.0	12.0
WZC (%)	-	0	1.4	3.2	5.3	7.9	9.5	10.6	11.1	11.9 ^b
WL2 (%) (350-480°C)	0.4	95.3	88.0	73.1	61.9	47.7	39.3	33.2	30.2	25.2
MC (%)	-	98.9	90.0	79.0	65.9	49.6	39.6	33.0	29.7	24.8 ^b

Table S3. Weight loss values highlighted by TGA for LTA-5A, PEG-diacrylate and composite materials.

^a : calculated by taking into account the amount of zeolite, monomer and PI weighed to prepare the formulation (Table S1).

^b : without taking into account of the ethanol that has evaporated after light-curing@405 nm.

^c : temperature of the maximum decomposition rate.

Figure S5. Colorimetric parameters vs. filler contents. (a) L* parameter vs. filler content; (b) b* parameter vs. filler content; (c) a* parameter vs. filler content; (d) Yw parameter vs. filler content; (e) Yb parameter vs. filler content; (f) Contrast Ratio Y parameter vs. filler content. Linear relationships are not expected.

Figure S6. (a) NOM of composites containing LTA-5A before water swelling (b) NOM of composites containing LTA-5A after water swelling, (c) NOM of composites containing LTA-5A after heating at 75°C for 4h (water removal).

Filler (%) 0 9 <mark>20</mark> <mark>33</mark> <mark>50</mark> <mark>60</mark> **67 70** 75 0 0 R_1 (%) 0 0 0 0 0 0 0 $R_2/(\%)$ 48.1 74.2 70.9 70.9 70.9 60.6 46.4 45.8 0 0 0 **R**₃ (%) 1.3 0 -3.3 2.3 3.7 0.9

Table S4. The percentual variation of the volume for the comparison of the patterns in the cycle: starting (R_1), water swelling (R_2), water removal (R_3).¹

¹: The length, width and height of the letters were measured to calculate V_1 (starting volume), V_2 (volume after water swelling) and V_3 (volume after water removal).

²: The percentual variation of the volume (R) was calculated by equation: $R_1=0$ %, $R_2 = \frac{V_2 - V_1}{V_1} \times 100$ %,

$$R_3 = \frac{V_3 - V_1}{V_1} \times 100 \%.$$

Figure S7. Water swelling property of composites containing LTA-5A (monomer: PEG-diacrylate; photoinitiator: BDMK; polymerization @405 nm).

Figure S8. (a) Photos of PEG-diacrylate-FAU-13X@60% and PEG-diacrylate-FAU-13X@60%-600°C, (b) N₂ adsorption-desorption for FAU-13X and PEG-diacrylate-FAU-13X@60%-600 °C.

Table S5. Surface areas for LTA-5A, PEG-diacrylate-LTA-5A@75%-600°C, FAU-13X and PEG-diacrylate-FAU-13X@60%-600°C.

	$S_{BET}(m^2/g)$	S _{external} (m ² /g)	S _{micro} (m ² /g)	V _{micro} (cm ³ /g)
LTA-5A-600°C	653	13	640	0.246
PEG-diacrylate-LTA- 5A@75%-600℃	626	14	612	0.237
FAU-13X 600°C	859	6	853	0.324
PEG-diacrylate-FAU-13X@60%- 600°C	834	14	820	0.311