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Experimental section
1. Elaboration of the electrodes 

A Ti(100 nm)/Au(300 nm) thin film was deposited by evaporation on an oxidized silicon 

substrate and electrochemically pretreated by cycling the potential at a scan rate of 100 mV/s 

between -0.3 and +1.7 V versus saturated calomel electrode (SCE) in 1 M H2SO4 until a stable 

voltammogram was obtained. Porous metallic current collectors were prepared using the DHBT 

technique from an optimized solution of 2 x 10-3 M of HAuCl4.3H2O in 3 M H2SO4 by applying 

5 A/cm2 for 20 min in a 3-electrode configuration. The porous Au film was then washed several 

times in de-ionized water and used as it is as current collector for subsequent deposition of 

active material. 10 mM of ruthenium nitrosyl sulfate [Ru(NO)]2(SO4)3 (Thermofischer 

Scientific) was dissolved in 100 mL of 0.025 M K2SO4 and 0.004 M H2SO4. The electrolyte 

bath was de-aerated with N2 bubbling for 20 minutes prior to electrodeposition. The solutions 

were always prepared freshly for deposition and the deposition chamber was kept covered 

during the entire duration of deposition. The pulse program was optimized to be 10 s of 

galvanostatic pulse of 7 mA/cm2 followed by rest period of 30 seconds.

2. Material characterizations

The surface morphology of the electrodes as well as EDX studies were performed by dual beam 

scanning electron microscope (SEM) on a FEI Helios 600i field emission electron microscope. 

The surface chemical composition of electrodes were estimated via X-ray photoelectron 

spectroscopy (XPS) using a VG Escalab 220i-XL instrument operating with a monochromatic 
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Al Kα X-ray source (1486.6 eV), with exception to powdered nitrosyl sulfate salt that demanded 

a polychromatic Al Kα source to minimize charging effects.

3. XPS Analysis

The processing of raw spectra acquired involved correction for the non-linear emission 

background using a Shirley function, subsequently followed by non-linear least-squares curve 

fitting of the background-subtracted spectra with a series of mixed Gaussian-Lorentzian 

functions. In certain cases, an asymmetric line-shape of Doniach Sunjic type function was also 

used, which accounts for any interaction of positive hole created by the photoelectric effect 

with the conduction electrons. The surface atomic-compositions were estimated using the 

relation,

𝐶𝑖 =

𝐴𝑖

𝑅𝑆𝐹𝑖

∑
𝐴𝑖

𝑅𝑆𝐹𝑖

where Ci is the atomic surface concentration of specie i, Ai is the corresponding core-level peak 

area, and RSFi the relative sensitivity factor. The surface-compositions were estimated using 

both Ru-3d and Ru-3p3/2 peak area after appropriate elimination of the fitted C-1s core-level 

contribution. Quantification using both Ru-3d and Ru-3p3/2 peak areas led to similar values, and 

an average was finally used as the reported estimate. Estimation of other elements included use 

of O-1s, N-1s and S-2p core-level peaks. No other corrections involving peak-shifts were 

imposed, in other words, the binding energy values reported herein reflect the exact numbers 

as they were acquired. It is important to note that the individual components in the spectra could 

not be assigned to any particular chemical state due to unavailability of a suitable reference for 

recalibration. Specifically, the C-1s edge typically appearing at ~284.8 eV is not obvious in any 

other sample with exception to RuO2(001). Neither the N-1s could be treated as a reliable 

reference without hypothesizing a stable N-1s state in both heat-treated and room-temperature 

forms. 

4. Electrochemical Measurements

The electrochemical synthesis and characterizations were performed with a VMP-3 and a VSP 

Biologic potentiostat connected to an external 10 A booster channel. For supercapacitors, three 

electrode set up consisting of Pt mesh as counter electrode, SCE as reference electrode and 
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porous RuOxNySz as working electrode was used. LSV studies were performed at 1 mV/s rate 

at 50°C. All the electrochemical characterizations for supercapacitor studies were performed in 

0.5 M H2SO4 and doped polyvinyl alcohol (PVA) for interdigitated microsupercapacitors. 1g 

of PVA was mixed in 10 mL deionized water and heated up to 85°C for 1h under vigorous 

stirring. Once the polymer is completely dissolved, 1 g H2SO4 and 0.2 g SiWa (H4SiW12O40) is 

added to the mixture and stirred under room temperature. For Li-ion battery studies, the 

electrodes (0.56 cm2) were dried to remove any moisture content and tested using Li-ion half-

cells (EL-Cell) assembled in a glove box with purified argon, with lithium foil as counter and 

reference electrodes, and glass fiber separator soaked with 1 M LiPF6 in ethylene carbonate 

(EC) / diethyl carbonate (DEC) (1:1 volume ratio). For full cell studies, the porous RuOxNySz 

electrodes as well as LiMn2O4 electrodes (Targray) were initially prelithiated w.r.t Li anodes at 

0.1C rate. 2 vol % fluroethylene carbonate (FEC) was used as an additive for full cell studies.  

For long life cycle studies, the cells were initially pre-cycled in the same potential range (0.75 

- 3.50 V vs. Li/Li+) for two cycles at 0.1C (0.1 mA/cm2) before ramping the rate.

Supplemental Figures
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Figure S1. (A) Linear sweep voltammetry (LSV) profiles showing dissolution of porous gold 

in presence of Cl- ions. (B) Comparison of LSV profiles with different Ru salts.
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Figure S2. (A) SEM image and (B) EDX spectrum of porous RuOxNySz after 4 h of deposition. 

(C), (D), (E) and (F) Elemental mapping showing conformal deposition of Ru species on porous 

gold surface. Trace contents of other elements including sulfur and oxygen are also observed, 

which might be oxidative side products from the salt precursor [Ru(NO)]2(SO4)3] utilized for 

electrodeposition.
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Figure S3. (A) XPS survey and (B), (C), (D), (E) and (F) core-level spectra of the deposited 

material showing the presence of sulfur and nitrogen.
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Figure S4. (A) XPS survey and (B), (C), (D), (E) and (F) core-level spectra of the deposited 

material after heat treatment.
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Figure S5. (A) XPS survey and (B), (C), (D), (E) and (F) core-level spectra of the nitrosyl 

sulfate salt-precursor [Ru(NO)]2(SO4)3.
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Figure S6. (A) XPS survey and (B), (C) and (D) core-level spectra of a crystalline-

RuO2 reference (RuO2(001) thin-film synthesized by PLD).
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Figure S7. EIS spectrum (100 kHz - 10 mHz) of porous RuOxNySz synthesized with different 
durations. No leakage current is observed, with a near-vertical straight line in the low-frequency 
region typical of a capacitive behaviour. Inset shows the high frequency region.
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Figure S8. Galvanostatic charge-discharge (GCD) profiles of porous RuOxNySz (3 hours 

deposition) at different currents.
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Figure S9. XRD pattern after 1h heat-treatment at 200 and 225°C of RuOxNySz (1 hour pulse 

deposition). Only the XRD peaks of the gold substrate are observed.
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Figure S10. Charge profiles and coulombic efficiency of porous RuOxNySz (3 h deposition) as 

microbattery electrode.
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Figure S11. Porous RuOxNySz electrode (3 h deposition) with Li anode using LiPF6 in EC:DEC. 

(A) EIS profile (100 kHz - 10 mHz) and corresponding electrical equivalent circuit used to 

model the system. (B) Evolution of the Nyquist plot with the cycle number. 
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Figure S12. Charge profiles at C/10 rate of porous RuOxNySz (3 h deposition) as microbattery 

electrode.

5 µm 1 µm 500 nm

a b c

Figure S13. SEM images at different magnifications of the electrode after cycling with Li 

anode with presence of dendritic network indicating robustness of the Au DHBT structure.
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Figure S7 EDX after cycling
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Figure S14. (A) SEM image and (B) EDX spectrum of porous RuOxNySz after cycling with Li 

anode. (C), (D), (E), (F), (G) and (H) Elemental mapping showing distribution of different 

elements including SEI formation.
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Figure S15. Nyquist plot of the interdigitated RuOxNySz microsupercapacitors based on 
doped PVA and doped EMIM-TFSI. Inset shows a zoom view.


