Supporting information

Table S1. The DNA sequences of all enzymes used in this study

Enzymes	Sequences
LmSP	ATGGAAATCCAGAACAAAGCTATGCTGATCACCTACGCTGACTCTCTGG
	GTAAAAACCTGAAAGACGTTCACCAGGTTCTGAAAGAAGACATCGGT
	GACGCTATCGGTGGTGTTCACCTGCTGCCGTTCTTCCCGTCTACCGGTG
	ACCGTGGTTTCGCTCCGGCTGACTACACCCGTGTTGACGCTGCTTTCGG
	TGACTGGGCTGACGTTGAAGCTCTGGGTGAAGAATACTACCTGATGTT
	CGACTTCATGATCAACCACATCTCTCGTGAATCTGTTATGTACCAGGAC
	TTCAAAAAAAACCACGACGACTCTAAATACAAAGACTTCTTCATCCGT
	TGGGAAAAATTCTGGGCTAAAGCTGGTGAAAACCGTCCGACCCAGGCT
	GACGTTGACCTGATCTACAAACGTAAAGACAAAGCTCCGACCCAGGAA
	ATCACCTTCGACGACGGTACCACCGAAAACCTGTGGAACACCTTCGGT
	GAAGAACAGATCGACATCGACGTTAACTCTGCTATCGCTAAAGAATTCA
	TCAAAACCACCCTGGAAGACATGGTTAAACACGGTGCTAACCTGATCC
	GTCTGGACGCTTTCGCTTACGCTGTTAAAAAAGTTGACACCAACGACT
	TCTTCGTTGAACCGGAAATCTGGGACACCCTGAACGAAGTTCGTGAAA
	TCCTGACCCCGCTGAAAGCTGAAATCCTGCCGGAAATCCACGAACACT
	ACTCTATCCCGAAAAAAATCAACGACCACGGTTACTTCACCTACGACTT
	CGCTCTGCCGATGACCACCCTGTACACCCTGTACTCTGGTAAAACCAAC
	CAGCTGGCTAAATGGCTGAAAATGTCTCCGATGAAACAGTTCACCACC
	CTGGACACCCACGACGGTATCGGTGTTGTTGACGCTCGTGACATCCTG
	ACCGACGACGAAATCGACTACGCTTCTGAACAGCTGTACAAAGTTGGT
	GCTAACGTTAAAAAAACCTACTCTTCTGCTTCTTACAACAACCTGGACA
	TCTACCAGATCAACTCTACCTACTACTCTGCTCTGGGTAACGACGACGC
	TGCTTACCTGCTGTCTCGTGTTTTCCAGGTTTTTCGCTCCGGGTATCCCGC
	AGATCTACTACGTTGGTCTGCTGGCTGGTGAAAACGACATCGCTCTGCT
	GGAATCTACCAAAGAAGGTCGTAACATCAACCGTCACTACTACACCCG
	TGAAGAAGTTAAATCTGAAGTTAAACGTCCGGTTGTTGCTAACCTGCT
	GAAACTGCTGTCTTGGCGTAACGAATCTCCGGCTTTCGACCTGGCTGGT

	TCTATCACCGTTGACACCCCGACCGACACCACCATCGTTGTTACCCGTC AGGACGAAAACGGTCAGAACAAAGCTGTTCTGACCGCTGACGCTGCT AACAAAACCTTCGAAATCGTTGAAAACGGTCAGACCGTTATGTCTTCT GACAACCTGACCCAGAACTAA
MaGGP	ATGCTGCTGAAAAACGCTGTTCAGCTGATCTGCTACCCGGACCGTATCG
	GTAACAACCTGAAAGACCTGTACACCGTTGTTGACACCCACCTGTCTG
	AAGCTATCGGTGGTCTGCACATCCTGCCGTTCTTCCCGTCTAACGCTGA
	CGGTGGTTTCTCTCCGCTGACCCACAAAGAAGTTGACCCGAAAGTTGG
	TACCTGGGACGACATCGAAGCTTTCACCGCTAAATACGACCTGTGCGTT
	GACCTGACCGTTAACCACATCTCTGACGAATCTCCGGAATTCACCGACT
	TCATCGCTAACGGTTTCGACTCTGAATACGCTGACCTGTTCGTTCACGT
	TGACAAATTCGGTGAAATCTCTCCGGACGACATGGCTAAAATCCACATC
	CGTAAAGAAAAAGAACCGTTCCGTGAAGTTACCCTGTCTGACGGTACC
	AAAACCCGTGTTTGGTGCACCTTCACCGAACAGCAGATCGACCTGAAC
	TACGAATCTGACCTGGCTTACCAGCTGATGGAATCTTACATCGGTTTCC
	TGACCTCTAAAGGTGTTAACCTGCTGCGTCTGGACGCTTTCGGTTACAC
	CACCAAACGTATCGGTACCTCTTGCTTCCTGGTTGAACCGGAAGTTTAC
	CAGATCCTGGACTGGGTTAACCAGGTTGCTCTGAAACACGGTGCTGAA
	TGCCTGCCGGAAGTTCACGACCACACCTCTTACCAGTACGCTATCTCTC
	GTCGTAACATGCACCCGTACGGTTTCGCTCTGCCGCCGCTGCTGCTGTA
	CTCTCTGCTGGACGCTAACTCTACCTACCTGAAAAACTGGCTGCGTATG
	TGCCCGCGTAACATGGTTACCGTTCTGGACACCCACGACGGTATCTGCA
	TCCCGGACGTTGAAGGTGTTCTGCCGGACGAAAAAATCAAAGTTCTGA
	TCGACAACATCGACGCTCGTTCTGCTGACCCGATCATGCGTCGTTCTGC
	TGCTAACATCCACTCTGTTGGTGCTATCTACCAGCTGACCTGCACCTTCT
	ACGACGCTCTGATGCAGAACGACGACGCTTACATCGCTGCTCGTGCTAT
	CCAGTTCTTCACCCCGGGTATCCCGCAGGTTTACTACGTTGGTCTGCTG
	GCTGGTTGCAACGACCACGAACTGATGGAACAGTCTGGTGAACTGCGT
	GACATCAACCGTCACTACTACACCCTGGAAGAAGTTGAACAGGACATC

	TGACCCTGCTGCACGTTGACGGTGAACCGTTCATCATGTCTGAAGA
	CTGCTTCTTTCGAACGTACCCTGGACCTGTCTCAGGGTGTTACCTCTCG
	TAAAGTTTCTCAGCGTATGAAAAACGGTGCTACCATCACCATCCACGAA
	GAAAAATTCGCTTCTTACCGTAAAAAACACGCTGTTCTGATGAAATACA
	CCGTTGAATCTGACCAGGACACCGACGCTGTTCTGGACACCGGTATCG
	ACTACGACGTTTGGTCTATCAACGGTGACCACCTGCAGGGTCACCACT
	ACTTCTCTCACCCGACCGGTGACGGTGTTACCGCTAAAACCGTTTCTTA
	CGAAGACACCGTTACCGTTGTTGAAACCTGCTCTCTGGACGCTGACGC
	TTCTGAAGAAGACTACCAGAACCCGGACGGTTCTGGTCGTACCTTCTC
	TCTGTCTCTGGAAGCTGGTAAACCGGTTACCCTGGAAAAAGCTATGATC
	ATCTACTCTTCTAACGACGTTGACAACCCGCAGGACGAAGCTCTGCTG
	GAAGCTAAACACATGCAGTCTTACGAAGAAGAAAAAGCTGCTAACCGT
	CTGGAATGGGACAACCTGTGGTCTCACTACGACGTTACCATCCAGAAC
	AACATCATCGACCAGGTTGCTCTGCGTTTCAACATCTACCACGCTATCA
	TCGCTACCCCGGTTCACAAATCTCTGCCGATCGGTGCTCGTGGTCTGTC
	TTGCCAGGCTTACCAGGGTGCTGCTTTCTGGGACCAGGAAATCTACAA
	CATGCCGATGTACCTGTACTCTAACCCGGAAATCGCTCGTAACATCCTG
	AAATACCGTCACCGTACCCTGGACGGTGCTCGTCGTAAAGCTAAACGT
	CTGGGTTACGAAGGTGCTTACTACGCTTGGATCTCTGGTAAAACCGGTG
	ACGAACTGTGCCCGGACTTCTTCTTCAAAGACGTTCTGTCTGGTCGTG
	ACATCCGTAACCACTTCAACGACTGGCAGATCCACATCTCTCCGGACAT
	CGCTTACGCTGTTAAAAAATACCACCAGGTTACCGGTGACGACGCTTTC
	ATCCGTGACTACGGTGCTGAAATGATCTTCGAAATCGCTCGTTTCCTGG
	CTTCTCACGCTGTTTACAAACCGATGCGTGGTCGTTACGAATTCATGCG
	TGTTCAGGGTCCGGACGAATACCACGAAAACGTTGACAACAACGCTTT
	CACCAACCACCAGGCTATGTTCACCCTGCAGGCTGCTGACGAACTGCT
	GCAGACCCTGGACGAAAAAACCCTGTCTGCTGTTAAAGAAAAAATCG
	GTCTGTCTGACGACGAAATCTCTCTGTGGCGTGACATGCTGGCTAACAC
	CTACGTTCCGAAACCGGACAAACACGGTATCATCGAACAGTTCGACGG

	TTACTACGACCTGGAAACCATCATCCCGGCTAAAAAAGTTACCGAACG TCTGATCAAAGAAGACGAATACTACGGTTACCCGAACGGTGTTACCGTT CGTACCCAGTGCATCAAACAGGCTGACGTTATCCAGCTGTTCGTTCTGC ACCCGCACCTGTACGACCGTAAAACCGTTGAACTGAACTACGAATTCT ACGAACCGCGTACCCTGCACTTCTCTTCTCTGTCTCCGTCTTCTTACGCT ATCGTTGCTGCTCAGATCGACAAAGTTGAAGAAGCTTACCGTAACTTCC GTAAATCTGTTATGATCGACCTGCTGAACACCAACGAAGCTGTTTCTGG TGGTACCTTCATCGGTGGTATCCACACCGCTGCTAACGGTGCTTCTTGG CAGATGGTTGTTAACGGTTTCGGTGGTCTGTCTGTTCACGGTGACGACA TCCACCTGTCTCCGCGTCTGCCGGACGCTTGGGACGGTTACACCTTCA AAGCTATCGTTAAAGGTCAGACCCTGGAAGTTGACGTTACCAAAGAAC AGATCACCATCACCAACAAATCTGAAGACCGTAAACCGCTGACCCTGC ACATCTTCGGTGAAAAATCTGTTCTGGACTCTGAACGTATCACCAAATC TCGTTAA
MpGGP	ATGCTCCTCAAAAATGCCGTTCAGCTGATCTGCTACCCGAATCGCATCG GCAACAATCTGAAGGATCTCTACACCGTGGTTGACAAGCATCTGAGCG AAGCGATCGGTGGTCTGCATATCCTCCCATTCTTCCCGAGCAACGCCGA TGGTGGTTTCAGTCCGCTGACGCACAAGGAAGTTGACCCAGACTTCGG TACGTGGGATGACATCGAGGCCTTCACGAAAAAATACGATCTGTGTGT GGATCTGACGGTGAATCACATTAGCGACGAGAGCCCAGAGTTCAAAGA CTTTATCGCGCACGGCTTTGACAGCAAATACGCCGATCTGTTTGTGCAC GTTGACAAGTTCGGCGAGATCAGTCCAGACGACATGGCGAAGATCCAT ATCCGCAAGGAGAAGGAACCATTCCGCGAAGTGACGCTGGCGGACGG CACGAAAACGCGTGTTTGGTGTACCTTCACGGAGCAGCAAATCGACCT CAACTATGAGAGCGACCAAGCCTATCGTCTCATGGAGAGTTACATCGGT TTTCTGACCAGCAAAGGCGTTAATCTGCTGCGTCTGGATGCGTTCGGCT ATACCACCAAACGCATCGGCACGAGCTGCTTCCTCGTTGAACCGGAGG TGTACCGCATTCTGGACTGGATCAACGAGGTGGCGCTGAAACACGGCG CGGAATGTCTGCCGGAAGTTCACGACCACACCAGCTACCAGTACGCGA

	TTGGCCGCCGTAATATGCACCCGTATGGCTTTGCCCTCCCGCCACTGCT GCTGTACAGCCTCCTCGACGCGAACAGCGTTTATCTGAAGAACTGGCT GCGTATGTGCCCACGCAATATGGTGACGGTTCTGGACACGCATGACGG CATCTGCATTCCAGATGTGGAAGGTGTGCTGCCGGATGAGAAGATCCG TGCGCTGATCGATAACATCGATGCCCGTAGCGCGGATCCAATTATGCGC CGTAGCGCGGCCAACATTCATAGCGTGGGCGCGATCTACCAGCTCACG TGTACCTTCTACGATGCGCTGATGCAGAACGACGACGCGTACATCGCCG CCCGCGCGATTCAGTTTTTCACGCCGGGCATCCCACAAGTGTACTATGT TGGTCTGCTGGCCGGCTGCAACAACCACGAACTGATGAAACAGAGTG GCGAGCTCCGTGATATCAACCGCCACTACTATACGCTGGACGATGTTGA GCAGCACATCCAAAAACCGGTGGTTCAGCGTCTGCTGGCGCTGATGAC GTTCCGCAGTAACTATCCGGCGTTCGACGGCCACTTTGAGCTGAACTAC AGCAACAACAGCAGCGTTGCCATGGCGTGGCGCCATGGCGACTACTAC TGCCATCTGTTCGTGGACCTCAATTTCAACACGGTGAAGATCGGCTACT ACGACCTCGATACGGCCCAGATGGAAAAGCTGGCGTGTTAA
MsGGP	ATGCTGCTGAAAAACGCGGTGCAACTCATCTGCTACCCAAACCGCATC GGCAAAGATCTGAAAGATCTGCATACCGTGGTGGAAAAGCATCTGAGC GAAGCGATCGGTGGTCTGCATATCCTCCCATTCTTCCCAAGCAACGCCG ATGGCGGTTTCAGCCCACTGACGCACAAAGAGGTGGACCCAGATTTTG GCACGTGGAACGATATCGAGGCGTTCACGCAGAAGTACGATCTGTGTG TGGATCTGACGGTGAACCACATCAGCGACGAGAGCCCGGAGTTCAAA GACTTCATCGTGAACGGCTTTGACAGCAAATACGCCGATCTGTTTGTGC ACGTTGACAAGTTCGGCGAGATCAGTCCAGACGACATGGCGAAGATCC ATATCCGCAAGGAGAAGGAGCCATTCCGCGAAGTTACGCTGGCCGATG GCACCAAAACCCGTGTGTGGTGTACCTTCACGGAGCAGCAAATCGACC TCAACTACGACGCGGATCAAGCCTACACGCTGATGGAGAGCTACATCG GTTTTCTGACCAGCAAAGGCGTTAATCTGCTGCGTCTGGATGCGTTCGG CTATACCACGAAACGTATCGGCACCAGCTGTTTTCTGGTGGAGCCAGA GGTTTACCGCATCCTCGATTGGATCAACGAAGTGGCGCTCAAGCACGG

Table S2. The conversion increased through optimization of conditions

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	LmSP:MaGGP $(\mathrm{U} / \mathrm{mL})$	Sucrose:glycerol (mM)	PBS concentration (mM)	Conversion $(\%)$
30	7.0	$5: 5$	$200: 200$	50	61
37	7.0	$5: 5$	$200: 200$	50	65
37	6.5	$5: 5$	$200: 200$	50	72
37	6.5	$10: 5$	$200: 200$	50	75
37	6.5	$10: 5$	$280: 200 / 200: 240$	50	$91 / 92$
37	6.5	$10: 5$	$200: 240$	10	98

Figure S1. (a) SDS-PAGE analysis of purified recombinant enzymes for α GG production. (b) Sequence alignment of glucosylglycerol phosphorylase from different sources. MpGGP: glucosylglycerol phosphorylase from Marinobacter psychrophilus, MsGGP: glucosylglycerol phosphorylase from Marinobacter salinus, AcGGP: glucosylglycerol phosphorylase from Azoarcus communis.

Figure S2. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of purified recombinant enzymes. Mp: glucosylglycerol phosphorylase from Marinobacter psychrophilus, Ms: glucosylglycerol phosphorylase from Marinobacter salinus, Ac: glucosylglycerol phosphorylase from Azoarcus communis.

Figure S3. HPLC analysis of the in vitro cascade reactions to produce $\alpha \mathrm{GG}$ using sucrose/ maltose and glycerol as substrate. The proof-of-concept cascade reaction to produce $\alpha \mathrm{GG}$ with sucrose and glycerol as substrates was conducted in 50 mM PBS (pH 7.0), 200 mM glycerol, 200 mM sucrose, as well as $5 \mathrm{U} / \mathrm{mLL} \mathrm{LmSP}$ and $5 \mathrm{U} / \mathrm{mL}$ MaGGP. The reaction medium was conducted at $30{ }^{\circ} \mathrm{C}$ for 12 h . The proof-of-concept cascade reaction to produce $\alpha \mathrm{GG}$ with maltose and glycerol as substrates was conducted in 50 mM PBS (pH 6.5), 200 mM glycerol, 200 mM maltose, as well as $5 \mathrm{U} / \mathrm{mL}$ LaMP and $5 \mathrm{U} / \mathrm{mL}$ BsGGP. The reaction medium was conducted at $30{ }^{\circ} \mathrm{C}$ for 12 h.

Figure S4. Time courses of α GG production under 5 mM and 10 mM PBS respectively. The reaction containing $10 \mathrm{U} / \mathrm{mL} \mathrm{LmSP}, 5 \mathrm{U} / \mathrm{mL}$ MaGGP, 200 mM sucrose and 240 mM glycerol was conducted at $37^{\circ} \mathrm{C}$ in PBS buffer (pH 6.5).

Figure S5. The HPLC chromatograms for product mixture, purified and standard $\alpha \mathrm{GG}$. They were determined by Agilent HPLC equipped with a Sugar-Pak column and a refractive index detector. Different samples were applied to this HPLC with a mobile phase of deionized water at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$ and the column was operated at $80{ }^{\circ} \mathrm{C}$.

Figure S6. Thermal stability of LmSP (a) and MaGGP (b) at $37{ }^{\circ} \mathrm{C}$.
The enzymes were treated at $37{ }^{\circ} \mathrm{C}$ for a certain period and then determined the residual activity. (a) The activity of LmSP was measured at $30{ }^{\circ} \mathrm{C}$ in 50 mM PBS buffer containing 50 mM sucrose for 10 min and stopped at boiling temperature for 10 min . One unit of enzyme activity was defined as the enzyme amount catalyzing the consumption of $1 \mu \mathrm{~mol}$ sucrose per min. (b) The activity of MaGGP was measured at $30{ }^{\circ} \mathrm{C}$ in 50 mM PBS buffer containing $50 \mathrm{mM} \alpha-\mathrm{G} 1 \mathrm{P}$ and 50 mM glycerol for 10 min and stopped at boiling temperature for 10 min . One unit of enzyme activity was defined as the enzyme amount catalyzing the consumption of $1 \mu \mathrm{~mol}$ glycerol per min.

Figure S7. The HPLC profiles and standard curve of sucrose.
Sucrose was determined by the HPLC system (Agilent 1200 series) equipped with a refractive index detector and fitted with chromatographic column (Sugar-Pak ${ }^{\mathrm{TM}}, 6.5 \times 300 \mathrm{~mm}$). A mobile phase of deionized water was used at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$ and the column was operated at $80^{\circ} \mathrm{C}$. The retention time of sucrose is 10.7 min .

Figure S8. The HPLC profiles and standard curve of maltose.
Maltose was determined by the HPLC system (Agilent 1200 series) equipped with a refractive index detector and fitted with chromatographic column (Sugar-Pak ${ }^{\mathrm{TM}}, 6.5 \times 300 \mathrm{~mm}$). A mobile phase of deionized water was used at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$ and the column was operated at $80{ }^{\circ} \mathrm{C}$. The retention time of maltose is 10.3 min .

Figure S9. The HPLC profiles and standard curve of fructose.
Fructose was determined by the HPLC system (Agilent 1200 series) equipped with a refractive index detector and fitted with chromatographic column (Sugar-Pak ${ }^{\mathrm{TM}}, 6.5 \times 300 \mathrm{~mm}$). A mobile phase of deionized water was used at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$ and the column was operated at $80^{\circ} \mathrm{C}$. The retention time of fructose is 16.5 min .

Figure S10. The HPLC profiles and standard curve of glucose.
Glucose was determined by the HPLC system (Agilent 1200 series) equipped with a refractive index detector and fitted with chromatographic column (Sugar-Pak ${ }^{\mathrm{TM}}, 6.5 \times 300 \mathrm{~mm}$). A mobile phase of deionized water was used at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$ and the column was operated at $80^{\circ} \mathrm{C}$. The retention time of glucose is 12.7 min .

Figure S11. The HPLC profiles and standard curve of glycerol.
Glycerol was determined by the HPLC system (Agilent 1200 series) equipped with a refractive index detector and fitted with chromatographic column (Sugar-Pak ${ }^{\mathrm{TM}}, 6.5 \times 300 \mathrm{~mm}$). A mobile phase of deionized water was used at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$ and the column was operated at $80^{\circ} \mathrm{C}$. The retention time of glycerol is 18.0 min .

Figure S12. The HPLC profiles and standard curve of $\alpha G G$.
α GG was determined by the HPLC system (Agilent 1200 series) equipped with a refractive index detector and fitted with chromatographic column (Sugar-Pak ${ }^{\mathrm{TM}}, 6.5 \times 300 \mathrm{~mm}$). A mobile phase of deionized water was used at a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$ and the column was operated at $80^{\circ} \mathrm{C}$. The retention time of $\alpha \mathrm{GG}$ is 12.2 min .

Figure S13. The time course for enzyme activity determination of MaGGP
To determinate the enzyme activity of MaGGP, the reaction containing $50 \mathrm{mM} \alpha-\mathrm{G} 1 \mathrm{P}$ and glycerol was performed at $30^{\circ} \mathrm{C}$ in 50 mM PBS buffer (pH 7.0) for 50 min .

