Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes

Xin Xu,^{1,2} Xumin Huang,^{1,2} Yixin Chang,^{1,2} Ye Yu,^{1,2} Jiacheng Zhao,^{1,2} Naatasha Isahak,¹ Jisi Teng,¹ Ruirui Qiao,^{1,2} Hui Peng,^{1,2} Chun-Xia Zhao,¹ Thomas P. Davis,^{1,2} Changkui Fu,^{1,2*} Andrew K. Whittaker^{1,2*}

¹Australian Institute for Bioengineering and Nanotechnology, The University of Queensland,

St Lucia, Queensland, 4072, Australia

²ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University

of Queensland, St Lucia, Queensland, 4072, Australia

Email: <u>changkui.fu@uq.edu.au;</u> <u>a.whittaker@uq.edu.au</u>

Entry	Monomer	DP	Conversion $(\%)^a$	$M_{ m n,SEC}$	$M_{ m n,theo}^d$	Dispersity (D)
1	MSEA	200	98	23700^{b}	31990	1.39 ^b
2	MSEA	500	95	76100^{b}	77190	1.50^{b}
3	MSEA	1000	92	100000^{b}	149280	1.78^{b}
4	OEGA	200	100	10400 ^c	96240	1.18 ^c
5	OEGA	500	100	19100 ^c	240240	1.23 ^c
6	OEGA	1000	100	41800 ^c	480240	1.33 ^c

Table S1. Molecular characteristics of the polymers including target DP, conversion, molecular weight, and dispersity for surface-initiated PET-RAFT polymerization and free polymers.

Note: ^{*a*} determined by ¹H NMR by comparing the integral of protons of the vinyl group and methylene adjacent to the ester group of monomers before and after polymerization; ^{*b*} determined by SEC using DMAC as eluent; ^{*c*} determined by SEC using THF as eluent; ^{*d*} calculated by the equation $M_{n,theo} = DP \times Conversion \times M_{w, monomer} + M_{w, BTPA}$.

Figure S1. Deconvolution of S 2p, O 1s and C 1s spectra of glass-PMSEA500.

Figure S2. Deconvolution of C 1s and O 1s spectra of glass-POEGA200.

Table S2. Apparent chemical surface composition in atomic percentage (At.%) of the glass surface substrates.

Sample	C 1s	O 1s	S 2p	Si 2p	N 1s
Bare glass	12.16	68.69	-	19.15	-
Glass-BTPA	19.86	50.40	2.37	23.09	3.38
Glass-PMSEA	58.81	31.30	7.27	2.62	-
Glass-POEGA	63.96	33.40	-	2.65	-

Supporting information

Figure S3. Protein adsorption onto different surfaces of the glass slips characterized by fluorescence microscopy. The scale bar is 100 μ m. The slips were incubated with 10 mg/mL of lysozyme-FITC solution for 24 h before characterization.

Figure S4. Protein adsorption onto different surfaces of the glass slips characterized by fluorescence microscopy. The scale bar is $100 \ \mu m$. The slips were incubated with $10 \ mg/mL$ of BSA-FITC solution for 24 h before characterization.

Figure S5. The changes in the frequency (F) and dissipation (D) of the (a) POEGA200-, (b) POEGA500-, and (c) POEGA1000-modifed sensors for the 3rd, 5th, and 7th overtone measured by the QCM-D after treatment of lysozyme (2 mg/mL) in PBS at 22 min (1320 sec).