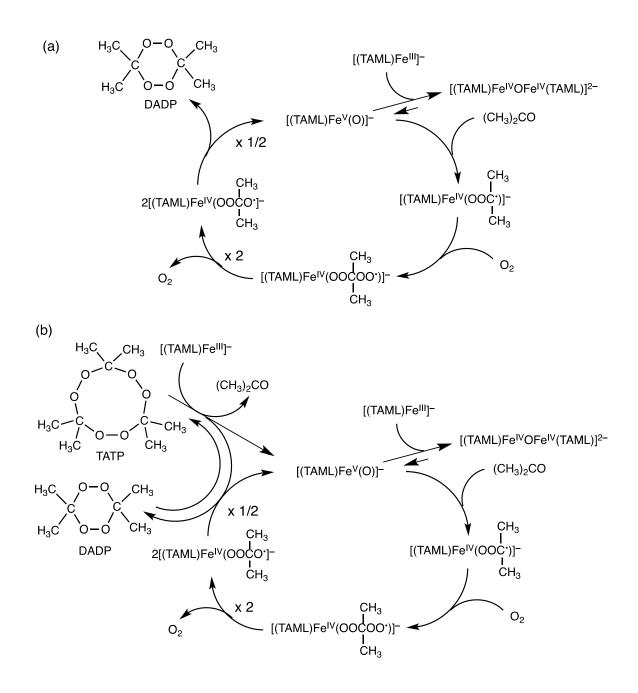
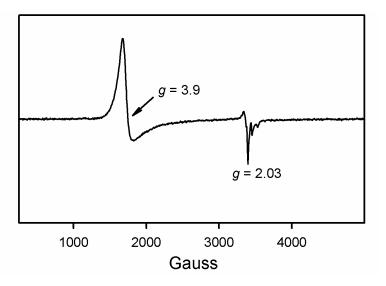
Supporting Information

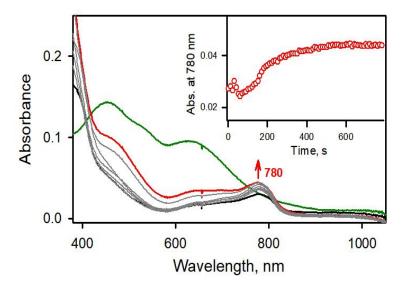

Catalytic Four-Electron Reduction of Dioxygen by Ferrocene Derivatives with a Nonheme Iron(III) TAML Complex


Xiaoyan Lu,[†] Yong-Min Lee,[†] Muniyandi Sankaralingam,[†] Shunichi Fukuzumi,^{*,†,‡} and Wonwoo Nam^{*,†}

[†] Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea [‡] Faculty School of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan


* E-mails: fukuzumi@chem.eng.osaka-u.ac.jp; wwnam@ewha.ac.kr

Scheme S1. (a) Autocatalytic Mechanism for the Formation of $[(TAML)Fe^{V}(O)]^{-}$ and DADP in Acetone and (b) Autocatalytic Mechanism for the Formation of $[(TAML)Fe^{V}(O)]^{-}$ via TATP in Acetone (Taken from reference 14 in Text)



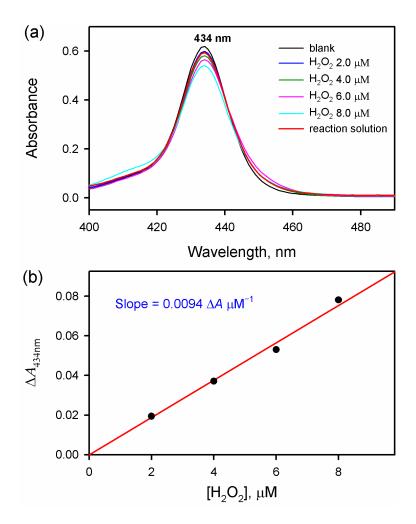
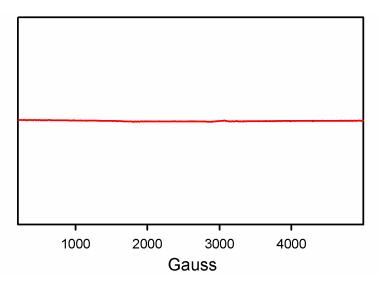
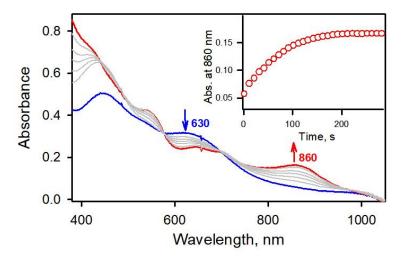
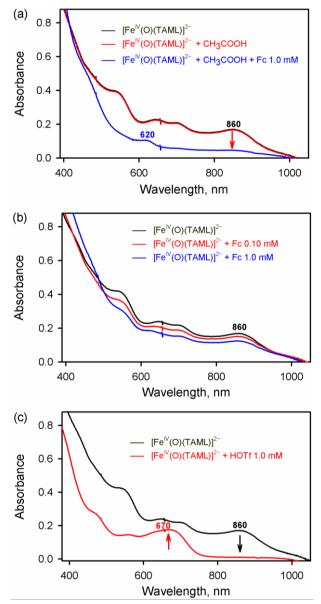
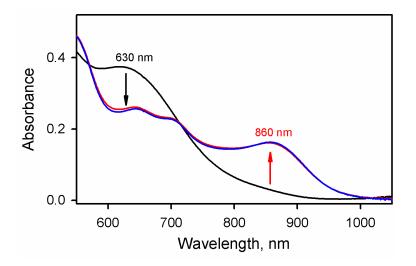

Figure S1. UV-visible spectral changes observed upon addition of (a) trifluoroacetic acid (TFA) (0.50 mM), (b) triflic acid (HOTf) (0.50 mM) and (c) acetic acid (CH₃COOH) (0.50 mM) to an aerated acetone solution of **2** (0.025 mM) at 25 °C.

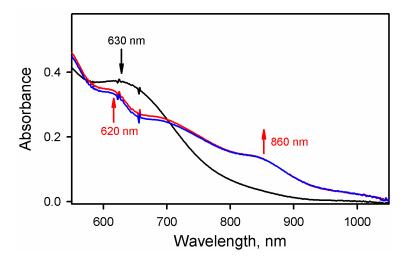
Figure S2. X-band CW-EPR spectrum of the reaction solution obtained after the four-electron reduction of O₂ by Me₁₀Fc (2.0 mM) with **2** (0.20 mM) in the presence of CH₃COOH (6.0 mM) in aerated acetone at 25 °C. The spectrum was recorded at 5 K. The signals with the *g* values at 3.9 and 2.03 are assigned due to S = 3/2 [Fe^{III}(TAML)]⁻.

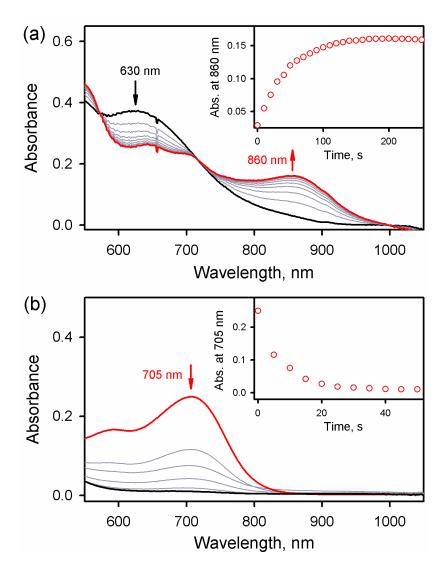
Figure S3. UV-vis spectral changes observed in the four-electron reduction of O_2 by $Me_{10}Fc$ (0.25 mM) with **2** (0.025 mM; green line) in the absence of CH₃COOH in aerated acetone at 25 °C.

Figure S4. (a) Spectroscopic titration by Ti-TPyP for the H₂O₂ solutions (0 – 8.0 μ M) and the reaction solution, which was obtained after reduction of O₂ by Me₁₀Fc (0.25 mM) with **2** (0.025 mM) in the presence of CH₃COOH (0.75 mM) in aerated acetone at 25 °C. A decrease in the absorbance at 434 nm from the blank value is expected if the sample contains H₂O₂. H₂O₂ concentration in the sample is related to $\Delta A_{434 \text{ nm}} = A_{\text{blank}} - A_{\text{sample}}$. (b) Plot of $\Delta A_{434 \text{ nm}}$ against concentration of H₂O₂ as a standard curve. The concentration of H₂O₂ in the reaction solution was determined to be 2.7 μ M by the equation, $\Delta A_{434 \text{ nm}} = (0.0094 \Delta A_{434 \text{ nm}} \mu M^{-1}) \times [H_2O_2]$.


Figure S5. X-band CW-EPR spectrum of the complete reaction solution obtained in the reaction of 2 (0.20 mM) and BrFc (4.0 mM) in the presence of CH₃COOH (4.0 mM) in aerated acetone at 25 °C. The spectrum was recorded at 5 K.


Figure S6. UV-vis spectral changes obtained in the reduction of **2** (0.10 mM; blue line) by BrFc (1.0 mM) in the absence of acid in aerated acetone at 25 °C. Inset shows the time profile of absorbance change at 860 nm due to $[(TAML)Fe^{IV}(O)]^{2-}$.


Figure S7. (a) UV-vis spectral change from black line to red line observed upon addition of CH₃COOH (300 mM) to a solution of $[(TAML)Fe^{IV}(O)]^{2-}$ (0.10 mM; black line), which was generated by reacting $[(TAML)Fe^{V}(O)]^{-}$ (0.10 mM) and BrFc (1.0 mM) in the absence of acid at 25 °C. For the full formation of $[(TAML)Fe^{IV}(O)]^{2-}$, 10 equiv of BrFc (1.0 mM) was used. The blue line was formed right away upon addition of Fc (1.0 mM), which is a stronger reductant than BrFc, to a solution containing $[(TAML)Fe^{IV}(O)]^{2-}$ with CH₃COOH at 25 °C. The formation at 620 nm is due to Fc⁺. (b) UV-vis spectral changes observed upon addition of Fc [0.10 (red line) and 1.0 mM (blue line)] to a solution of $[(TAML)Fe^{IV}(O)]^{2-}$ (0.10 mM; black line) in the absence of acid at 25 °C. (c) UV-vis spectral changes observed upon addition of HOTf (1.0 mM) to a solution of $[(TAML)Fe^{IV}(O)]^{2-}$ (0.10 mM; black line) at 25 °C, showing further reaction of $[(TAML)Fe^{IV}(O)]^{2-}$ with residual BrFc to produce Fe^{III} species and BrFc⁺, because 10 equiv of BrFc (1.0 mM) was used for the full formation of $[(TAML)Fe^{IV}(O)]^{2-}$. The formation at 670 nm is due to BrFc⁺.

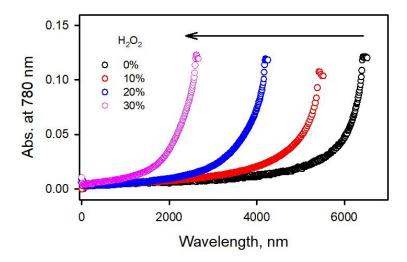

Figure S8. UV-vis spectral changes observed in the reduction of **2** (0.10 mM; black line) by BrFc [0.50 mM (red line) and 1.0 mM (blue line)] in the presence of CH₃COOH (0.20 mM) in aerated acetone at 25 °C. The formation at 860 nm is due to $[(TAML)Fe^{IV}(O)]^{2-}$.

Figure S9. UV-vis spectral changes observed in the reduction of **2** (0.10 mM, black line) by Fc [0.10 mM (red line) and 1.0 mM (blue line)] in the presence of CH₃COOH (0.20 mM) in aerated acetone at 25 °C. One equiv of Fc was enough to complete electron transfer from Fc to **2**. The formation at 620 and 860 nm are due to Fc⁺ and [(TAML)Fe^{IV}(O)]^{2–}, respectively.

Figure S10. (a) UV-vis spectral changes observed in the reduction of **2** (0.10 mM; black line) by Br_2Fc (1.0 mM) in the presence of CH₃COOH (0.20 mM) in aerated acetone at 25 °C. Inset shows the time profile of absorbance at 860 nm due to [(TAML)Fe^{IV}(O)]^{2–}. (b) UV-vis spectral changes of Br_2Fc^+ showing the natural decay in acetone at 25 °C. Br_2Fc^+ was produced by reacting Br_2Fc (2.0 mM) with cerium(IV) ammonium nitrate (CAN) in acetone at 25 °C.

Figure S11. Time profiles of absorbance changes at 780 nm due to $Me_{10}Fc^+$ observed in the reduction of O₂ by $Me_{10}Fc$ (0.25 mM) with **1** (0.025 mM) in the presence of CH₃COOH (0.75 mM) and catalytic amount of H₂O₂ (0 – 30% based on **1** used) in aerated acetone at 25 °C.