Supporting Information

A Guanidinium-based Mn⁴⁺-doped Red-emitting Hybrid Phosphor with High Stability

Hong Ming, Yifei Zhao, Yayun Zhou*, Shuai Zhang, Yuanjing Wang, Enhai Song, Zhiguo Xia, and Qinyuan Zhang* State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of

Technology, Guangzhou 510641, China

* Corresponding author E-mail: zhou-yayun@foxmail.com, qyzhang@scut.edu.cn

1. Figures

Figure S1. Schematic diagram for the synthesis of organic-inorganic hybrid red phosphor $GA_3AlF_6:Mn^{4+}$ and digital photographs of the obtained powders under (a) the natural light and (b) the blue light irradiation, respectively.

Figure S3. XRD patterns of Cr³⁺-doped [C(NH₂)₃]₃AlF₆:8%Cr³⁺ (a), [C(NH₂)₃]₃GaF₆:8%Cr³⁺ (b), [C(NH₂)₃]₂SiF₆:8%Cr³⁺ (c), [C(NH₂)₃]₂GeF₆:8%Cr³⁺ (d), and [C(NH₂)₃]₂TiF₆:8%Cr³⁺ (e).

Figure S4. (a) PLE and PL spectra, and (b) PL decay curve of Mn^{4+} -doped $[C(NH_2)_3]_3GaF_6:6\%Mn^{4+}$; (c) PLE and PL spectra, and (d) PL decay curve of Mn^{4+} -doped $[C(NH_2)_3]_2SiF_6:6\%Mn^{4+}$; (e) PLE and PL spectra, and (f) PL decay curve of Mn^{4+} -doped $[C(NH_2)_3]_2GeF_6:6\%Mn^{4+}$; (g) PLE and PL spectra, and (h) PL decay curve of Mn^{4+} -doped $[C(NH_2)_3]_2GeF_6:6\%Mn^{4+}$; (g) PLE and PL spectra, and (h) PL decay curve of Mn^{4+} -doped $[C(NH_2)_3]_2TiF_6:6\%Mn^{4+}$.

Figure S5. (a) PLE and PL spectra, and (b) PL decay curve of Eu^{3+} -doped $[C(NH_2)_3]_3AlF_6:4\%Eu^{3+}$; (c) PLE and PL spectra, and (d) PL decay curve of Eu^{3+} -doped $[C(NH_2)_3]_3GaF_6:4\%Eu^{3+}$.

Figure S6. (a) PLE and PL spectra, and (b) PL decay curve of Cr^{3+} -doped $[C(NH_2)_3]_3AlF_6:8\%Cr^{3+}$; (c) PLE and PL spectra, and (d) PL decay curve of Cr^{3+} -doped $[C(NH_2)_3]_3GaF_6:8\%Cr^{3+}$.

Figure S7. (a) PLE and PL spectra, and (b) PL decay curve of Cr^{3+} -doped $[C(NH_2)_3]_2SiF_6:8\%Cr^{3+}$; (c) PLE and PL spectra, and (d) PL decay curve of Cr^{3+} -doped $[C(NH_2)_3]_2GeF_6:8\%Cr^{3+}$; (e) PLE and PL spectra, and (f) PL decay curve of Cr^{3+} -doped $[C(NH_2)_3]_2TiF_6:8\%Cr^{3+}$.

Figure S8. SEM image and the corresponding EDS spectrum of GA₃AlF₆:Mn⁴⁺.

Figure S9. Three possible Mn⁴⁺-doped structural models after structure optimization based on DFT: (a) Mn⁴⁺ substituting Al-site (Mn_{Al}), and simultaneously producing an adjacent V'_{GA} defect; (b) Mn⁴⁺ substituting Al-site (Mn_{Al}) while a distant F'_i defect was produced simultaneously; and (c) Mn⁴⁺ occupying Al-site (Mn_{Al}) with the appearance of a distant V'_{GA} at the mean time.

Figure S10. PL spectra of $GA_3AlF_6:2.43\%Mn^{4+}$ and reference sample measured using an integrating sphere for QE.

Figure S11. The relative PL intensity changes of commercial KSF phosphor and GA₃AlF₆:Mn⁴⁺ hybrid phosphor immersed in water for 10 min.

Figure S12. The luminous efficiency change curve of continuously lighting the pc-WLED device for 24 h.

2. Tables

Table S1. Schemes of different molar ratios of Al(OH)C₄H₆O₄ to K₂MnF₆ for the synthesis of organic-inorganic hybrid red phosphor GA₃AlF₆:Mn⁴⁺ and the actual doping amount of Mn⁴⁺ suggested by the ICP-OES results.

samples	Al : Mn (Molar ratio)	actual doping amount of Mn ⁴⁺ (mol%)		
1	100 : 1	0.68		
2	100 : 3	1.66		
3	100 : 6	2.43		
4	100 : 9	4.53		
5	100 : 12	6.65		
6	100 : 15	7.41		

Formula	GA ₃ AlF ₆		
T/K	298		
symmetry	cubic		
space group	Pa-3		
a, b, c/Å	13.9723(8)		
α , β , γ /degree	90		
Volume/Å ³	2727.7912(7)		
Z	8		
2θ-interval/degree	5-90		
Rwp	14.75		
Rp	11.03		
gof	2.88		

Table S2. Rietveld refinement parameters of X-ray diffraction profiles of GA_3AlF_6 . The numbers in parentheses are the estimated standard deviations of the last significant figure.

 B_{iso} (Å²) Atom Site Occ. у \boldsymbol{Z} х 0 0 0.5 1.0000(0)0.3145(0) Al1 4b 1.0000(0) Al2 4a 0 0.5 0.5 0.3145(0)F1 24d 0.0300(1)0.6245(9)0.0233(3)1.0000(0) 0.1818(0) F2 24d 0.0184(2)0.6247(7)0.4758(5) 1.0000(0)0.1818(0) С 24d 0.7740(2)0.7653(3) 0.5157(8) 1.0000(0)1.9987(0) 24d N1 0.8656(7) 0.7508(7) 0.5135(7)1.0000(0)1.9990(0) N2 24d 0.7175(2)0.8366(7) 0.5474(0)1.0000(0)1.9990(0) N3 24d 0.7195(2) 0.6683(2) 0.5294(3)1.0000(0)1.9990(0) H1 24d 0.8930(0) 0.8020(0) 0.5310(0)1.0000(0) 0.8548(0)24d 0.8920(0) 0.6930(0) 1.0000(0) H2 0.5180(0)0.8548(0)

0.8350(0)

0.8790(0)

0.6680(0)

0.6230(0)

0.5420(0)

0.5460(0)

0.5160(0)

0.5060(0)

1.0000(0)

1.0000(0)

1.0000(0)

1.0000(0)

0.8548(0)

0.8548(0)

0.8548(0)

0.8548(0)

H3

H4

H5

H6

24d

24d

24d

24d

0.6610(0)

0.7500(0)

0.6690(0)

0.7680(0)

Table S3. Structural parameters of GA_3AlF_6 obtained from the Rietveld refinement of X-ray diffraction at room temperature. The numbers in parentheses are the estimated standard deviations of the last significant figure.

Phospl	OOT		Color		
Green	Red	(K)	LE (lm/W)	gamut	Ref.
				(% NSTC)	
β -sialon:Eu ²⁺	CaAlSiN ₃ :Eu ²⁺	8620	38 (20 mA)	82.1	1
YAG:Ce ³⁺		8000	105 (60 mA)	67.9	2
YAG:Ce ³⁺		4950	59 (20 mA)	68.3	1
β -sialon:Eu ²⁺	$K_2SiF_6:Mn^{4+}$	8611	94 (120 mA)	85.9	3
0 -:-1	$K_2NbF_7:Mn^{4+}$	11338	94.68 (120	86.7	4
p-staton:Eu ²			mA)		
CsPbBr ₃ QDs	$Na_2WO_2F_4:Mn^{4+}$	12123	—(120 mA)	107.1	5
β -sialon:Eu ²⁺	$Cs_2SiF_6:Mn^{4+}$	6880	133 (20 mA)	84.7	6
β -sialon:Eu ²⁺	K ₂ NaScF ₆ :Mn ⁴⁺	5986	67.65 (20 mA)	127.3	7
RbLi(Li ₃ SiO ₄) ₂ :Eu ²⁺	$K_2SiF_6:Mn^{4+}$	6221	97.28 (20 mA)	107	8
Sr_2SiO_4 : Eu^{2+}	CaAlSiN ₃ :Eu ²⁺	8330	103 (60 mA)	74.7	2
$Sr_2Ga_2S_4{:}Eu^{2+}$	CaAlSiN ₃ :Eu ²⁺	8200	105 (60 mA)	86.4	2
$Ba_{0.75}Al_{11}O_{17.25}:Mn^2 \\ +$	$K_2SiF_6:Mn^{4+}$	6645	— (20 mA)	107.3	9
$MgAl_2O_4:Mn^{2+}$	$K_2SiF_6:Mn^{4+}$	10342	56.32 (20 mA)	116	10
β -sialon:Eu ²⁺	$Cs_2MnF_6:Si^{4+}$	7856	26.00 (20 mA)	122.3	11
β -sialon:Eu ²⁺	GA ₃ AlF ₆ :Mn ⁴⁺	6839	37.29 (20 mA)	108.3	This
					work

Table S4. Photoelectric properties of pc-WLEDs and their color gamut in the CIE 1931 color space.

References:

(1) Xie, R. J.; Hirosaki, N.; Takeda, T., Wide Color Gamut Backlight for Liquid Crystal Displays Using Three-Band Phosphor-Converted White Light-Emitting Diodes. *Appl Phys Express* **2009**, *2* (2), 022401.

(2) Oh, J. H.; Kang, H.; Ko, M.; Do, Y. R., Analysis of Wide Color Gamut of Green/Red Bilayered Freestanding Phosphor Film-Capped White LEDs for LCD Backlight. *Opt. Express*

2015, *23* (15), A791-804.

(3) Wang, L.; Wang, X. J.; Kohsei, T.; Yoshimura, K. I.; Izumi, M.; Hirosaki, N.; Xie, R. J., Highly Efficient Narrow-Band Green and Red Phosphors Enabling Wider Color-Gamut LED Backlight for More Brilliant Displays. *Opt. Express* **2015**, *23* (22), 28707-28717.

(4) Lin, H.; Hu, T.; Huang, Q. M.; Cheng, Y.; Wang, B.; Xu, J.; Wang, J. M.; Wang, Y. S., Non-Rare-Earth K_2XF_7 :Mn⁴⁺ (X = Ta, Nb): A Highly-Efficient Narrow-Band Red Phosphor Enabling the Application in Wide-Color-Gamut LCD. *Laser Photonics Rev.* **2017**, *11* (6), 1700148.

(5) Hu, T.; Lin, H.; Cheng, Y.; Huang, Q.; Xu, J.; Gao, Y.; Wang, J.; Wang, Y., A Highly-Distorted Octahedron with a C_{2v} Group Symmetry Inducing an Ultra-Intense Zero Phonon Line in Mn⁴⁺-Activated Oxyfluoride Na₂WO₂F₄. *J. Mater. Chem. C* **2017**, *5* (40), 10524-10532.

(6) Liu, Y.; Zhou, Z.; Huang, L.; Brik, M. G.; Si, S. C.; Lin, L. T.; Xuan, T. T.; Liang, H. B.; Qiu, J. B.; Wang, J., High-Performance and Moisture- Resistant Red-Emitting Cs₂SiF₆:Mn⁴⁺ for High-Brightness LED Backlighting. *J. Mater. Chem. C* **2019**, *7* (8), 2401-2407.

(7) Ming, H.; Liu, L. L.; He, S. A.; Peng, J. Q.; Du, F.; Fu, J. X.; Yang, F. L.; Ye, X. Y., An Ultra-High Yield of Spherical $K_2NaScF_6:Mn^{4+}$ Red Phosphor and Its Application in Ultra-Wide Color Gamut Liquid Crystal Displays. *J. Mater. Chem. C* **2019**, 7 (24), 7237-7248.

(8) Zhao, M.; Liao, H. X.; Ning, L. X.; Zhang, Q. Y.; Liu, Q. L.; Xia, Z. G., Next-Generation Narrow-Band Green-Emitting RbLi(Li₃SiO₄)₂ :Eu²⁺ Phosphor for Backlight Display Application. *Adv. Mater.* **2018**, *30* (38), e1802489.

(9) Hu, J. Q.; Song, E. H.; Zhou, Y. Y.; Zhang, S. L.; Ye, S.; Xia, Z. G.; Zhang, Q. Y., Non-Stoichiometric Defect-Controlled Reduction toward Mixed-Valence Mn-Doped Hexaaluminates and Their Optical Applications. *J. Mater. Chem. C* **2019**, *7* (19), 5716-5723.

(10) Song, E. H.; Zhou, Y. Y.; Wei, Y.; Han, X. X.; Tao, Z. R.; Qiu, R. L.; Xia, Z. G.; Zhang, Q. Y., A Thermally Stable Narrow-Band Green-Emitting Phosphor MgAl₂O₄:Mn²⁺ for Wide Color Gamut Backlight Display Application. *J. Mater. Chem. C* 2019, *7* (27), 8192-8198.

(11) Zhang, J. F.; Liu, L. L.; He, S. A.; Peng, J. Q.; Du, F.; Yang, F. L.; Ye, X. Y., Cs_2MnF_6 Red Phosphor with Ultrahigh Absorption Efficiency. *Inorg. Chem.* **2019**, *58* (22), 15207-15215.