Supporting Information

Ultrasensitive detection platform of disease biomarkers based on recombinase polymerase amplification with Hsandwich aptamer

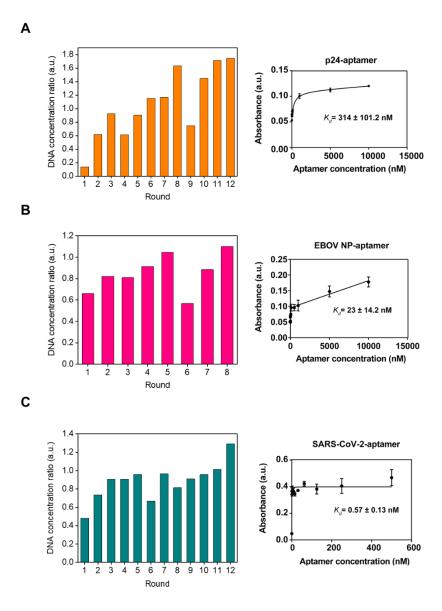
Juyoung Kang, Hyungjun Jang, Gyuho Yeom and Min-Gon Kim*

Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea

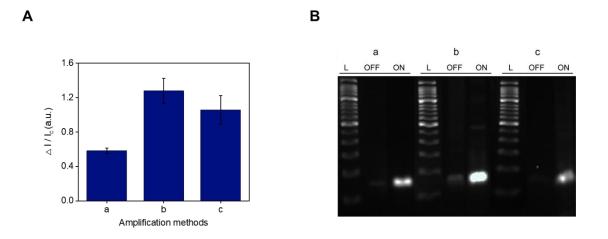
* Corresponding author.

M.-G. Kim: Tel: +82-62-715-3330, Fax: +82-62-715-3419, E-mail address: mkim@gist.ac.kr

Contents


1. K_d values of the selected aptamer candidates (Table S1)	· S3
2. Comparison of detection sensitivity of various immunoassays (Table S2)	S4
3. Elution profile according to SELEX round (Figure S1)	S5
4. Intercalating dye efficiency under various amplification conditions (Figure	
5. Gel shift images for the detection of amplified aptamers using the H-sandwich RPA (Figure	
6. Detection efficiency in clinical samples according to commercialized kits (Figure	

Target	Length (bp)	<i>K</i> _d value (nM)
p24_apt1*	82	314 ± 101.2
p24_apt2	82	456 ± 157.2
Ebola_apt1	85	367 ± 119
Ebola_apt2	85	1249 ± 529.8
Ebola_apt3*	85	23 ± 14.2
SARS-CoV-2_apt1	76	0.39 ± 0.08
SARS-CoV-2_apt2*	76	0.57 ± 0.13
SARS-CoV-2_apt3	76	2.32 ± 0.48
SARS-CoV-2_apt4	76	0.8 ± 0.13
SARS-CoV-2_apt5	76	0.66 ± 0.16


Table S1. K_d values of the selected aptamer candidates. (* used in this study)

Detection method	Target	LOD	Multiplexed detection	Reference
PCR using short DNA aptamers	Thrombin	2 pM	No	39
Sandwich ELISA using DNA encapsulated liposomes	Protective antigen	4.1 ng∙mL ⁻¹	Yes	40
Photoelectrochemical immunoassay using DNA labeling	HIV-1 p24	10 ng∙mL ⁻¹	No	41
H-sandwich RPA using DNA aptamers	SARS-CoV-2 NP	1 fg·mL ⁻¹		
	HIV-1 p24	10 fg·mL ⁻¹		
	Ebola NP	10 fg·mL ⁻¹	Yes	This study
	Influenza A NP	1 fg·mL ⁻¹		
	Influenza B NP	10 fg·mL ⁻¹		

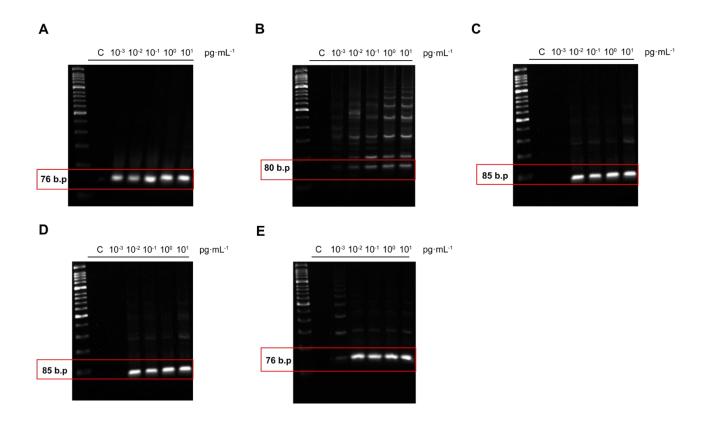

 Table S2. Comparison of detection efficiency of various immunoassays.


Figure S1. Elution profile according to SELEX round. The graphs and the K_d values (right) correspond to the aptamers used in the experiment from the aptamer candidates selected through each SELEX. (A) A total 12 round of selection was performed and Kd value of the used aptamer was 314 ± 101.2 nM (R² = 0.97). (B) A total 8 round of selection was performed and Kd value of the used aptamer was 23 ± 14.2 nM (R² = 0.93). (C) A total 12 round of selection was performed and Kd value of the used aptamer was 0.57 ± 0.13 nM (R² = 0.87). EBOV: Ebola virus

Figure S2. Intercalating dye efficiency under various amplification conditions. (A) Relative fluorescence intensity through amplification reactions (a: conventional PCR (30 cycles), b: RPA, c: H-sandwich RPA (NP and aptamer were used at 0.5 pg·mL⁻¹ and 1 pM, respectively)). Error bars show the standard deviation of three experiments. (B) Gel shift image under each of the amplification reactions (OFF: without aptamer or NP, ON: with aptamer 1 pM, NP).

Figure S3. Gel shift images for the detection of amplified aptamers using the H-sandwich RPA. (A) Influenza A NP, aptamer length is 76 base pair. (B) Influenza B NP, aptamer length is 80 base pair. (C) HIV-1 p24, aptamer length is 82 base pair. (D) Ebola NP, aptamer length is 85 base pair. (E) SARS-CoV-2 NP, aptamer length is 76 base pair. Each antigen ranged in concentration from 0.001 to 10 pg·mL⁻¹. b.p.: base pair

Figure S4. Detection efficiency in clinical samples according to commercialized kits. (A) Discrimination of negative and positive Influenza A patient samples using ELISA; negative n = 10, positive n = 15. (B) Discrimination of negative and positive Influenza A patient samples using LFA kit; negative n = 10, positive n = 15.