Supporting Information

Tailoring the Optical Response of Pentacene Thin Films via Templated Growth on Hexagonal Boron Nitride

Samuel H. Amsterdam,^{1,†} Trevor LaMountain,^{2,†} Teodor K. Stanev,^{3,†} Vinod K. Sangwan,⁴ Rafael López-Arteaga,¹ Suyog Padgaonkar,¹ Kenji Watanabe,⁵ Takashi Taniguchi,⁶ Emily A. Weiss,^{1,2,4} Tobin J. Marks,^{1,4*} Mark C. Hersam,^{1,2,4,7*} and Nathaniel

P. Stern^{2,3*}

¹ Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, USA

² Applied Physics Program, Northwestern University, Evanston, Illinois 60208, USA

³ Department of Physics and Astronomy, Northwestern University, Evanston, Illinois

60208, USA

⁴Department of Materials Science and Engineering and the Materials Research Center,

Northwestern University, Evanston, Illinois 60208, USA

S1

⁵Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
⁶International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
⁷Department of Electrical Engineering and Computer Science and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, USA

[†]These authors contributed equally

Figure S1. (a) AFM profilometry of large pentacene needles on hBN showing heights of 10 - 20 nm and widths of $1 - 2 \mu$ m. (b) AFM profilometry of pentacene terraces on SiO₂. The step height is 1.6 nm, consistent with the thin-film phase.

Figure S2. π -Face-on and thin-film phase of pentacene on semiconducting vdW materials. (a,c) Optical images at 100x magnification of pentacene on WS₂ (a) and MoS₂ (c). (b, d) AFM scans of (a, c) respectively. Needle-like structures are apparent on both. They also show a greater coverage of nanoscale grains and dendritic thin-film phase than on hBN.

Figure S3. (a,b) PL spectra at 10 K of pentacene thin films on the indicated vdW substrates compared to SiO₂. Red-shift of the pentacene peak on WS₂ is apparent since the WS₂ exciton is well-separated from the pentacene emission. The pentacene/MoS₂ spectrum is more complicated since the pentacene emission overlaps spectrally with the MoS₂ emission. X_A denotes the A-exciton emission of the vdW material, X_{FE} denotes the pentacene free exciton emission, and X_{STE} denotes the pentacene self-trapped exciton. The STE emission of pentacene on WS₂ is hidden by the large intensity of the A-exciton

emission. (c) The pentacene/MoS₂ spectrum broken down by a series of peak functions in order to better identify the constituent components of the broad, convoluted emission. In addition to the peaks in (b), there is contribution from the MoS₂ B-exciton (X_B), the MoS₂ defect emission (X_D), and both the thin-film and π -face-on phase pentacene FE emission (X_{FE} and X_{FE'} respectively)

Figure S4. Temperature-dependent PL of pentacene/WS₂. (a) PL plots of the pentacene thin films on WS₂ and SiO₂. The WS₂ exciton emission at 2 eV is more efficient than the pentacene free exciton at 1.8 eV. (b) Energy of pentacene free exciton emission versus temperature. The epitaxial film on WS₂ behaves similarly to the film on hBN, although with a lower overall energy shift.

The in-plane thermal expansion coefficient of WS₂ is on the order of 10⁻⁶ K⁻¹, based

on temperature-dependent Raman measurements.¹ This thermal expansion coefficient is

between hBN $(2 - 4 \times 10^{-5} \text{ K}^{-1})^2$ and SiO₂ $(5 \times 10^{-7} \text{ K}^{-1})^3$, which aligns with the temperature-

dependent PL shift of pentacene/WS₂ being between those two other substrates.

Table S1. Fitting parameters for the photoluminescence decay histograms of pentacene deposited on an hBN flake and on a non-hBN part of the substrate, excited at 570 nm. Three spots were evaluated at each region on the image. The IRF was fitted to a Gaussian (a_1 , τ_1) and a biexponential decay (a_2 , τ_2 , a_3 , τ_3).

Spot	a ₁ [%]	τ_1 [ps]	a ₂ [%]	τ ₂ [ns]	a ₃ [%]	τ ₃ [ns]	$< \tau > [ps]$
Off 1	> 99.99	< 50	< 0.01	$0.40{\pm}0.02$			< 50
Off 2	> 99.99	< 50	< 0.01	$0.40{\pm}0.03$			< 50
Off 3	> 99.99	< 50	< 0.01	0.39 ± 0.02			< 50
On 1	> 99.99	< 50	< 0.01	$0.40{\pm}0.02$	< 0.01	3.20±0.28	< 50
On 2	> 99.99	< 50	< 0.01	$0.40{\pm}0.02$	< 0.01	3.10±0.24	< 50
On 3	> 99.99	< 50	< 0.01	$0.40{\pm}0.02$	< 0.01	3.10±0.19	< 50
Wrinkle 1	> 99.99	< 50	< 0.01	1.20±0.11	< 0.01	4.20±0.18	60±10
Wrinkle 2	99.97±0.01	< 50	0.03 ± 0.02	0.85 ± 0.03	< 0.01	3.40±0.14	200±10
Wrinkle 3	> 99.99	< 50	< 0.01	1.10±0.14	< 0.01	4.10±0.17	< 50
IRF	(Gaussian)	29±1	95.6±0.3	0.011±0.001	4.4±0.1	0.219±0.001	

REFERENCES

- Huang, X.; Gao, Y.; Yang, T.; Ren, W.; Cheng, H. M.; Lai, T. Quantitative Analysis of Temperature Dependence of Raman Shift of Monolayer WS₂. *Sci. Rep.* 2016, 6 (1), 1–8. https://doi.org/10.1038/srep32236.
- Yates, B.; Overy, M. J.; Pirgon, O. The Anisotropic Thermal Expansion of Boron Nitride: I. Experimental Results and Their Analysis. *Philos. Mag.* 1975, *32* (4), 847–857. https://doi.org/10.1080/14786437508221624.
- (3) Blech, I.; Cohen, U. Effects of Humidity on Stress in Thin Silicon Dioxide Films. J. Appl. Phys. **1982**, 53 (6), 4202–4207. https://doi.org/10.1063/1.331244.