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Figure S1. (a) AFM profilometry of large pentacene needles on hBN showing heights of 
10 – 20 nm and widths of 1 – 2 μm. (b) AFM profilometry of pentacene terraces on SiO2. 
The step height is 1.6 nm, consistent with the thin-film phase.
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Figure S2. π-Face-on and thin-film phase of pentacene on semiconducting vdW 
materials. (a,c) Optical images at 100x magnification of pentacene on WS2 (a) and MoS2 

(c). (b, d) AFM scans of (a, c) respectively. Needle-like structures are apparent on both. 
They also show a greater coverage of nanoscale grains and dendritic thin-film phase than 
on hBN.  

Figure S3. (a,b) PL spectra at 10 K of pentacene thin films on the indicated vdW 
substrates compared to SiO2. Red-shift of the pentacene peak on WS2 is apparent since 
the WS2 exciton is well-separated from the pentacene emission. The pentacene/MoS2 
spectrum is more complicated since the pentacene emission overlaps spectrally with the 
MoS2 emission. XA denotes the A-exciton emission of the vdW material, XFE denotes the 
pentacene free exciton emission, and XSTE denotes the pentacene self-trapped exciton. 
The STE emission of pentacene on WS2 is hidden by the large intensity of the A-exciton 
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emission. (c) The pentacene/MoS2 spectrum broken down by a series of peak functions 
in order to better identify the constituent components of the broad, convoluted emission.  
In addition to the peaks in (b), there is contribution from the MoS2 B-exciton (XB), the 
MoS2 defect emission (XD), and both the thin-film and π-face-on phase pentacene FE 
emission (XFE and XFE’ respectively)

Figure S4. Temperature-dependent PL of pentacene/WS2. (a) PL plots of the pentacene 
thin films on WS2 and SiO2. The WS2 exciton emission at 2 eV is more efficient than the 
pentacene free exciton at 1.8 eV. (b) Energy of pentacene free exciton emission versus 
temperature. The epitaxial film on WS2 behaves similarly to the film on hBN, although 
with a lower overall energy shift.

The in-plane thermal expansion coefficient of WS2 is on the order of 10-6 K-1, based 

on temperature-dependent Raman measurements.1 This thermal expansion coefficient is 

between hBN (2 - 4 × 10-5 K-1 )2 and SiO2 (5 × 10-7 K-1),3 which aligns with the temperature-

dependent PL shift of pentacene/WS2 being between those two other substrates. 
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Table S1. Fitting parameters for the photoluminescence decay histograms of pentacene 
deposited on an hBN flake and on a non-hBN part of the substrate, excited at 570 nm. 
Three spots were evaluated at each region on the image. The IRF was fitted to a 
Gaussian (a1, τ1) and a biexponential decay (a2, τ2, a3, τ3).

Spot a1 [%] 1 [ps] a2 [%] 2 [ns] a3 [%] 3 [ns] <  > [ps]
Off 1 > 99.99 < 50 < 0.01 0.40±0.02 --- --- < 50
Off 2 > 99.99 < 50 < 0.01 0.40±0.03 --- --- < 50
Off 3 > 99.99 < 50 < 0.01 0.39±0.02 --- --- < 50
On 1 > 99.99 < 50 < 0.01 0.40±0.02 < 0.01 3.20±0.28 < 50
On 2 > 99.99 < 50 < 0.01 0.40±0.02 < 0.01 3.10±0.24 < 50
On 3 > 99.99 < 50 < 0.01 0.40±0.02 < 0.01 3.10±0.19 < 50

Wrinkle 1 > 99.99 < 50 < 0.01 1.20±0.11 < 0.01 4.20±0.18 60±10
Wrinkle 2 99.97±0.01 < 50 0.03±0.02 0.85±0.03 < 0.01 3.40±0.14 200±10
Wrinkle 3 > 99.99 < 50 < 0.01 1.10±0.14 < 0.01 4.10±0.17 < 50

IRF (Gaussian) 29±1 95.6±0.3 0.011±0.001 4.4±0.1 0.219±0.001
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