Supporting information

Achieving High Performances of Ultra-Low Thermal Expansion and High Thermal Conductivity in 0.5PbTiO₃-0.5(Bi_{0.9}La_{0.1})FeO₃@Cu Core-Shell Composite

Yongqiang Qiao,¹ Ning Xiao,¹ Yuzhu Song,¹ Shiqing Deng,² Rongjin Huang,³ Laifeng Li,³ Xianran Xing,⁴ Jun Chen^{1,2,*}

¹ Beijing Advanced Innovation Center for Materials Genome Engineering, and Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

² School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

³ Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry,

Chinese Academy of Sciences, Beijing, China

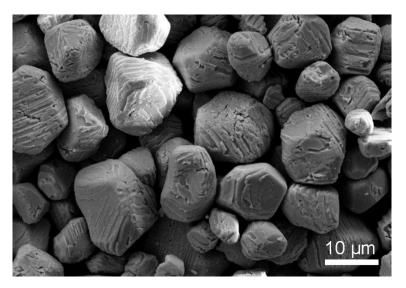
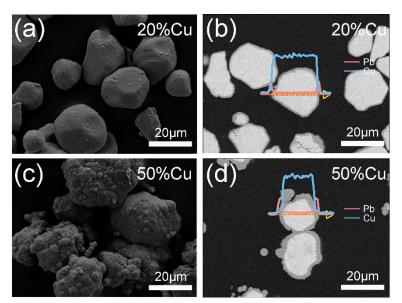
⁴ Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid-State Chemistry, University of Science and Technology Beijing, Beijing 100083, China

Corresponding Author

* Jun Chen - Beijing Advanced Innovation Center for Materials Genome Engineering and School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Email: junchen@ustb.edu.cn

Supplementary Figures

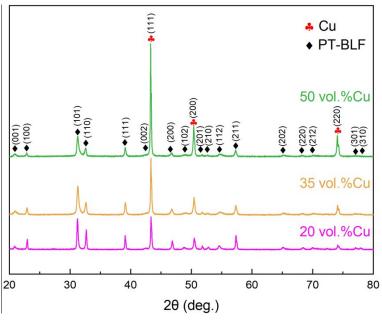

Figure S1. The SEM micrograph of coarsened PTBLF powders.

Figure S2. The SEM micrographs and EDS lines of coated PTBLF particles with (a,b) 20 vol.% Cu and (c,d) 50 vol.% Cu, respectively.

Figure S3. The EDS mapping of (a) Cu and (b) Pb in the uncoated 35 vol.% Cu composite, and (c) Cu and (d) Pb in the coated 35 vol.% Cu composite.

Figure S4. The XRD patterns of the sintered samples with 20 vol.% Cu, 35 vol.% Cu, and 50 vol.% Cu, respectively.