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A. Schematic diagram of the home-built gas sensing set up 

Figure S1. A schematic diagram of the assembled gas sensing set up used in the present 

study.S1
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B. Characterization of the inkjet printable mesoporous SnO2 precursor ink 

The as-prepared co-continuous mesoporous SnO2 ink has been characterized for its suitability 

in inkjet printing. A dimensionless parameter, Ohnesorge number (Oh) can be defined as:  

=   𝑂ℎ 
𝜂
⍴𝜎𝑙

where 𝜂, ⍴, 𝜎 and  are the dynamic viscosity, fluid density, surface tension and the 𝑙

characteristic length scale (droplet diameter) respectively.

Here, the measured parameters turn out be 4.46 mPa.s (Figure S2), 875 kgm-3, 21 mNm-1 

(Video S1), and 15 µm, respectively. 

This results in the value of the Ohnesorge number to be 0.2686. An inverse of Ohnesorge 

number Z (Oh-1) is considered as the measure of suitability of an ink for inkjet printing and 

should be within a range of 1- 10 to ensure ease of printing. 

In the present case, the inverse Ohnesorge number 

Z = =   can be calculated as 3.72, which fits well within the preferred window 𝑂ℎ ―1 
⍴𝜎𝑙
𝜂

prescribed for inkjet printing. 
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Figure S2: Viscosity measurement of the mesoporous SnO2 ink.
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C. Cross-section SEM micrographs of printed mesoporous SnO2 films 

demonstrating correlation between the film thickness and the number of 

printing passes

Figure S3: (a-c) Cross-section SEM micrographs of printed and annealed 1-, 2- and 3-layer 

mesoporous SnO2 films, respectively. An increasing printing passes has found to increase the 

film thickness, with the thickness value ranging from 101 nm, 204 nm and 322 nm for 1-, 2- 

and 3-layer mesoporous SnO2 films, respectively. 
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D. Scanning electron micrograph of the flat and solid SnO2 thin film printed without the 

polymer templating agent.

Figure S4. Scanning electron micrograph of non-porous, flat and solid SnO2 thin film.
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E. Comparison of response at 5 ppm NO2 concentration for the printed 1-layer 

SnO2 sensor as a function of measurement temperature

Figure S5. Sensor response at 5 ppm NO2 concentration for 1-layer printed mesoporous SnO2 

sensor, measured at different temperatures.
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F. Sensor performance of printed flat and solid SnO2 thin film based gas sensor with 

respect to NO2 gas concentration

Figure S6: (a) Printed solid and flat SnO2 thin film based sensor performance as a function of 

NO2 concentration. (b) Comparison plot of mesoporous and non-porous (solid) tin oxide 

sensor performance at different concentration of NO2.
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G. Printed 2-layer SnO2 sensor characteristics with respect to temperature and NO2 

gas concentration  

Figure S7. (a) Response curves of the 2-layer printed and annealed mesoporous SnO2 based 

sensor measured with respect to varying analyte gas concentration. (b) Response-

concentration relationship curve for the 2-layer printed sample showing a linear correlation. 

(c-d) Comparison of response curves for NO2 concentration between 200 ppb to 5000 ppb 

measured at different temperatures.



11

H. Printed 3-layer SnO2 sensor characteristics with respect to temperature and NO2 

gas concentration  

Figure S8. (a) Response curves of the 3-layer printed and annealed mesoporous SnO2 based 

sensor measured with respect to varying analyte gas concentration. (b) Response-

concentration relationship curve for the 3-layer printed sample showing a linear correlation. 

(c-d) Comparison of response curves for NO2 concentration between 200 ppb to 5000 ppb 

measured at different temperatures.
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I. Comparison of 2- and 3-layer printed mesoporous SnO2 based gas sensor 

performance with respect to temperature and analyte gas concentration. 

Figure S9. (a-b) 2-and 3-layer printed SnO2 sensor performance comparison plot showing 

responses as a function of temperature and concentration, varied between 200 ppb to 5000 

ppb.
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J. Exemplary reproducibility test of 1-layer co-continuous mesoporous SnO2 based 

NO2 sensor and 175 °C along with average response versus NO2 gas 

concentration data

Figure S10: (a) An exemplary reproducibility test measurement with 1-layer co-continuous 

mesoporous SnO2 based NO2 sensor, carried out at 175 °C. (b) An average response (with 

standard deviation) versus NO2 concentration plot, computed from three individual 

measurement data sets obtained from different mesoporous SnO2 sensors, all measured at 175 

°C.
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K. Mesoporous SnO2 (1-layer, printed) based sensor performance at 200 ppb NO2 

concentration measured at different temperatures

Figure S11 Mesoporous SnO2 (1-layer, printed) based sensor response at 200 ppb NO2 

concentration compared for different measurement temperatures from 75 °C to 225 °C. 
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N. Comparison of NO2 sensing ability of the printed (1-layer) mesoporous SnO2 film 

with dry air and humid (RH 40 %) and as the carrier gas

Figure S12: (a-b) NO2 gas sensing performance measured at 175 °C with respect to dry air 

and humid air (40% relative humidity at room temperature) as the carrier gas. (c) Comparison 

of the NO2 gas sensor performance with dry air and humid air (40 % relative humidity at 

room temperature) as the carrier gas.
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M. Printed (1- layer) mesoporous SnO2 based gas sensor performance for oxidizing 

chlorine gas with dry air as the carrier gas

Figure S13: The chlorine gas sensing of the 1-layer printed mesoporous SnO2 gas sensor 

measured at 175 °C, showing response against different chlorine gas concentrations 
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