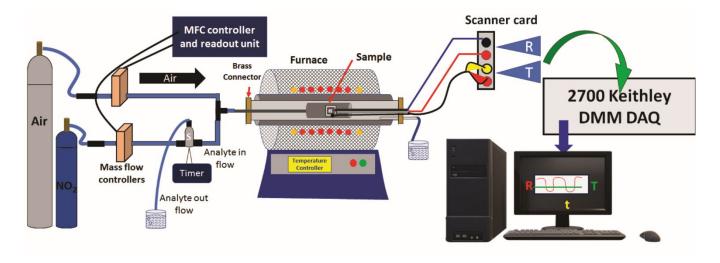
Supporting Information

Fully Inkjet-printed Mesoporous SnO₂ Based Ultra-sensitive Gas Sensors for

Trace Amount NO₂ Detection

Nehru Devabharathi,^a Arun M. Umarji,^b Subho Dasgupta,^{a,*}

^aDepartment of Materials Engineering, Indian Institute of Science (IISc), C V Raman Avenue, Bangalore: 560012, Karnataka, India


^bMaterials Research Centre, Indian Institute of Science (IISc), C V Raman Avenue, Bangalore: 560012, Karnataka, India

*Email: <u>dasgupta@iisc.ac.in</u>

Contents

- A. Schematic diagram representing a home-built gas sensing set up
- B. Characterization of the inkjet printable mesoporous SnO₂ precursor ink.
- C. Cross-section SEM micrographs of printed mesoporous SnO₂ films demonstrating correlation between the film thickness and the number of printing passes.
- D. Scanning electron micrograph of the flat and solid SnO₂ thin film printed without the polymer templating agent.
- E. Comparison of response at 5 ppm NO₂ concentration for printed 1-layer SnO₂ sensor as a function of measurement temperature.
- F. Sensor performance of printed flat and solid SnO₂ thin film based gas sensor with respect to NO₂ gas concentration.
- G. Comparison of NO₂ sensing ability of the printed (1-layer) mesoporous SnO₂ film with dry air and humid (RH 40%) and as the carrier gas.
- H. Printed 2-layer SnO₂ sensor characteristics with respect to temperature and NO₂ gas concentration

- I. Printed 3-layer SnO₂ sensor characteristics with respect to temperature and NO₂ gas concentration.
- J. Exemplary reproducibility test of 1-layer co-continuous mesoporous SnO₂ based NO₂ sensor and 175 °C along with average response versus NO₂ gas concentration data.
- K. Mesoporous SnO₂ (1-layer, printed) based sensor performance at 200 ppb NO₂ concentration measured at different temperatures.
- L. Comparison of 2- and 3-layer printed mesoporous SnO₂ based gas sensor performance with respect to temperature and analyte gas concentration.
- M. Printed (1- layer) mesoporous SnO₂ based gas sensor performance for oxidizing chlorine gas with dry air as the carrier gas.

A. Schematic diagram of the home-built gas sensing set up

Figure S1. A schematic diagram of the assembled gas sensing set up used in the present study.^{S1}

B. Characterization of the inkjet printable mesoporous SnO₂ precursor ink

The as-prepared co-continuous mesoporous SnO₂ ink has been characterized for its suitability in inkjet printing. A dimensionless parameter, Ohnesorge number (Oh) can be defined as: $Oh = \frac{\eta}{\sqrt{\rho\sigma l}}$

where η , ρ , σ and l are the dynamic viscosity, fluid density, surface tension and the characteristic length scale (droplet diameter) respectively.

Here, the measured parameters turn out be 4.46 mPa.s (Figure S2), 875 kgm⁻³, 21 mNm⁻¹ (Video S1), and 15 μ m, respectively.

This results in the value of the Ohnesorge number to be 0.2686. An inverse of Ohnesorge number Z (Oh⁻¹) is considered as the measure of suitability of an ink for inkjet printing and should be within a range of 1- 10 to ensure ease of printing.

In the present case, the inverse Ohnesorge number

 $Z = Oh^{-1} = \frac{\sqrt{\rho\sigma l}}{\eta}$ can be calculated as 3.72, which fits well within the preferred window prescribed for inkjet printing.

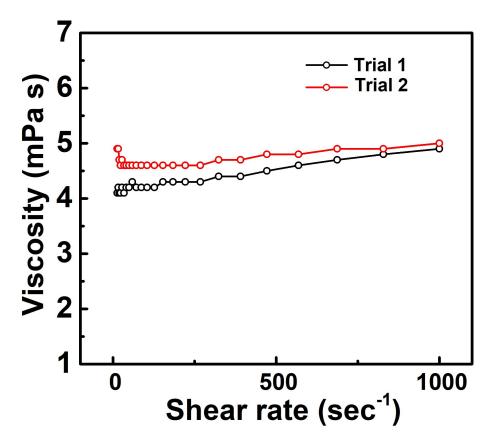


Figure S2: Viscosity measurement of the mesoporous SnO₂ ink.

C. Cross-section SEM micrographs of printed mesoporous SnO₂ films demonstrating correlation between the film thickness and the number of printing passes

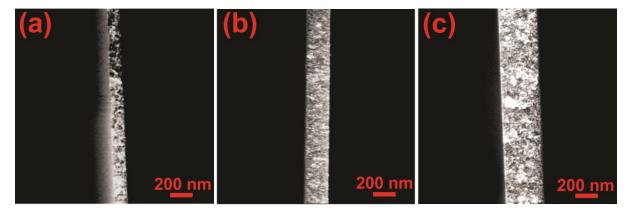


Figure S3: (a-c) Cross-section SEM micrographs of printed and annealed 1-, 2- and 3-layer mesoporous SnO_2 films, respectively. An increasing printing passes has found to increase the film thickness, with the thickness value ranging from 101 nm, 204 nm and 322 nm for 1-, 2- and 3-layer mesoporous SnO_2 films, respectively.

D. Scanning electron micrograph of the flat and solid SnO₂ thin film printed without the polymer templating agent.

Figure S4. Scanning electron micrograph of non-porous, flat and solid SnO₂ thin film.

E. Comparison of response at 5 ppm NO₂ concentration for the printed 1-layer SnO₂ sensor as a function of measurement temperature

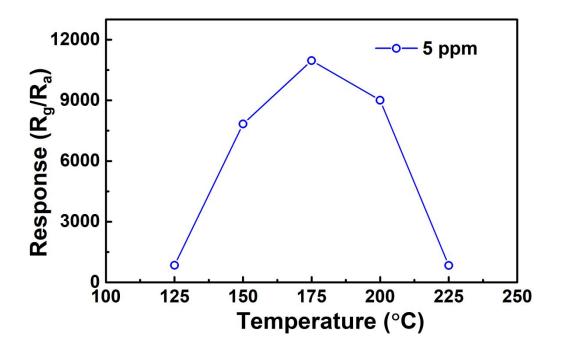


Figure S5. Sensor response at 5 ppm NO_2 concentration for 1-layer printed mesoporous SnO_2 sensor, measured at different temperatures.

F. Sensor performance of printed flat and solid SnO₂ thin film based gas sensor with respect to NO₂ gas concentration

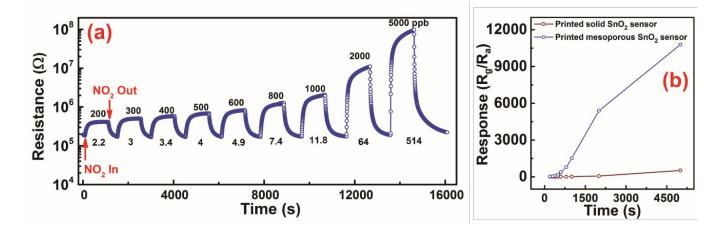
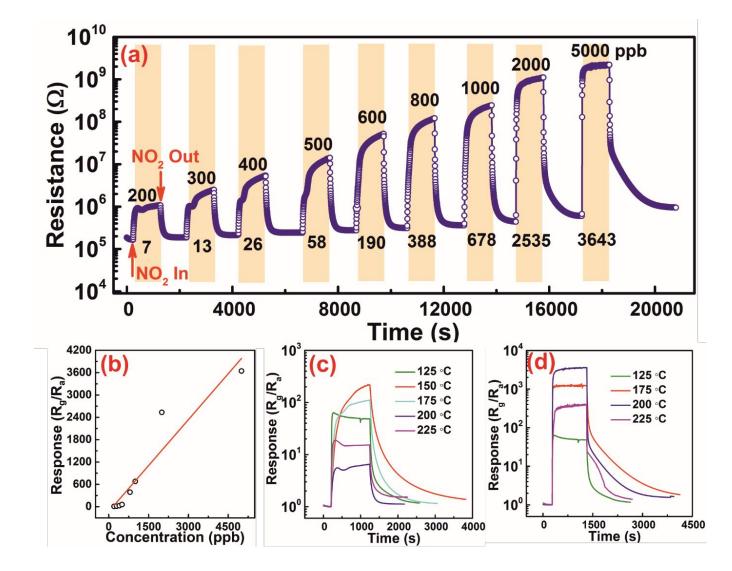
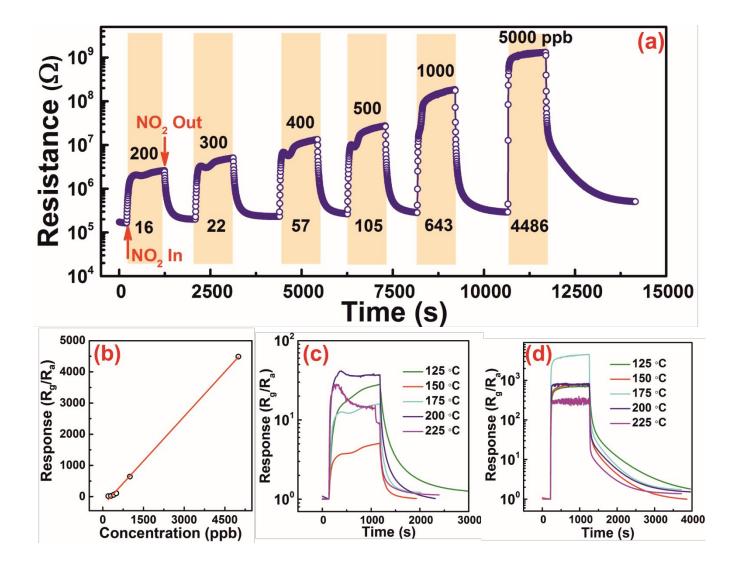
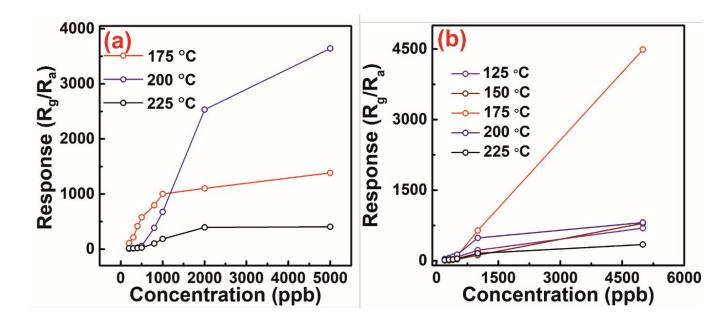




Figure S6: (a) Printed solid and flat SnO_2 thin film based sensor performance as a function of NO_2 concentration. (b) Comparison plot of mesoporous and non-porous (solid) tin oxide sensor performance at different concentration of NO_2 .

G. Printed 2-layer SnO₂ sensor characteristics with respect to temperature and NO₂ gas concentration


Figure S7. (a) Response curves of the 2-layer printed and annealed mesoporous SnO₂ based sensor measured with respect to varying analyte gas concentration. (b) Response-concentration relationship curve for the 2-layer printed sample showing a linear correlation. (c-d) Comparison of response curves for NO₂ concentration between 200 ppb to 5000 ppb measured at different temperatures.

H. Printed 3-layer SnO₂ sensor characteristics with respect to temperature and NO₂ gas concentration

Figure S8. (a) Response curves of the 3-layer printed and annealed mesoporous SnO₂ based sensor measured with respect to varying analyte gas concentration. (b) Response-concentration relationship curve for the 3-layer printed sample showing a linear correlation. (c-d) Comparison of response curves for NO₂ concentration between 200 ppb to 5000 ppb measured at different temperatures.

I. Comparison of 2- and 3-layer printed mesoporous SnO₂ based gas sensor

performance with respect to temperature and analyte gas concentration.

Figure S9. (a-b) 2-and 3-layer printed SnO_2 sensor performance comparison plot showing responses as a function of temperature and concentration, varied between 200 ppb to 5000 ppb.

J. Exemplary reproducibility test of 1-layer co-continuous mesoporous SnO₂ based NO₂ sensor and 175 °C along with average response versus NO₂ gas concentration data

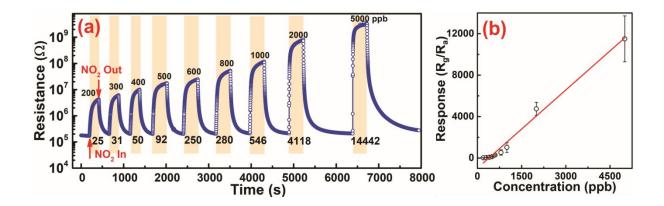


Figure S10: (a) An exemplary reproducibility test measurement with 1-layer co-continuous mesoporous SnO_2 based NO_2 sensor, carried out at 175 °C. (b) An average response (with standard deviation) versus NO_2 concentration plot, computed from three individual measurement data sets obtained from different mesoporous SnO_2 sensors, all measured at 175 °C.

K. Mesoporous SnO₂ (1-layer, printed) based sensor performance at 200 ppb NO₂ concentration measured at different temperatures

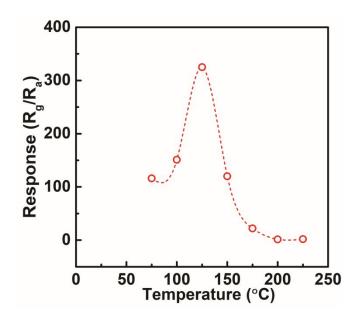


Figure S11 Mesoporous SnO₂ (1-layer, printed) based sensor response at 200 ppb NO₂ concentration compared for different measurement temperatures from 75 °C to 225 °C.

N. Comparison of NO₂ sensing ability of the printed (1-layer) mesoporous SnO₂ film with dry air and humid (RH 40 %) and as the carrier gas

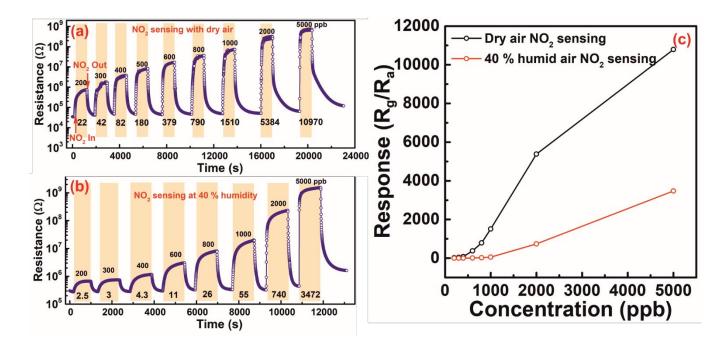


Figure S12: (a-b) NO₂ gas sensing performance measured at 175 °C with respect to dry air and humid air (40% relative humidity at room temperature) as the carrier gas. (c) Comparison of the NO₂ gas sensor performance with dry air and humid air (40 % relative humidity at room temperature) as the carrier gas.

M. Printed (1- layer) mesoporous SnO₂ based gas sensor performance for oxidizing chlorine gas with dry air as the carrier gas

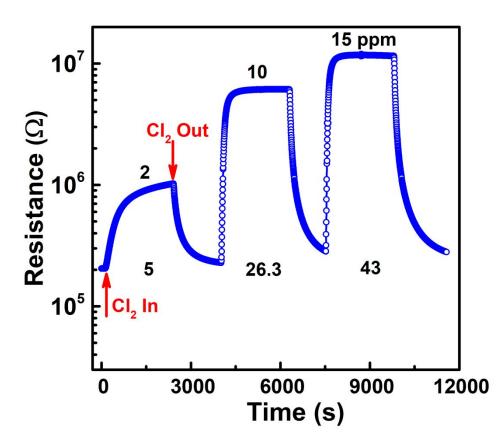


Figure S13: The chlorine gas sensing of the 1-layer printed mesoporous SnO_2 gas sensor measured at 175 °C, showing response against different chlorine gas concentrations

References:

 (S1) Tadeo, I. J.; Parasuraman, R.; Krupanidhi, S. B.; Umarji, A. M. Enhanced Humidity Responsive Ultrasonically Nebulised V₂O₅ Thin Films . *Nano Express* 2020, *1* (1), 010005.