Supporting Information

Tumor-targeting liposomes with transient holes allowing intact rituximab internally

Yoonyoung Kim^a, Yu Seok Youn^b, Kyung Taek Oh^c, Dongin Kim^d, Eun Seong Lee^{a,e,*}

^a Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro,

Bucheon-si, Gyeonggi-do 14662, Republic of Korea

^b School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si,

Gyeonggi-do 16419, Republic of Korea

^c College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul

06974, Republic of Korea

^d Department of Pharmaceutical Sciences, College of Pharmacy, University of

Oklahoma Health Sciences Center, 1110 N Stonewall Ave, Oklahoma City, OK 73117,

USA

^e Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43

Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea

Figure S1. Circular dichroism spectra of rituximab (RTX) extracted from RTX-loaded HSPC liposomes (fabricated by the conventional thin-film hydration method¹⁴) at pH 6.5. Free rituximab was used as control groups.

Figure S2. Flow cytometry analysis (using a FACSCaliburTM flow cytometer) of Ramos cells treated with free rituximab (10 μ g/mL), RTX@HA-g-DEAP CLs (containing rituximab 10 μ g/mL), and RTX@HA-g-DOCA CLs (containing rituximab 10 μ g/mL) for 4 h using Annexin V-FITC and propidium iodide (PI). Each quadrant means as follow: Q1, necrotic cells; Q2, late apoptotic cells; Q3, early apoptotic cells; Q4, live cells.

Figure S3. Average fluorescence intensity of each organ or tumors. Here, the results presented in Figure 9b were quantified (n = 3, ** ρ < 0.01 compared to free rituximab).