# Supporting Information

Enantioselective Synthesis of 3-Allylindolizines via Sequential Rh-Catalyzed Asymmetric Allylation and Tschitschibabin Reaction

Ke Li, Changkun Li\*

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, People's Republic of China \*E-mail: chkli@sjtu.edu.cn

# **Table of Contents**

| 1.  | General information.                                                | S2  |
|-----|---------------------------------------------------------------------|-----|
| 2.  | Procedure for the ligand synthesis.                                 | S3  |
| 3.  | Syntheses of allylic carbonates, pyridinium salts.                  | S6  |
| 4.  | Optimization of reaction conditions.                                |     |
| 5.  | General procedure for the enantioselective 3-allyl indolizines.     | S10 |
| 6.  | Spectral data of 3-allyl indolizines products and 3aa'              | S11 |
| 7.  | The Reactions of Linear Allylic Carbonates.                         | S18 |
| 8.  | Large scale synthesis of 3ba.                                       | S19 |
| 9.  | Procedures of derivatization and spectral data of the products.     | S20 |
| 10. | Procedures of control experiments and spectral data of the products | S23 |
| 11. | Single crystal X-ray diffraction data.                              | S26 |
| 12. | NMR spectra and HPLC data.                                          | S28 |
| 13. | References.                                                         |     |

# **1.** General information.

Air and moisture sensitive reactions were carried out in oven-dried glassware sealed with rubber septa under dry argon atmosphere. All reagents were purchased from commercial suppliers without further purification. Solvent purification was conducted by solvent purification system (Vigor YJC-7). Column chromatography was performed using 200-300 mesh silica gels. The NMR spectra were recorded on a Varian MERCURY plus-400 (400 MHz, <sup>1</sup>H; 101 MHz, <sup>13</sup>C); Bruker-400 instrument (400 MHz, <sup>1</sup>H; 101 MHz, <sup>13</sup>C); Bruker-500 instrument (500 MHz, <sup>1</sup>H; 126 MHz, <sup>13</sup>C), spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvent and the internal standard (<sup>1</sup>H NMR: CDCl<sub>3</sub> at 7.26 ppm; (CD<sub>3</sub>)<sub>2</sub>SO at 2.05 ppm; <sup>13</sup>C NMR: CDCl<sub>3</sub> at 77.1 ppm; (CD<sub>3</sub>)<sub>2</sub>SO at 39.5 ppm). <sup>19</sup>F NMR spectra were recorded on a Varian instrument (376 MHz, respectively) and referenced relative to PhCF<sub>3</sub>. Data for <sup>1</sup>H NMR are recorded as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiple or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). XRD and High-resolution mass spectra (HRMS) were performed at Instrumental Analysis Center of Shanghai Jiao Tong University with electrospray spectrometer Waters Micro mass Q-TOF Premier Mass Spectrometer. Enantiomeric excess was determined by HPLC using a Daicel chiral column. Melting points were measured with Hanon MP100 melting point apparatus. Optical rotations were measured on an Anton Paar MCP100 automatic polarimeter using a 100 mm path-length cell at 589 nm.

## 2. Procedure for the ligand synthesis.



L1, R<sup>1</sup> = Ph, R<sup>2</sup> = Me L2, R<sup>1</sup> = Ph, R<sup>2</sup> = Bn L3, R<sup>1</sup> = Ph, R<sup>2</sup> = Ph L4, R<sup>1</sup> = Ph, R<sup>2</sup> = i-Pr L5, R<sup>1</sup> = Ph, R<sup>2</sup> = t-Bu L6, R<sup>1</sup> = 3,5-t-Bu<sub>2</sub>-4-MeOC<sub>6</sub>H<sub>2</sub>, R<sup>2</sup> = t-Bu L7, R<sup>1</sup> = 4-CF<sub>3</sub>C<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = t-Bu L8, R<sup>1</sup> = 4-OMeC<sub>6</sub>H<sub>4</sub>, R<sup>2</sup> = i-Pr





**L6** [ $R^1$  = 4-OMe-3,5-t-Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>,  $R^2$  = t-Bu]

The reaction was performed according to the modified literature procedure.<sup>1</sup> In a flame dried schlenk tube, 2-(2-bromophenyl)-4-(tert-butyl)-4,5-dihydrooxazole (2.81 g, 10 mmol, 2.0 equiv) was dissolved in THF solvent (20 mL) under an argon atmosphere and the solution was cooled down to -78 °C. n-BuLi (7.5 mL, 1.6 M in hexane, 2.4 equiv, 12 mmol) was added dropwise and the mixture was stirred for 1 hour at -78 °C. The reaction mixture was further cooled to ~ -100 °C and was added triphenyl phosphite (1.55 g, 5.0 mmol, 1.0 equiv) in 2.0 mL of THF in one portion under vigorous stirring. The reaction was slowly warmed up to room temperature and stirred for 5 hours. The reaction mixture **A** was used in the next step directly.

In another flame dried schlenk tube, 5-bromo-1,3-di-tert-butyl-2-methoxybenzene (1.79 g, 6 mmol, 1.2 equiv) was dissolved in THF (20 mL) under an argon atmosphere and the mixture was cooled down to -78 °C. n-BuLi (4 mL, 1.3 equiv, 1.6 M in hexane, 6.5 mmol) was slowly added to the solution at -78 °C, and the reaction mixture **B** was stirred at this temperature for 1 hour. Then the reaction mixture **A** was added to the reaction mixture **B** dropwise via a syringe at -78 °C. The resulted solution was allowed to warm to room temperature slowly and stirred for 12 hours. The reaction was quenched with water, and the mixture was washed with sodium hydroxide. The aqueous phase was extracted with ethyl acetate, and the combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate (PE : EA 50 : 1) as eluent to afforded the product **L6** 2.25 g (69% yield) as light yellow solid.



L6 [R<sup>1</sup> =4-OMe-3,5-t-Bu<sub>2</sub>C<sub>6</sub>H<sub>2</sub>, R<sup>2</sup> = t-Bu]. m. p. 175.1 °C ~ 176.8 °C, TLC  $R_f$  = 0.2 (PE : EA 50 : 1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92-7.87 (m, 2H), 7.32-7.26 (m, 3H), 7.25-7.18 (m, 1H), 7.08 (d, J = 7.4 Hz, 2H), 6.92-6.84 (m, 2H), 4.13-3.84 (m, 6H), 3.65 (s, 3H), 1.27 (s, 18H), 0.65 (s, 9H), 0.62 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.5 (d, J = 2.9 Hz), 162.5 (d, J = 3.3 Hz), 143.0,

 $\begin{array}{l} \underbrace{\mathbb{I}}_{\mathsf{t}-\mathsf{Bu}} & 143.0, 142.3, 142.0, 141.0, 140.8, 134.6, 133.8, 133.0, 132.7, 132.2, 132.0, 131.9, \\ & 131.8, 131.7, 131.5, 130.2, 130.0, 129.7 \ (\mathsf{d}, J = 2.2 \ \mathsf{Hz}), 129.4 \ (\mathsf{d}, J = 3.9 \ \mathsf{Hz}), \end{array}$ 

127.5, 76.6 (d, *J* = 0.8 Hz), 68.1, 64.2, 35.8, 33.8, 33.6, 32.1, 26.0, 25.7.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ -5.69.

 $[\alpha]_{D}^{25} = -44.5 \ (c \ 1.1, \text{CHCl}_3).$ 

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>41</sub>H<sub>56</sub>N<sub>2</sub>O<sub>3</sub>P 655.4029; Found 655.4045.



# **L7** $[R^1 = 4 - CF_3C_6H_4, R^2 = t - Bu]$

The reaction was performed according to the modified literature procedure.<sup>1</sup> In a flame dried schlenk tube, 2-(2-bromophenyl)-4-(tert-butyl)-4,5-dihydrooxazole (2.81 g, 10 mmol, 2.0 equiv) was dissolved in THF solvent (20 mL) under an argon atmosphere and the solution was cooled down to -78 °C. n-BuLi (7.5 mL, 1.6 M in hexane, 2.4 equiv, 12 mmol) was added dropwise and the mixture was stirred for 1 hour at -78 °C. The reaction mixture was further cooled to ~ -100 °C and was added triphenyl phosphite (1.55 g, 5.0 mmol, 1.0 equiv) in 2.0 mL of THF in one portion under vigorous stirring. The reaction was slowly warmed up to room temperature and stirred for 5 hours. The reaction mixture **A** was used in the next step directly.

In another flame dried schlenk tube, 1-bromo-4-(trifluoromethyl)benzene (1.34 g, 6 mmol, 1.2 equiv) was dissolved in THF (20 mL) under an argon atmosphere and the solution was cooled down to -78 °C. n-BuLi (4 mL, 1.3 equiv, 1.6 M in hexane, 6.5 mmol) was slowly added to the solution at -78 °C, and the reaction mixture **B** was stirred at this temperature for 1 hour. Then the reaction mixture **A** was added to the reaction mixture **B** dropwise via a syringe at -78 °C. The resulted solution was allowed to warm to room temperature slowly and stirred for 12 hours. The reaction was quenched with water, and the mixture was washed with sodium hydroxide. The aqueous phase was extracted with ethyl acetate, and the

combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate (PE : EA 10 : 1) as eluent to afforded the product L7 1.65 g (57% yield) as white solid.

# CF<sub>3</sub> P N t-Bu L7

# L7 $[R^1 = 4-CF_3C_6H_4, R^2 = t-Bu].$

m. p. 75.0 °C ~ 76.0 °C, TLC  $R_f = 0.4$  ( PE : EA 10 : 1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.96-7.90 (m, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.40-7.31 (m, 4H), 7.28-7.22 (m, 2H), 6.91-6.83 (m, 2H), 4.16-3.96 (m, 4H), 3.93-3.85 (m, 2H), 0.63 (d, *J* = 2.1 Hz, 18H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 162.5 (d, *J* = 2.2 Hz), 162.1 (d, *J* = 3.1 Hz), 145.6, 145.6, 145.5, 140.1, 139.9, 139.4, 139.1, 135.0, 134.3, 134.2, 134.1, 132.2, 132.2, 132.0, 131.9, 130.5, 130.4, 129.8 (q, *J* = 32.5 Hz), 129.7 (d, *J* = 3.1 Hz), 128.2 (d, *J* 

= 3.5 Hz), 125.0-124.5 (m), 124.4 (q, *J* = 273.0 Hz), 76.8 (d, *J* = 28.6 Hz), 68.3, 68.2, 33.7, 33.5, 25.7, 25.7.

<sup>31</sup>**P NMR** (162 MHz, CDCl<sub>3</sub>) δ -7.68.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>) δ -62.63.

 $[\alpha]_D^{25} = -23.1$  (*c* 1.1, CHCl<sub>3</sub>).

**HRMS** (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>33</sub>H<sub>37</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub>P 581.2545; Found 581.2554.

# 3. Syntheses of allylic carbonates, pyridinium salts.



The allylic carbonate  $1a - 1c^2$ ,  $1g - 1i^2$ ,  $Z - 1j^2$ ,  $E - 1k^2$ ,  $1e^2$ ,  $1f^1$  were prepared according to the literature. The pyridinium salts  $2a - 2c^{3-4}$ ,  $2e - 2f^{3-4}$  were prepared according to the literature.



Allylic carbonate 1d was synthesized in similar way to the other allylic carbonate reported in the literature.<sup>[1-2]</sup>

In a flame dried schlenk tube, a solution of allyl alcohol substrate **1d'** (1.65 g, 8 mmol, 1.0 equiv) and 4dimethylaminopyridine (195.2 mg, 1.6 mmol, 0.2 equiv) in DCM (15 mL) was added pyridine (1.89 g, 24 mmol, 3.0 equiv) under an argon atmosphere and cooled down to 0 °C. Methyl chloroformate (1.13 g, 12 mmol, 1.5 equiv) was slowly added to the mixed solution at 0 °C. After being stirred at 0 °C for 30 minutes, the reaction solution was allowed to warm to room temperature and continues to stir overnight. The reaction was quenched with saturated sodium bicarbonate, and the aqueous phase was extracted with ether. The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuum. The residue was purified by silica gel column chromatography (PE : EA 20 : 1) to give **1d** (1.58 g, 75%) as a colorless oil.

#### OCO<sub>2</sub>Me 6-(benzyloxy)hex-1-en-3-yl methyl carbonate (1d).

Colorless oil, 1.58 g, 75%. TLC *R*<sub>f</sub> = 0.2 (PE : EA 20 : 1).

<sup>1d</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.37-7.31 (m, 4H), 7.30-7.26 (m, 1H), 5.86-5.74 (m, 1H), 5.30 (dt, *J* = 17.2, 1.2 Hz, 1H), 5.21 (dt, *J* = 10.5, 1.1 Hz, 1H), 5.09 (q, *J* = 6.7 Hz, 1H), 4.50 (s, 2H), 3.77 (s, 3H), 3.52-3.46 (m, 2H), 1.82-1.74 (m, 2H), 1.72-1.66 (m, 2H).
 <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 155.3, 138.5, 135.9, 128.4, 127.6, 127.6, 117.6, 78.9, 72.9, 69.8, 54.7,

31.0, 25.3.

BnO

HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>20</sub>O<sub>4</sub>Na 287.1254; Found 287.1260.



All the pyridinium salts (2a to 2c, 2e to 2f) were prepared according to the reported literature procedure.<sup>4</sup>

General Method for the Preparation of the Pyridinium Salts (2d, 2g, 2h, 2i) : The reaction was performed according to the modified literature procedure.<sup>3-4</sup> In a flame dried schlenk tube, the pyridine (5 mmol, 1.0 equiv) was dissolved in THF (10 ml) and the alpha-bromo ketone (5 mmol, 1.0 equiv) was added dropwise. After stirring in refluxing THF (oil bath as heat source), the formed precipitate is filtered out, washed with  $Et_2O$  (20 mL) and recrystallized from methanol/toluene (1 : 1).



#### 2-methyl-1-(2-(3-nitrophenyl)-2-oxoethyl)pyridin-1-ium bromide (2d).

According to the general procedure, the reaction of 2-bromo-1-(3-nitrophenyl)ethan-1-one (1.22 g, 5 mmol), 2-methylpyridine (0.465 g, 5 mmol) reflux in THF (10 mL) for 6 hours afforded the product 2d 1.42 g (84% yield) as yellow solid, the products were purified through by crystallization

(methanol/toluene 1:1). m. p. 224.1 °C ~ 224.5 °C, TLC  $R_f = 0.3$  (DCM : MeOH 10 : 1).

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 9.11-9.09 (m, 1H), 8.80 (t, *J* = 1.9 Hz, 1H), 8.66 (td, *J* = 7.9, 1.3 Hz, 1H), 8.62-8.58 (m, 1H), 8.57-8.53 (m, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 8.17-8.09 (m, 1H), 7.98 (t, *J* = 8.0 Hz, 1H), 6.85 (s, 2H), 2.78 (s, 3H).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 189.7, 156.6, 147.9, 146.6, 146.5, 134.8, 134.7, 130.9, 129.7, 128.7, 125.6, 123.0, 64.0, 19.9.

HRMS (ESI) *m/z*: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>13</sub>N<sub>2</sub>O<sub>3</sub> 257.0921; Found 257.0925.

#### 2-benzyl-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide (2g).

According to the general procedure, the reaction of 2-bromo-1-phenylethan-1-one (0.99 g, 5 mmol), 2-benzylpyridine (0.845 g, 5 mmol) reflux in THF (10 mL) for 12 hours afforded the product **2g** 1.59 g (87% yield) as white solid, the products were purified through by crystallization (methanol/toluene 1:1). m. p. 190.5 °C ~ 191.0 °C,

TLC  $R_f = 0.3$  (DCM : MeOH 10 : 1).

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 9.11 (dd, *J* = 6.2, 0.9 Hz, 1H), 8.68 (td, *J* = 7.9, 1.3 Hz, 1H), 8.23-8.11 (m, 1H), 8.08-7.96 (m, 3H), 7.76 (t, *J* = 7.4 Hz, 1H), 7.60 (t, *J* = 7.8 Hz, 2H), 7.26-7.11 (m, 5H), 6.81 (s, 2H), 4.65 (s, 2H).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 190.1, 157.4, 147.7, 146.6, 134.6, 134.3, 133.2, 129.5, 129.3, 128.8, 128.4, 127.3, 125.8, 63.5, 37.4.

HRMS (ESI) *m/z*: [M]<sup>+</sup> calcd for C<sub>20</sub>H<sub>18</sub>NO 288.1383; Found 288.1383.



CH<sub>2</sub>Ph

2g

#### 2,3-dimethyl-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide (2h).

According to the general procedure, the reaction of 2-bromo-1-phenylethan-1-one (0.99 g, 5 mmol), 2,3-dimethylpyridine (0.535 g, 5 mmol) reflux in THF (10 mL) for 12 hours afforded the product **2h** 1.19 g (78% yield) as white solid, the products were purified through by crystallization (methanol/toluene 1:1). m. p. 182.5 °C ~ 183.0 °C, TLC  $R_f$  = 0.3 (DCM : MeOH 10 : 1).

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 8.89 (d, *J* = 5.9 Hz, 1H), 8.52 (d, *J* = 7.8 Hz, 1H), 8.16-8.08 (m, 2H), 7.99 (dd, *J* = 7.6, 6.5 Hz, 1H), 7.84-7.77 (m, 1H), 7.71-7.63 (m, 2H), 6.71 (s, 2H), 2.61 (s, 3H), 2.55 (s, 3H).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 190.8, 155.6, 146.4, 144.4, 138.4, 134.9, 133.4, 129.1, 128.6, 124.6, 64.6, 19.3, 16.9.

HRMS (ESI) *m/z*: [M]<sup>+</sup> calcd for C<sub>15</sub>H<sub>16</sub>NO 226.1226; Found 226.1230.



2i

# 5-bromo-2-methyl-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide (2i).

According to the general procedure, the reaction of 2-bromo-1-phenylethan-1-one (0.99 g, 5 mmol), 5-bromo-2-methylpyridine (0.855 g, 5 mmol) reflux in THF (10 mL) for 24 hours afforded the product **2i** 1.49 g (81% yield) as white solid, the products were purified through by crystallization (methanol/toluene 1:1). m. p.

205.8 °C ~ 206.2 °C, TLC  $R_f = 0.3$  (DCM : MeOH 10 : 1).

<sup>1</sup>**H NMR** (400 MHz, DMSO) δ 9.42 (d, *J* = 2.1 Hz, 1H), 8.91 (dd, *J* = 8.6, 2.1 Hz, 1H), 8.17 (d, *J* = 8.7 Hz, 1H), 8.13-8.05 (m, 2H), 7.85-7.76 (m, 1H), 7.72-7.62 (m, 2H), 6.58 (s, 2H), 2.70 (s, 3H).

<sup>13</sup>C NMR (101 MHz, DMSO) δ 190.2, 156.0, 148.5, 147.4, 134.9, 133.4, 130.5, 129.1, 128.5, 118.8, 63.9, 19.4.

HRMS (ESI) *m/z*: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>13</sub>BrNO 290.0175; Found 290.018

# 4. Optimization of reaction conditions.

Table S1: Optimization of reaction conditions.



|                 |    |                    | o di di o di di | 31010(000)(70) | 00(000)(70) |          |
|-----------------|----|--------------------|-----------------|----------------|-------------|----------|
| 1               | L1 | CH <sub>3</sub> CN | 0.25 : 1        | 23             | 33          | 3 : 1    |
| 2               | L2 | CH <sub>3</sub> CN | 0.24:1          | 21             | 23          | 2 : 1    |
| 3               | L3 | $CH_3CN$           | 1.38 : 1        | 65             | 98          | > 20 : 1 |
| 4               | L4 | $CH_3CN$           | 1.05 : 1        | 61             | 98          | > 20 : 1 |
| 5               | L5 | $CH_3CN$           | 3.85 : 1        | 95             | 99          | > 20 : 1 |
| 6               | L6 | $CH_3CN$           | 2.99 : 1        | 88             | >99         | 13 : 1   |
| 7               | L7 | $CH_3CN$           | 2.64 : 1        | 85             | 99          | > 20 : 1 |
| 8               | L8 | $CH_3CN$           | 0.88 : 1        | 51             | 98          | 12 : 1   |
| 9               | L5 | DCE                | 2.02 : 1        | 78             | 99          | > 20 : 1 |
| 10              | L5 | DMF                | 2.14:1          | 79             | 99          | > 20 : 1 |
| 11              | L5 | MeOH               | -               | < 5            | -           | -        |
| 12              | L5 | Et <sub>2</sub> O  | 0.14:1          | 12             | 91          | 6 : 1    |
| 13 <sup>f</sup> | L5 | CH <sub>3</sub> CN | 2.15 : 1        | 82             | 99          | > 20 : 1 |
| 14 <sup>g</sup> | L5 | CH <sub>3</sub> CN | 1.75 : 1        | 76             | 99          | > 20 : 1 |
|                 |    |                    |                 |                |             |          |

[a] Conditions: All reactions were run with 2.5 mol% catalyst precursor and 6 mol% ligand on a 0.3 mmol scale at 40 °C for 24 hours unless otherwise noted, and the reactions with 4 equivalent  $Cs_2CO_3$  were conducted in the presence of air. [b] The ratio were determined by <sup>1</sup>H-NMR. [c] Yield of isolated product. [d] The enantiomeric excess values were determined by HPLC analysis with a chiral column. [e] The ratio of branch products to linear products were determined by <sup>1</sup>H-NMR. [f] The reaction was carried out at room temperature. [g] The reaction was carried out at 60 °C.

# 5. General procedure for the enantioselective 3-allyl indolizines.



**General Method:** To an oven-dried 10 mL Schlenk flask were added  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%) and 2 mL CH<sub>3</sub>CN. Then the mixture was added rac-1 (0.3 mmol, 1.0 equiv) and 2 (0.36 mmol, 1.2 equiv) at room temperature under an argon atmosphere unless otherwise noted. After being stirred at 40 °C (oil bath as heat source) for 24 hours, the reaction mixture was treated with 4 equiv of Cs<sub>2</sub>CO<sub>3</sub> under the air. After being stirred at 40 °C (oil bath as heat source) for 2-6 hours, the reaction mixture was filtered through a short pad of silica gel eluting with ethyl acetate and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate) to give desired product **3**.

# 6. Spectral data of 3-allyl indolizines products and 3aa'.

Ph n-C<sub>3</sub>H<sub>7</sub>

3aa

(R)-3-(hex-1-en-3-yl)-2-phenylindolizine (3aa).

Following the general method, the reaction of rac-1a (47.4 mg, 0.3 mmol), 2a (104.8 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol) and 2 mL CH<sub>3</sub>CN afforded product 3aa (78.6 mg, 95%) as brown oil [eluent: petroleum ether = 250 mL], TLC  $R_f$  = 0.5 (100% PE), 99% *ee*.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.93 (dd, J = 7.2, 0.6 Hz, 1H), 7.50-7.38 (m, 5H), 7.37-7.31 (m, 1H), 6.67 (ddd, J = 8.9, 6.4, 0.9 Hz, 1H), 6.55 (s, 1H), 6.50-6.43 (m, 1H), 6.23-6.11 (m, 1H), 5.21 (ddd, J = 10.4, 2.2, 1.5 Hz, 1H), 5.05 (ddd, J = 17.4, 2.1, 1.5 Hz, 1H), 4.14-4.05 (m, 1H), 2.03-1.91 (m, 1H), 1.87-1.75 (m, 1H), 1.15-0.96 (m, 2H), 0.72 (t, J = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.5, 137.4, 132.4, 129.8, 129.6, 128.3, 126.4, 124.0, 120.8, 119.3, 116.1, 115.1, 109.6, 99.5, 39.5, 32.6, 21.0, 13.8.

 $[\alpha]_D^{25} = +59.0 (c \ 0.1, \text{CHCl}_3).$ 

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>20</sub>H<sub>22</sub>N 276.1747; Found 276.1747.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0 : 100, 1 ml/min), 40 °C, 254 nm, Rt = 15.365 min (major) and 16.749 min (minor), 99% *ee*.

# (R)-3-(but-3-en-2-yl)-2-phenylindolizine (3ba).



Following the general method, the reaction of rac-1b (39.0 mg, 0.3 mmol), 2a (104.8 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol) and 2 mL CH<sub>3</sub>CN afforded product **3ba** (69.8 mg, 94%) as white solid [eluent: petroleum ether = 250 mL], TLC  $R_f$  = 0.5 (100% PE), 99% *ee*, m. p. 47.3 °C ~

47.9 °C.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 7.2 Hz, 1H), 7.50-7.37 (m, 5H), 7.36-7.29 (m, 1H), 6.66 (dd, *J* = 8.9, 6.5 Hz, 1H), 6.53 (s, 1H), 6.50-6.42 (m, 1H), 6.17-6.05 (m, 1H), 5.22 (d, *J* = 10.5 Hz, 1H), 5.10 (d, *J* = 17.4 Hz, 1H), 4.32- 4.20 (m, 1H), 1.52 (d, *J* = 7.4 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 139.6, 137.2, 132.4, 129.5, 128.4, 128.4, 126.5, 124.0, 122.1, 119.3, 116.2, 114.7, 109.6, 99.4, 33.5, 15.8.

 $[\alpha]_D^{25} = +15.8$  (*c* 0.5, CHCl<sub>3</sub>).

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>18</sub>H<sub>18</sub>N 248.1434; Found 248.1444.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, <sup>*i*</sup>PrOH : Hexane = 0.9 : 99.1, 0.9 ml/min), 40 °C, 254 nm, Rt = 76.730 min (major) and 82.711 min (minor), 99% *ee* (The *ee* value was determined after the hydroboration/oxidation sequence **9**).



#### (R)-2-phenyl-3-(5-phenylpent-1-en-3-yl)indolizine (3ca).

Following the general method, the reaction of rac-1c (66.0 mg, 0.3 mmol), 2a (104.8 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol) and 2 mL CH<sub>3</sub>CN afforded product 3ca (97.3 mg, 96%) as brown oil [eluent: petroleum ether = 350 mL], TLC  $R_f$  = 0.45 (PE : EA 100 : 1), 99% *ee*.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 7.1 Hz, 1H), 7.48-7.37 (m, 5H), 7.36-7.31 (m, 1H), 7.19-7.10 (m, 3H), 6.90 (d, J = 6.7 Hz, 2H), 6.68 (dd, J = 8.7, 6.6 Hz, 1H), 6.55 (s, 1H), 6.50-6.42 (m, 1H), 6.14 (ddd, J = 17.3, 10.4, 4.5 Hz, 1H), 5.20 (d, J = 10.4 Hz, 1H), 5.04 (d, J = 17.4 Hz, 1H), 4.18-4.02 (m, 1H), 2.37-2.24 (m, 3H), 2.18-2.12 (m, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 141.8, 138.2, 137.3, 132.6, 129.9, 129.6, 128.4, 128.4, 128.3, 126.5,

125.7, 123.8, 120.2, 119.3, 116.3, 115.5, 109.8, 99.7, 39.3, 34.0, 32.5.

 $[\alpha]_D^{25} = +16.6 (c \ 0.5, \text{CHCl}_3).$ 

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>25</sub>H<sub>24</sub>N 338.1903; Found 338.1918.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, <sup>*i*</sup>PrOH : Hexane = 10 : 90, 2 ml/min), 40 °C, 254 nm, R*t* = 8.042 min (major) and 11.189 min (minor), 99% *ee* (The *ee* value was determined after the hydroboration/oxidation sequence).



3da

## (R)-3-(6-(benzyloxy)hex-1-en-3-yl)-2-phenylindolizine (3da).

Following the general method, the reaction of rac-1d (79.2 mg, 0.3 mmol), 2a (104.8 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol) and 2 mL CH<sub>3</sub>CN afforded product 3da (104.1 mg, 91%) as brown oil [eluent: petroleum ether/ethyl acetate 50 : 1 = 250 mL], TLC *R*<sub>f</sub>

= 0.5 (PE : EA 20 : 1), 99% ee.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.87 (d, J = 7.2 Hz, 1H), 7.43-7.33 (m, 5H), 7.30-7.17 (m, 6H), 6.61 (dd, J = 8.6, 6.7 Hz, 1H), 6.49 (s, 1H), 6.44-6.36 (m, 1H), 6.18-6.05 (m, 1H), 5.21-5.12 (m, 1H), 5.07-4.96 (m, 1H), 4.30-4.22 (m, 2H), 4.11-3.98 (m, 1H), 3.22-3.10 (m, 2H), 2.05-1.90 (m, 2H), 1.33-1.23 (m, 2H). <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 138.5, 138.3, 137.2, 132.5, 129.9, 129.5, 128.3, 128.3, 127.6, 127.5, 126.5, 123.9, 120.3, 119.3, 116.2, 115.3, 109.6, 99.5, 72.7, 69.7, 39.4, 27.8, 26.7. [ $\alpha$ ] $_{D}^{25}$  = +18.6 (*c* 0.5, CHCl<sub>3</sub>).

HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>28</sub>NO 382.2165; Found 382,2166.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, <sup>*i*</sup>PrOH : Hexane = 0.5 : 95.5, 1 ml/min), 40 °C, 254 nm, Rt = 47.152 min (major) and 30.775 min (minor), 99% ee.



#### (R)-3-(5-methylhex-1-en-3-yl)-2-phenylindolizine (3ea).

Following the general method, the reaction of rac-1e (51.6 mg, 0.3 mmol), 2a (104.8 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol) and 2 mL CH<sub>3</sub>CN afforded product **3ea** (74.7 mg, 86%) as brown oil [eluent: petroleum ether = 250 mL], TLC  $R_f$  = 0.6 (100% PE), >99% *ee*.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (dd, J = 7.2, 0.8 Hz, 1H), 7.52-7.39 (m, 5H), 7.38-7.31 (m, 1H), 6.68 (ddd, J = 8.9, 6.4, 0.9 Hz, 1H), 6.56 (s, 1H), 6.51-6.44 (m, 1H), 6.25-6.13 (m, 1H), 5.22 (ddd, J = 10.4, 2.2, 1.5 Hz, 1H), 5.06 (ddd, J = 17.3, 2.1, 1.5 Hz, 1H), 4.24-4.15 (m, 1H), 2.03-1.92 (m, 1H), 1.68-1.57 (m, 1H), 1.23-1.09 (m, 1H), 0.70 (d, J = 6.6 Hz, 3H), 0.60 (d, J = 6.5 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.8, 137.3, 132.5, 129.8, 129.5, 128.3, 126.5, 124.0, 120.8, 119.3, 116.1, 115.0, 109.6, 99.5, 39.5, 37.7, 26.1, 23.0, 21.9.

 $[\alpha]_{D}^{25} = +32.3$  (*c* 0.48, CHCl<sub>3</sub>).

HRMS (ESI) m/z:  $[M + H]^+$  calcd for C<sub>21</sub>H<sub>24</sub>N 290.1903; Found 290.1916.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0 : 100, 1 ml/min), 40 °C, 254 nm, Rt = 12.716 min (major) and 18.106 min (minor), 99% ee.



#### (S)-3-(1-cyclopropylallyl)-2-phenylindolizine (3fa).

Following the general method, the reaction of rac-**1f** (46.8 mg, 0.3 mmol), **2a** (104.8 mg, 0.36 mmol),  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%), **L5** (9.2 mg, 6 mol%),  $Cs_2CO_3(391 mg, 1.2 mmol)$  and 2 mL CH<sub>3</sub>CN afforded product **3fa** (76.2 mg, 93%) as brown oil [eluent: petroleum ether = 250 mL], TLC  $R_f$  = 0.5 (100% PE), 90% *ee*.



<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.04 (dd, *J* = 7.2, 0.9 Hz, 1H), 7.45-7.36 (m, 5H), 7.33-7.28 (m, 1H), 6.67 (ddd, *J* = 8.9, 6.5, 0.9 Hz, 1H), 6.53 (s, 1H), 6.50-6.42 (m, 1H), 6.26-6.14 (m, 1H), 5.28-5.22 (m, 1H), 5.22-5.15 (m, 1H), 3.35-3.23 (m, 1H), 1.44-1.32 (m, 1H), 0.70-0.58 (m, 1H), 0.33-0.20 (m, 2H), -0.05--0.14 (m, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 137.7, 137.2, 132.3, 129.6, 129.1, 128.2, 126.4, 124.1, 121.5, 119.2, 116.3, 115.7, 109.6, 99.6, 44.8, 12.1, 5.9, 4.3.

 $[\alpha]_D^{25} = +66.0 \ (c \ 0.25, \ CHCl_3).$ 

HRMS (ESI) m/z:  $[M + H]^+$  calcd for C<sub>20</sub>H<sub>20</sub>N 274.1590; Found 274.1602.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0.3 : 99.7, 0.7 ml/min), 40 °C, 254 nm,  $R_t = 15.745$  min (major) and 16.669 min (minor), 90% ee.

## (S)-3-(1-cyclohexylallyl)-2-phenylindolizine (3ga).



Following the general method, the reaction of rac-1g (89.1 mg, 0.45 mmol), 2a (87.3 mg, 0.3 mmol), BSA (N, O-Bis(trimethylsilyl)acetamide)(183 mg, 0.9 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol), 2 mL CH<sub>3</sub>CN and the reaction was run for 72 hours afforded product 3ga (77.1 mg, 81%) as brown oil [eluent: petroleum ether = 250 mL], TLC  $R_f$  = 0.6 (100% PE), 99%

ee.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, J = 7.2 Hz, 1H), 7.49-7.36 (m, 5H), 7.35-7.29 (m, 1H), 6.69-6.61 (m, 1H), 6.51 (s, 1H), 6.49-6.44 (m, 1H), 6.30-6.18 (m, 1H), 5.16 (dt, J = 10.3, 1.6 Hz, 1H), 4.99 (dt, J = 17.1, 1.7 Hz, 1H), 3.76-3.64 (m, 1H), 2.12-1.91 (m, 2H), 1.78-1.67 (m, 1H), 1.60-1.53 (m, 1H), 1.51-1.43 (m, 1H), 1.28-1.17 (m, 1H), 1.08-0.87 (m, 4H), 0.66-0.52 (m, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 137.5, 136.2, 132.1, 130.0, 129. 7, 128.2, 126.4, 123.8, 121.1, 119.3, 116.2, 115.9, 109.7, 99.7, 46.9, 38.2, 32.5, 31.4, 26.3, 26.3, 26.3.

 $[\alpha]_D^{25} = -16.3$  (*c* 0.56, CHCl<sub>3</sub>).

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>23</sub>H<sub>26</sub>N 316.2060; Found 316.2073.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0 : 100, 1 ml/min), 40 °C, 254 nm, Rt = 17.307 min (major) and 18.700 min (minor), 99% ee.



(R)-3-(4-methylpent-1-en-3-yl)-2-phenylindolizine (3ha).

Following the general method, the reaction of rac-**1h** (71.1 mg, 0.45 mmol), **2a** (87.3 mg, 0.3 mmol), BSA (N, O-Bis(trimethylsilyl)acetamide)(183 mg, 0.9 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), **L5** (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol), 2 mL CH<sub>3</sub>CN and the reaction was run for 48 hours afforded product **3ha** (79.0 mg,

**3ha** 2 mL CH<sub>3</sub>CN and the reaction was run for 48 hours afforded product **3ha** (79 96%) as brown oil [eluent: petroleum ether = 250 mL], TLC  $R_f$  = 0.5 (100% PE), 99% *ee*.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (dd, J = 7.2, 0.7 Hz, 1H), 7.48-7.37 (m, 5H), 7.36-7.30 (m, 1H), 6.65 (ddd, J = 8.9, 6.4, 0.9 Hz, 1H), 6.52 (s, 1H), 6.49-6.43 (m, 1H), 6.32-6.19 (m, 1H), 5.18 (dt, J = 10.3, 1.7 Hz, 1H), 5.01 (dt, J = 17.2, 1.7 Hz, 1H), 3.66-3.55 (m, 1H), 2.45-2.27 (m, 1H), 1.05 (d, J = 6.5 Hz, 3H), 0.51 (d, J = 6.6 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 137.5, 136.5, 132.2, 130.0, 129.7, 128.2, 126.4, 123.8, 121.5, 119.3, 116.3, 115.9, 109.7, 99.8, 48.3, 28.8, 22.0, 21.3.

 $[\alpha]_D^{25} = -20.0$  (*c* 0.06, CHCl<sub>3</sub>).

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>20</sub>H<sub>22</sub>N 276.1747; Found 276.1759.

HPLC (Shimadzu LC-2030) (Daicel Chiralpak OJ-H Column, <sup>i</sup>PrOH : Hexane = 0.1 : 99.9 0.5 ml/min),

40 °C, 254 nm, Rt = 12.948 min (major) and 11.721 min (minor), 99% ee.



# (S)-2-phenyl-3-(1-phenylallyl)indolizine (3ia).

Following the general method, the reaction of rac-1i (115.2 mg, 0.6 mmol), 2a (87.3 mg, 0.3 mmol), BSA (N, O-Bis(trimethylsilyl)acetamide)(183 mg, 0.9 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub> (391 mg, 1.2 mmol), 2 mL CH<sub>3</sub>CN and the reaction was run for 72 hours afforded product **3ia** (76.6 mg,

83%) as brown oil [eluent: petroleum ether = 350 mL], TLC  $R_f$  = 0.45 (PE : EA 100 : 1), 99% *ee*. **<sup>1</sup>H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.51-7.45 (m, 3H), 7.44-7.37 (m, 3H), 7.34-7.26 (m, 3H), 7.23-7.18 (m, 1H), 7.17-7.11 (m, 2H), 6.68-6.61 (m, 1H), 6.61 (s, 1H), 6.47 (ddd, J = 16.9, 10.2, 6.4 Hz, 1H), 6.31-6.25 (m, 1H), 5.49 (d, J = 6.3 Hz, 1H), 5.33 (dt, J = 10.2, 1.5 Hz, 1H), 5.07 (dt, J = 17.1, 1.5 Hz, 1H). **<sup>13</sup>C NMR** (101 MHz, CDCl<sub>3</sub>) δ 139.9, 136.9, 135.4, 132.7, 130.1, 129.4, 128.7, 128.4, 127.6, 126.6, 126.6, 123.9, 119.9, 119.1, 118.1, 116.6, 109.7, 99.5, 44.8.

 $[\alpha]_D^{25} = -120.0 \ (c \ 0.18, \text{CHCl}_3).$ 

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>23</sub>H<sub>20</sub>N 310.1590; Found 310.1591.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0.3 : 99.7, 0.7 ml/min), 40 °C, 254 nm, R*t* = 15.310 min (major) and 14.349 min (minor), 99% *ee*.



#### (R)-3-(hex-1-en-3-yl)-2-(4-methoxyphenyl)indolizine (3ab).

Following the general method, the reaction of rac-**1a** (47.4 mg, 0.3 mmol), **2b** (115.6 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), **L5** (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol) and 2 mL CH<sub>3</sub>CN afforded product

**3ab** (83.5 mg, 91%) as brown oil [eluent: petroleum ether = 250 mL], TLC

 $R_f = 0.7 (100\% \text{ PE}), 99\% ee.$ 

3ab

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 7.2 Hz, 1H), 7.42-7.31 (m, 3H), 7.00-6.92 (m, 2H), 6.63 (dd, J = 8.5, 6.8 Hz, 1H), 6.52-6.38 (m, 2H), 6.19-6.06 (m, 1H), 5.22-5.10 (m, 1H), 5.07-4.93 (m, 1H), 4.07-3.99 (m, 1H), 3.85 (s, 3H), 1.98-1.87 (m, 1H), 1.81-1.74 (m, 1H), 1.10-0.93 (m, 2H), 0.69 (t, J = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 158.4, 138.6, 132.3, 130.6, 129.8, 129.4, 123.9, 120.7, 119.1, 116.0, 115.0, 113.8, 109.4, 99.4, 55.4, 39.6, 32.6, 21.0, 13.9.

 $[\alpha]_{D}^{25} = +30.9 (c \ 0.55, \text{CHCl}_3).$ 

 $n-C_3H_7$ 

3ac

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>21</sub>H<sub>24</sub>NO 306.1852; Found 306.1857.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OJ-H Column, <sup>*i*</sup>PrOH : Hexane = 0.2 : 99.8, 0.5 ml/min), 40 °C, 254 nm, Rt = 14.473 min (major) and 13.261 min (minor), 99% ee.

#### (R)-2-(2-bromophenyl)-3-(hex-1-en-3-yl)indolizine (3ac).



<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, J = 7.0 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 9.0 Hz, 1H), 7.33 (dd, J = 10.4, 2.7 Hz, 2H), 7.24-7.14 (m, 1H), 6.66 (ddd, J = 8.9, 6.5, 0.6 Hz, 1H), 6.56-6.39 (m, 2H), 6.15-6.00 (m, 1H), 5.20-5.12 (m, 1H), 5.04 (d, J = 17.3 Hz, 1H), 3.76-3.61 (m, 1H), 1.96-1.80

(m, 1H), 1.77-1.65 (m, 1H), 1.18-1.02 (m, 2H), 0.72 (t, *J* = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.3, 138.2, 132.8, 132.7, 132.0, 128.5, 128.2, 126.7, 125.0, 123.7, 121.7, 119.5, 116.1, 115.1, 109.7, 100.5, 39.9, 32.6, 21.0, 13.9.

 $[\alpha]_{D}^{25} = +20.7 (c \ 0.27, \text{CHCl}_3).$ 

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>20</sub>H<sub>21</sub>BrN 354.0852; Found 354.0853.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0.3 : 99.7, 0.7 ml/min), 40 °C, 254 nm, R*t* = 11.723 min (major) and 12.802 min (minor), 99% *ee*.



# (R)-3-(hex-1-en-3-yl)-2-(3-nitrophenyl)indolizine (3ad).

Following the general method, the reaction of rac-1a (47.4 mg, 0.3 mmol), 2d (121 mg, 0.36 mmol),  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol) and 2 mL CH<sub>3</sub>CN afforded product 3ad (91.5 mg,

**3ad** 95%) as green oil [eluent: petroleum ether/ethyl acetate 50 : 1 = 250 mL], TLC  $R_f = 0.4$  (PE : EA 50 : 1), 99% *ee*.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.31 (t, J = 1.9 Hz, 1H), 8.16 (ddd, J = 8.2, 2.2, 0.9 Hz, 1H), 7.92 (dd, J = 7.2, 0.7 Hz, 1H), 7.78-7.72 (m, 1H), 7.56 (t, J = 7.9 Hz, 1H), 7.40 (d, J = 9.0 Hz, 1H), 6.74-6.67 (m, 1H), 6.54 (s, 1H), 6.52-6.47 (m, 1H), 6.20-6.08 (m, 1H), 5.22 (ddd, J = 10.4, 2.0, 1.3 Hz, 1H), 5.03 (ddd, J = 17.3, 2.0, 1.4 Hz, 1H), 4.04-3.94 (m, 1H), 2.00-1.89 (m, 1H), 1.88-1.76 (m, 1H), 1.14-0.94 (m, 2H), 0.71 (t, J = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 148.3, 139.2, 137.9, 135.4, 132.7, 129.2, 127.2, 124.2, 124.1, 121.3, 121.2, 119.5, 116.8, 115.6, 110.2, 99.4, 39.7, 32.8, 21.1, 13.8.

 $[\alpha]_D^{25} = +16.8 \ (c \ 0.5, \text{CHCl}_3).$ 

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>20</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> 321.1598; Found 321.1600.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, <sup>*i*</sup>PrOH : Hexane = 5 : 95, 1 ml/min), 40 °C, 254 nm, Rt = 60.440 min (major) and 29.567 min (minor), 99% *ee* (The *ee* value was determined after the hydroboration/oxidation sequence).

#### (R)-3-(hex-1-en-3-yl)-2-methylindolizine (3ae).



3ae

Following the general method, the reaction of rac-**1a** (47.4 mg, 0.3 mmol), **2e** (82.4 mg, 0.36 mmol),  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%), **L5** (9.2 mg, 6 mol%),  $Cs_2CO_3(391 \text{ mg}, 1.2 \text{ mmol})$  and 2 mL CH<sub>3</sub>CN afforded product **3ae** (57.3 mg, 89%)

as brown oil [eluent: petroleum ether = 350 mL], TLC  $R_f$  = 0.5 (PE : EA 100 : 1),

99% ee.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (d, J = 7.1 Hz, 1H), 7.29-7.23 (m, 1H), 6.62-6.49 (m, 1H), 6.36 (t, J = 6.7 Hz, 1H), 6.26 (s, 1H), 6.10-5.97 (m, 1H), 5.09 (d, J = 10.4 Hz, 1H), 4.98 (d, J = 17.3 Hz, 1H), 3.84 (dt, J = 8.6, 6.5 Hz, 1H), 2.30 (s, 3H), 1.95-1.83 (m, 2H), 1.32-1.23 (m, 1H), 1.19-1.09 (m, 1H), 0.87 (t, J = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.6, 131.8, 122.8, 122.6, 121.3, 118.5, 115.2, 114.6, 108.9, 100.3, 39.5, 33.3, 21.1, 14.1, 12.8.

 $[\alpha]_D^{25} = +0.6$  (*c* 0.5, CHCl<sub>3</sub>).

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>15</sub>H<sub>20</sub>N 214.1590; Found 214.1589.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0 : 100, 0.3 ml/min), 40 °C, 254 nm, Rt = 39.709 min (major) and 38.074 min (minor), 99% ee.

# (R)-3-(hex-1-en-3-yl)-1-methyl-2-phenylindolizine (3af).



Following the general method, the reaction of rac-**1a** (47.4 mg, 0.3 mmol), **2f** (137.3 mg, 0.45 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), **L7** (10.4 mg, 6 mol%),  $Cs_2CO_3(391 \text{ mg}, 1.2 \text{ mmol})$ , N, O-Bis(trimethylsilyl)acetamide(121.8 mg, 0.6 mmol), 2 mL CH<sub>3</sub>CN and the reaction was run for 48 hours afforded product **3af** (79.0 mg, 91%) as colorless oil [eluent: petroleum ether = 350 mL], TLC  $R_f$  = 0.5 (PE : EA 100 : 1), 99% *ee*.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.84 (d, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.38-7.29 (m, 4H), 6.64-6.56 (m, 1H), 6.40 (t, *J* = 6.8 Hz, 1H), 6.13-6.01 (m, 1H), 5.13 (d, *J* = 10.4 Hz, 1H), 4.99 (d, *J* = 17.3 Hz, 1H), 3.91-3.80 (m, 1H), 2.26 (s, 3H), 1.93-1.81 (m, 1H), 1.77-1.65 (m, 1H), 1.11-0.96 (m, 2H), 0.69 (t, *J* = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.8, 136.4, 130.7, 129.7, 129.2, 128.0, 126.5, 123.5, 120.7, 117.6, 114.8, 114.5, 109.2, 106.2, 39.7, 32.7, 21.0, 13.9, 9.3.

 $[\alpha]_{D}^{25} = +24.0$  (*c* 0.35, CHCl<sub>3</sub>).

HRMS (ESI) m/z:  $[M + H]^+$  calcd for C<sub>21</sub>H<sub>24</sub>N 290.1903; Found 290.1906.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OJ-H Column, <sup>*i*</sup>PrOH : Hexane = 0 : 100, 1 ml/min), 40 °C, 254 nm, Rt = 49.114 min (major) and 44.506 min (minor), 99% *ee*.



3ag

# (R)-3-(hex-1-en-3-yl)-1,2-diphenylindolizine (3ag).

Following the general method, the reaction of rac-**1a** (47.4 mg, 0.3 mmol), **2g** (132.1 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), **L7** (10.4 mg, 6 mol%),

Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol), N, O-Bis(trimethylsilyl)acetamide(121.8 mg, 0.6 mmol) and 2 mL CH<sub>3</sub>CN afforded product **3ag** (78.0 mg, 74%) as brown oil [eluent: petroleum ether = 350 mL], TLC  $R_f$  = 0.3 (100% PE), 99% *ee*.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.95 (d, *J* = 7.2 Hz, 1H), 7.62 (d, *J* = 9.1 Hz, 1H), 7.35-7.26 (m, 4H), 7.25-7.20 (m, 5H), 7.18-7.13 (m, 1H), 6.75-6.64 (m, 1H), 6.55-6.47 (m, 1H), 6.22-6.09 (m, 1H), 5.25-5.16 (m, 1H), 5.14-5.04 (m, 1H), 4.03-3.88 (m, 1H), 2.01-1.90 (m, 1H), 1.83-1.74 (m, 1H), 1.17-0.99 (m, 2H), 0.72 (t, *J* = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.6, 136.0, 135.4, 131.1, 130.0, 128.3, 128.1, 127.9, 126.4, 125.1, 123.9, 122.0, 118.3, 116.9, 115.1, 113.2, 110.2, 39.5, 32.6, 21.0, 13.9.

 $[\alpha]_D^{25} = +4.2$  (*c* 0.38, CHCl<sub>3</sub>).

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>26</sub>H<sub>26</sub>N 352.2060; Found 352.2064.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, <sup>*i*</sup>PrOH : Hexane = 0 : 100, 1 ml/min), 40 °C, 254 nm, Rt = 9.799 min (major) and 11.326 min (minor), 99% *ee*.

# (R)-3-(hex-1-en-3-yl)-8-methyl-2-phenylindolizine (3ah).



Following the general method, the reaction of rac-**1a** (47.4 mg, 0.3 mmol), **2h** (109.8 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), **L5** (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol) and 2 mL CH<sub>3</sub>CN afforded product **3ah** (79.6 mg, 92%) as brown oil [eluent: petroleum ether = 350 mL], TLC  $R_f$  = 0.7 (PE : EA 100 : 1), 99% *ee*.

3ah

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.82 (d, *J* = 7.1 Hz, 1H), 7.49-7.38 (m, 4H), 7.35-7.28 (m, 1H), 6.50 (s, 1H), 6.50-6.47 (m, 1H), 6.41 (t, *J* = 6.8 Hz, 1H), 6.23-6.09 (m, 1H),

5.18 (ddd, *J* = 10.4, 2.2, 1.5 Hz, 1H), 5.03 (ddd, *J* = 17.4, 2.1, 1.5 Hz, 1H), 4.11-4.01 (m, 1H), 2.43 (s, 3H), 2.02-1.88 (m, 1H), 1.85-1.73 (m, 1H), 1.14-0.94 (m, 2H), 0.70 (t, *J* = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 138.7, 137.5, 133.3, 129.6, 129.3, 128.3, 128.2, 126.4, 122.1, 121.3, 115.6, 115.1, 109.7, 98.0, 39.6, 32.8, 21.0, 18.3, 13.9.

 $[\alpha]_D^{25} = +17.1$  (*c* 0.45, CHCl<sub>3</sub>).

HRMS (ESI) m/z:  $[M + H]^+$  calcd for C<sub>21</sub>H<sub>24</sub>N 290.1903; Found 290.1907.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak ID Column, PrOH : Hexane = 0 : 100, 0.3 ml/min), 40 °C, 254 nm, Rt = 20.019 min (major) and 19.262 min (minor), 99% *ee*.

## (R)-6-bromo-3-(hex-1-en-3-yl)-2-phenylindolizine (3ai).

Following the general method, the reaction of rac-1a (56.9 mg, 0.36 mmol), 2i (100.7 mg, 0.3 mmol),  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%), L5 (9.2 mg, 6 mol%), Cs<sub>2</sub>CO<sub>3</sub>(391 mg, 1.2 mmol), 2 mL CH<sub>3</sub>CN and the reaction was run for 48 hours afforded product 3ai (95.3 mg, 90%) as green oil [eluent: petroleum ether = 350

mL], TLC  $R_f = 0.7$  (PE : EA 100 : 1), 99% ee.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08-8.01 (m, 1H), 7.42 (d, J = 4.4 Hz, 4H), 7.37-7.31 (m, 1H), 7.31-7.27 (m, 1H), 6.72 (dd, J = 9.4, 1.6 Hz, 1H), 6.55 (s, 1H), 6.18-6.07 (m, 1H), 5.23 (ddd, J = 10.4, 2.3, 1.3 Hz, 1H), 5.03 (ddd, J = 17.4, 2.2, 1.3 Hz, 1H), 4.09-4.00 (m, 1H), 1.97-1.85 (m, 1H), 1.84-1.73 (m, 1H), 1.12-0.96 (m, 2H), 0.71 (t, J = 7.3 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 137.9, 136.7, 130.7, 130.5, 129.5, 128.4, 126.7, 123.7, 121.7, 119.9, 119.4, 115.6, 104.7, 101.0, 39.5, 32.5, 21.0, 13.8.

 $[\alpha]_D^{25} = +31.7$  (*c* 0.6, CHCl<sub>3</sub>).

3ai

HRMS (ESI) m/z:  $[M + H]^+$  calcd for C<sub>20</sub>H<sub>21</sub>BrN 354.0852; Found 354.0864.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0 : 100, 1 ml/min), 40 °C, 254 nm, Rt = 7.379 min (major) and 8.318 min (minor), 99% ee.



3aa'

# 2-phenylindolizine(3aa').

Following the general method, the reaction was carried out with rac-1a (47.4 mg, 0.3 mmol), 2a (104.8 mg, 0.36 mmol), [Rh(cod)Cl]<sub>2</sub> (3.7 mg, 2.5 mol%), L1 (7.7 mg, 6

mol%) and 2 mL CH<sub>3</sub>CN (Table 1, entry 1) afforded product **3aa** (19 mg, 23%) and **3aa**' (55.6 mg) as silvery white flake solid [eluent: petroleum ether/ethyl acetate 50 : 1 = 250 mL], TLC  $R_f = 0.35$  (PE : EA 100 : 1), m. p. 211 °C ~ 214 °C.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.89 (d, *J* = 6.8 Hz, 1H), 7.71-7.62 (m, 2H), 7.58 (s, 1H), 7.49-7.32 (m, 3H), 7.31-7.22 (m, 2H), 6.70 (s, 1H), 6.68-6.61 (m, 1H), 6.51-6.42 (m, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 135.5, 133.8, 129.6, 128.9, 126.7, 126.3, 125.2, 119.2, 117.5, 110.6, 109.4, 96.8.

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>14</sub>H<sub>12</sub>N 194.0964; Found 194.0966.

# 7. The Reactions of Linear Allylic Carbonates.



To a solution of  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%) and L4 (8.7 mg, 6 mol%) in CH<sub>3</sub>CN (2 mL) was added Z-1j (47.4 mg, 0.3 mmol, 1.0 equiv) and 2a (104.8 mg, 0.36 mmol, 1.2 equiv) at room temperature under an argon atmosphere. After being stirred at 40 °C (oil bath as heat source) for 24 hours, the reaction mixture was treated with 4 equiv of Cs<sub>2</sub>CO<sub>3</sub> under the air. After being stirred at 40 °C (oil bath as heat source) for 2 hours, the reaction mixture was filtered through a short pad of silica gel eluting with ethyl acetate and the solvent was removed in vacuum. The residue was purified by silica gel column chromatography (100% PE) to give **3aa** (75.1 mg, 91%) as a brown oil.



To a solution of  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%) and L8 (9.0 mg, 6 mol%) in CH<sub>3</sub>CN (2 mL) was added E-1j (47.4 mg, 0.3 mmol, 1.0 equiv) and 2a (104.8 mg, 0.36 mmol, 1.2 equiv) at room temperature under an argon atmosphere. After being stirred at 40 °C (oil bath as heat source) for 24 hours, the reaction mixture was treated with 4 equiv of Cs<sub>2</sub>CO<sub>3</sub> under the air. After being stirred at 40 °C (oil bath as heat source) for 2 hours, the reaction mixture was filtered through a short pad of silica gel eluting with ethyl acetate and the solvent was removed in vacuum. The residue was purified by silica gel column chromatography (100% PE) to give **3aa** (69.3 mg, 84%) as a brown oil.

# 8. Large scale synthesis of 3ba.



To a solution of  $[Rh(cod)Cl]_2$  (61 mg, 2.5 mol%) and L5 (140 mg, 5.5 mol%) in CH<sub>3</sub>CN (30 mL) was added rac-1b (650 mg, 5 mmol, 1.0 equiv) and 2a (1.6 g, 5.5 mmol, 1.1 euqiv) at room temperature under an argon atmosphere. After being stirred at 40 °C (oil bath as heat source) for 24 hours, the reaction mixture was treated with 4 equiv of Cs<sub>2</sub>CO<sub>3</sub> under the air. After being stirred at 40 °C (oil bath as heat source) for 2 hours, the reaction mixture was filtered through a short pad of silica gel eluting with ethyl acetate and the solvent was removed in vacuum. The residue was purified by silica gel column chromatography (100% PE) to give 3ba (1.124 g, 91%) as a colorless oil, freeze-dried to obtain a white solid.

# 9. Procedures of derivatization and spectral data of the products.



A 10 mL tube equipped with a magnetic stirring bar was charged with **3ba** (24.7 mg, 0.1 mmol), Pd/C (1.3 mg, 5% wt), and MeOH (1.0 ml). The reaction mixture was flushed with H<sub>2</sub> (3x), and stirred at room temperature with a H<sub>2</sub> balloon for 12 hours. The reaction mixture was filtered through a short pad of silica gel eluting with ethyl acetate and concentrated. The residue was purified by silica gel column chromatography (100% PE) to give **8** (23.9 mg, 96%) as a yellow oil.



#### (R)-3-(sec-butyl)-2-phenylindolizine (8).

Yellow oil, 23.9 mg, 96%. TLC  $R_f = 0.7$  (100% PE), 99% ee.

<sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97 (dd, *J* = 7.2, 0.8 Hz, 1H), 7.45-7.35 (m, 5H), 7.35-7.30 (m, 1H), 6.63 (ddd, *J* = 8.9, 6.4, 0.8 Hz, 1H), 6.51-6.47 (m, 1H), 6.47 (s, 1H), 3.38-3.26 (m, 1H), 1.96-1.86 (m, 1H), 1.81- 1.68 (m, 1H), 1.42 (d, *J* = 7.3 Hz, 3H), 0.77 (t,

J = 7.4 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  137.8 (s), 132.0 (s), 129.9 (s), 128.5 (s), 128.1 (s), 126.3 (s), 124.7 (s), 123.4 (d, J = 4.1 Hz), 119.5 (d, J = 3.8 Hz), 115.7 (d, J = 7.0 Hz), 109.8 (d, J = 5.5 Hz), 99.9 (d, J = 7.3 Hz), 32.7 (s), 27.0 (s), 18.0 (d, J = 6.1 Hz), 12.8 (d, J = 5.0 Hz).

 $[\alpha]_D^{25} = -42.0 \ (c \ 0.05, \ CHCl_3).$ 

**HRMS** (ESI) m/z:  $[M + H]^+$  calcd for C<sub>18</sub>H<sub>20</sub>N 250.1590; Found 250.1592.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OD-H Column, 'PrOH : Hexane = 0 : 100, 1 ml/min), 40 °C, 254 nm, Rt = 19.809 min (major) and 19.070 min (minor), 99% ee.



The reaction was performed according to the modified literature procedure.<sup>5</sup> 3-Allyl indolizines **3ba** (74.1 mg, 0.3 mmol, 1.0 euqiv) was dissolved in THF (1.5 ml) and cooled to 0 °C, then 9-BBN (1.5 ml, 90.8 mg, 0.75 mmol, 0.5 M in THF, 2.5 equiv) was slowly added. The reaction was stirred for 15 min at 0 °C, and then slowly warmed up to room temperature and stir for 12 hours. The reaction mixture was cooled to 0 °C, then EtOH (0.5 ml), NaOH (0.5 ml, 2 M in H<sub>2</sub>O) and H<sub>2</sub>O<sub>2</sub> (0.5 ml, 30% wt in H<sub>2</sub>O) were added slowly in the given order. The reaction was warmed up to room temperature and stirred for 3 hours. The reaction mixture was diluted with dichloromethane and transferred into a separation funnel. The aqueous phase was extracted with dichloromethane (3x). The combined organic layer was dried over anhydrous sodium sulfate, filtered and concentrated in vacuum. The residue was purified by silica gel column chromatography (PE : EA 10 : 1) to give 9 (72.6 mg, 91%) as a yellow oil.



#### (R)-3-(2-phenylindolizin-3-yl)butan-1-ol (9).

Yellow oil, 72.6 mg, 91%. TLC  $R_f = 0.15$  (PE : EA 10 : 1), 99% *ee*. <sup>1</sup>H NMR (400 MHz, DMSO)  $\delta$  8.19 (d, J = 6.7 Hz, 1H), 7.45-7.37 (m, 5H), 7.34-7.27 (m, 1H), 6.72-6.62 (m, 1H), 6.60-6.52 (m, 1H), 6.41 (s, 1H), 4.42 (t, J = 4.3Hz, 1H), 3.64-3.49 (m, 1H), 3.32-3.19 (m, 2H), 2.03-1.81 (m, 2H), 1.32 (d, J = 7.3

Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 137.4, 132.2, 129.8, 128.6, 128.3, 126.6, 123.6, 123.3, 119.5, 116.0, 110.2, 100.03 61.31 36.52 27.4, 18.5.

 $[\alpha]_D^{25} = -34.4$  (*c* 0.55, CHCl<sub>3</sub>).

HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>19</sub>NONa 288.1359; Found 288.1373.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OJ-H Column, <sup>*i*</sup>PrOH : Hexane = 0.9 : 99.1, 0.9 ml/min), 40 °C, 254 nm, Rt = 76.730 min (major) and 82.711 min (minor), 99% ee.



The reaction was performed according to the modified literature procedure.<sup>6, 4c</sup> (R)-3-(but-3-en-2-yl)-2phenylindolizine **3ba** (74.1 mg, 0.3 mmol, 1.0 equiv) was dissolved in DMF (0.5 mL). A solution of freshly distilled POCl<sub>3</sub> (55.2 mg, 0.36 mmol, 35 uL, 1.2 equiv) in DMF (110 uL) was added to the indolizines solution. After being stirred at 40 °C (oil bath as heat source) for 45 minutes, the mixture was allowed to cool and carefully quenched with water (0.5 ml). The reaction mixture was diluted with dichloromethane and transferred into a separation funnel. The aqueous phase was extracted with dichloromethane (3x). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated in vacuum. The residue was purified by silica gel column chromatography (PE : EA 50 : 1) to give **10** (81.0 mg, 98%) as a white solid.

#### (R)-3-(but-3-en-2-yl)-2-phenylindolizine-1-carbaldehyde (10).



сно

White solid, m. p. 121.3 °C ~ 121.9 °C, 81.0 mg, 98%. TLC  $R_f = 0.15$  (PE : EA 10 : 1), 99% *ee*.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 9.71 (s, 1H), 8.51 (d, *J* = 8.9 Hz, 1H), 8.10 (d, *J* = 7.0 Hz, 1H), 7.57-7.33 (m, 5H), 7.31-7.07 (m, 1H), 6.85 (t, *J* = 6.8 Hz, 1H), 6.16-5.93 (m, 1H), 5.34-5.13 (m, 1H), 5.17-4.99 (m, 1H), 4.12-3.88 (m, 1H), 1.44 (d, *J* = 7.4 Hz, 3H).

<sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 185.7, 138.9, 135.7, 133.1, 131.7, 130.9, 128.3, 127.8, 125.1, 125.0, 124.4, 120.5, 115.4, 113.7, 112.0, 33.2, 16.1.

 $[\alpha]_D^{25} = 38.2$  (*c* 0.5, CHCl<sub>3</sub>).

HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>17</sub>NONa 298.1202; Found 298.1216.

**HPLC** (Shimadzu LC-2030) (Daicel Chiralpak OJ-H Column, <sup>*i*</sup>PrOH : Hexane = 0.4 : 99.6, 0.4 ml/min), 40 °C, 254 nm, Rt = 70.948 min (major) and 66.125 min (minor), 99% ee.



To a solution of  $Pd(OAc)_2$  (6.7 mg, 10 mol%, 0.03 mmol) and PPh<sub>3</sub> (31.4 mg, 40 mol%, 0.12 mmol) in DMF (1 mL) was added **3ac** (105.9 mg, 0.3 mmol, 1.0 equiv) and Et<sub>3</sub>N (30.4 mg, 100 mol%, 0.3 mmol) at room temperature under an argon atmosphere. After being stirred at 130 °C (oil bath as heat source) for 12 hours, the reaction mixture was filtered through a short pad of silica gel eluting with ethyl acetate and concentrated. The residue was purified by silica gel column chromatography (100% PE) to give **11** (59.3 mg, 72%) as a green oil.

# 5-methyl-6-propylbenzo[e]pyrido[1,2-a]indole (11).



Green oil, 59.3 mg, 72%. TLC  $R_f = 0.6$  (100% PE).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.87 (t, *J* = 174.4 Hz, 1H), 8.48-8.39 (m, 1H), 8.18-8.10 (m, 1H), 7.62-7.54 (m, 3H), 7.31 (s, 1H), 6.86 (dd, *J* = 9.0, 6.3 Hz, 1H), 6.61-6.53 (m, 1H), 3.38-3.26 (m, 2H), 2.78 (s, 3H), 1.95-1.77 (m, 2H), 1.22 (t, *J* = 7.3

Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 135.9, 130.3, 126.7, 126.4, 126.3, 125.7, 125.5, 125.0, 124.8, 124.7, 124.2, 124.1, 119.9, 119.2, 109.3, 92.0, 31.7, 23.2, 14.7, 14.3. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>20</sub>N 274.1590; Found 274.1591.

## 10. Procedures of control experiments and spectral data of the products.



To a solution of  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%) and L5 (9.2 mg, 6 mol%) in CH<sub>3</sub>CN (2 mL) was added rac-1a (47.4 mg, 0.3 mmol, 1.0 equiv) and 2a (104.8 mg, 0.36 mmol, 1.2 equiv) at room temperature under an argon atmosphere. After being stirred at 40 °C (oil bath as heat source) for 24 hours, the crude reaction mixture was directly subjected to flash column chromatography (100% PE) to give 3aa (7.4 mg, 9%) as a brown oil and (DCM : MeOH 10 : 1) to give 4 (97.4 mg, 87%, 1 : 1.3 dr) as a white solid.



J = 17.3, 8.3 Hz, 2H), 7.87-7.79 (m, 2H), 7.78-7.73 (m, 2H), 7.26-7.18 (m, 3H), 6.08 (dt, J = 17.4, 9.9 Hz, 1H), 5.74 (s, 1H), 5.47 (d, J = 4.4 Hz, 1H), 5.05-4.95 (m, 2H), 4.36-4.23 (m, 2H), 3.86 (d, J = 6.9 Hz, 1H), 3.17-3.04 (m, 2H), 1.21-1.04 (m, 4H), 0.62 (t, J = 8.0 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 157.2, 144.9, 142.4, 140.9, 137.9, 128.5, 127.8, 125.9, 125.4, 125.2,

119.4, 81.3, 81.2, 49.5, 45.7, 32.3, 20.8, 13.7.

 $[\alpha]_{D}^{25} = +22.7 (c \ 0.3, \text{CHCl}_3).$ 

HRMS (ESI) *m/z*: [M]<sup>+</sup> calcd for C<sub>20</sub>H<sub>24</sub>NO 294.1852; Found 294.1854.



To a solution of **2a** (87.3 mg, 1.0 equiv) in CH<sub>3</sub>CN (2 mL) was added LiOMe (0.6 mg, 5 mol%) at room temperature under an argon atmosphere. After being stirred at 40 °C (oil bath as heat source) for 12 hours, the formed precipitate was filtered out and then washed with dichloromethane (2 mL). The crude product was sonicated and centrifuged sequentially (3x) to obtain target compound **5** (71.5 mg, 82%) as a white solid.

2-hydroxy-2-phenyl-2,3-dihydro-1H-indolizin-4-ium bromide (5).

White solid, m. p. 221.3 °C ~ 222.5 °C, 71.5 mg, 82%. TLC  $R_f = 0.2$  (DCM : MeOH 5 : 1).

<sup>1</sup>**H** NMR (400 MHz, DMSO)  $\delta$  9.16 (d, J = 6.0 Hz, 1H), 8.60 (t, J = 7.7 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 8.08 (t, J = 6.8 Hz, 1H), 7.69 (dd, J = 5.2, 3.3 Hz, 2H), 7.51-7.43 (m, 2H), 7.42-7.35 (m, 1H), 6.39 (s, 1H), 5.18 (d, J = 13.4 Hz, 1H), 5.03 (d, J = 13.4 Hz, 1H), 4.00 (d, J = 17.7 Hz, 1H),

3.78 (d, *J* = 17.7 Hz, 1H). <sup>13</sup>C NMR (101 MHz, DMSO) δ 157.1, 145.7, 141.7, 140.8, 128.4, 128.0, 125.9, 125.8, 125.1, 78.6, 70.3, 47.4.

HRMS (ESI) *m/z*: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>14</sub>NO 212.1070; Found 212.1077.



To a solution of  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%) and L5 (9.2 mg, 6 mol%) in CH<sub>3</sub>CN (2 mL) was added rac-1a (47.4 mg, 0.3 mmol, 1.0 equiv) and 5 (104.8 mg, 0.36 mmol, 1.2 equiv) at room temperature under an argon atmosphere. After being stirred at 40 °C (oil bath as heat source) for 24 hours, the crude reaction mixture was analyzed by TLC and NMR, and the target compound 4 was not observed.



To a solution of  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%) and L5 (9.2 mg, 6 mol%) in CH<sub>3</sub>CN (2 mL) was added rac-1a (47.4 mg, 0.3 mmol, 1.0 equiv) and 6 (99.7 mg, 0.36 mmol, 1.2 equiv) at room temperature under an argon atmosphere. After being stirred at 40 °C (oil bath as heat source) for 24 hours, the crude reaction mixture was directly subjected to flash column chromatography (DCM : MeOH 10 : 1) to give 7 (100.1 mg, 93%, 2.7 : 1 dr) as a light yellow solid.



#### 1-(1-oxo-1-phenyl-3-vinylhexan-2-yl)pyridin-1-ium bromide (7).

Light yellow solid, m. p. 111.0 °C ~ 112.3 °C, 100.1 mg, 93%. TLC  $R_f = 0.5$  (DCM : MeOH 10 : 1), 2.7 : 1 dr.

7

Major diastereomer. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.78 (d, J = 5.9 Hz, 2H), 8.58 (t, J = 7.8 Hz, 1H), 8.54-8.45 (m, 2H), 8.08 (t, J = 7.3 Hz, 2H), 7.83 (d, J = 9.6 Hz, 1H),

7.53-7.39 (m, 3H), 5.91-5.76 (m, 1H), 4.88-4.72 (m, 2H), 3.10-2.88 (m, 1H), 1.56-1.40 (m, 1H), 1.35-1.24 (m, 2H), 1.15-1.05 (m, 1H), 0.66 (t, *J* = 6.9 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 194.0, 146.2, 145.0, 135.3, 135.1, 134.4, 130.2, 129.4, 127.9, 120.4, 72.1, 49.8, 32.4, 20.2, 13.3.

 $[\alpha]_{D}^{25} = -58.0 \ (c \ 0.5, \ CHCl_3).$ 

HRMS (ESI) *m/z*: [M]<sup>+</sup> calcd for C<sub>19</sub>H<sub>22</sub>NO 280.1696; Found 280.1696.



To a solution of  $[Rh(cod)Cl]_2$  (3.7 mg, 2.5 mol%) and L5 (9.2 mg, 6 mol%) in CH<sub>3</sub>CN (2 mL) was added rac-1a (47.4 mg, 0.3 mmol, 1.0 equiv) and 3aa' (69.5 mg, 0.36 mmol, 1.2 equiv) at room temperature under an argon atmosphere. After being stirred at 40 °C (oil bath as heat source) for 24 hours, the crude reaction mixture was directly subjected to flash column chromatography (100% PE) to give 3aa (8.5 mg, 10%, 98% *ee*) as a brown oil. When the reaction of 3aa' was conducted at 80 °C (oil bath as heat source) under otherwise the identical condition, 3aa (8.2 mg, 10%, 98% ee) was obtained.

# 11. Single crystal X-ray diffraction data.

# 11.1 Crystal data of 3ba.

Single crystals of **3ba** were obtained by recrystallization from pentane at 0 °C (very fast evaporation in air). Absolute configuration of compound **3ba** was tested by Single-crystal X-ray diffractometer (D8 Venture) analysis.



CCDC 2015160

Figure S1. Compound structure with atom labeling scheme of **3ba**. H atoms and counter anions are omitted for structural clarity. ORTEP diagram are drawn at the 30% probability level.

| Bond precision:        |     | $\mathbf{C} - \mathbf{C} = 0$ | 0.0047 A        | Wavelength = 1.54178 |                  |
|------------------------|-----|-------------------------------|-----------------|----------------------|------------------|
| Cell:                  | a = | 8.8552 (11)                   | b = 9.7214 (11) |                      | c = 16.4722 (18) |
| a                      |     | pha = 90                      | beta = 90       |                      | gamma = 90       |
| Temperature: 297 K     |     |                               |                 |                      |                  |
|                        |     | Calculated                    |                 | Reported             |                  |
| Volume                 |     | 1418.0 (3)                    |                 | 1418.0 (3)           |                  |
| Space group            |     | P 21 21 21                    |                 | P 21 21 21           |                  |
| Hall group             |     | P 2a                          | ac 2ab          | P 2ac 2ab            |                  |
| Moiety formula         |     | C18 H17 N                     |                 | C18 H17 N            |                  |
| Sum formula            |     | C18 H17 N                     |                 | C18 H17 N            |                  |
| Mr                     |     | 247.33                        |                 | 247.32               |                  |
| Dx, g cm <sup>-3</sup> |     | 1.158                         |                 | 1.159                |                  |
| Ζ                      |     | 4                             |                 | 4                    |                  |

 Table S2: Crystal data.

| Mu (mm <sup>-1</sup> )                                             | 0.508        |                                    | 0.508               |  |  |
|--------------------------------------------------------------------|--------------|------------------------------------|---------------------|--|--|
| F000                                                               | 528.0        |                                    | 528.0               |  |  |
| F000'                                                              | 529          | 9.35                               |                     |  |  |
| h, k, lmax                                                         | 10, 11, 19   |                                    | 10, 11, 19          |  |  |
| Nref                                                               | 2595 [ 1509] |                                    | 2525                |  |  |
| Tmin, Tmax                                                         | 0.903, 0.927 |                                    | 0.665, 0.753        |  |  |
| Tmin'                                                              | 0.           | 903                                |                     |  |  |
| Correction method = # Reported T Limits: Tmin = 0.665 Tmax = 0.753 |              |                                    |                     |  |  |
| AbsCorr = ?                                                        |              |                                    |                     |  |  |
| Data completeness = 1                                              | .67/0.97     | The                                | neta (max) = 68.023 |  |  |
| R (reflections) = $0.035$ :                                        | 5 (1873)     | wR2 (reflections) = 0.1272 ( 2525) |                     |  |  |
| S = 1.093                                                          |              | Npar = 174                         |                     |  |  |

# 12. NMR spectra and HPLC data.

(4S,4'S)-2,2'-(((3,5-di-tert-butyl-4-methoxyphenyl)phosphanediyl)bis(2,1-phenylene))bis(4-(tert-butyl)-4,5-dihydrooxazole) (L6).







(4S,4'S)-2,2'-(((4-(trifluoromethyl)phosphanediyl)bis(2,1-phenylene))bis(4-(tert-butyl)-4,5-dihydrooxazole) (L7).

S30

110 100 90 chemical shift

80 70 60 50 40 30

210

200 190 180 170 160 150 140 130 120

-10

20 10 0









2-methyl-1-(2-(3-nitrophenyl)-2-oxoethyl)pyridin-1-ium bromide (2d).



2-benzyl-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide (2g).



2,3-dimethyl-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide (2h).



5-bromo-2-methyl-1-(2-oxo-2-phenylethyl)pyridin-1-ium bromide (2i).
(R)-3-(hex-1-en-3-yl)-2-phenylindolizine (3aa).









The ee value was determined after the hydroboration/oxidation sequence (9).



25-0 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 min Peak Table Detector A Channel 2 254mm

| Detector A | A Channel 21 | 254nm    |        |        |         |
|------------|--------------|----------|--------|--------|---------|
| Peak#      | Ret. Time    | Area     | Height | Conc.  | Area%   |
| 1          | 76.730       | 10663560 | 88753  | 99.745 | 99.745  |
| 2          | 82.711       | 27298    | 294    | 0.255  | 0.255   |
| Total      |              | 10690857 | 89047  |        | 100.000 |



(R)-2-phenyl-3-(5-phenylpent-1-en-3-yl)indolizine (3ca).

The ee value was determined after the hydroboration/oxidation sequence.





## (R)-3-(6-(benzyloxy)hex-1-en-3-yl)-2-phenylindolizine (3da).



| Detector A Channel 2 254nm |           |          |        |        |         |  |  |  |
|----------------------------|-----------|----------|--------|--------|---------|--|--|--|
| Peak#                      | Ret. Time | Area     | Height | Conc.  | Area%   |  |  |  |
| 1                          | 29.741    | 12680139 | 113683 | 51.545 | 51.545  |  |  |  |
| 2                          | 46.382    | 11920020 | 124423 | 48.455 | 48.455  |  |  |  |
| Total                      |           | 24600160 | 238106 |        | 100.000 |  |  |  |



Chromatogram

| Delector | A Champer 2 2041111 |          |        |        |         |  |  |  |  |
|----------|---------------------|----------|--------|--------|---------|--|--|--|--|
| Peak#    | Ret. Time           | Area     | Height | Conc.  | Area%   |  |  |  |  |
| 1        | 30.775              | 234014   | 2580   | 0.431  | 0.431   |  |  |  |  |
| 2        | 47.152              | 54044899 | 512159 | 99.569 | 99.569  |  |  |  |  |
| Total    |                     | 54278913 | 514739 |        | 100.000 |  |  |  |  |







| Detector A Chariner 2 234hin |           |          |         |        |         |  |  |  |  |
|------------------------------|-----------|----------|---------|--------|---------|--|--|--|--|
| Peak#                        | Ret. Time | Area     | Height  | Conc.  | Area%   |  |  |  |  |
| 1                            | 12.651    | 37330928 | 1916956 | 51.493 | 51.493  |  |  |  |  |
| 2                            | 17.909    | 35165654 | 2179889 | 48.507 | 48.507  |  |  |  |  |
| Total                        |           | 72496581 | 4096845 |        | 100.000 |  |  |  |  |

mV



| Peak# | Ret. Time | Area     | Height  | Conc.  | Area%   |  |  |  |
|-------|-----------|----------|---------|--------|---------|--|--|--|
| 1     | 12.716    | 27646053 | 1497287 | 99.828 | 99.828  |  |  |  |
| 2     | 18.102    | 47520    | 3313    | 0.172  | 0.172   |  |  |  |
| Total |           | 27693574 | 1500600 |        | 100.000 |  |  |  |

(S)-3-(1-cyclopropylallyl)-2-phenylindolizine (3fa).





| 2     | 16.669 | 226448  | 44941  | 4.984 | 4.984   |
|-------|--------|---------|--------|-------|---------|
| Total |        | 4543526 | 292531 |       | 100 000 |







| Detector A Channel 2 254nm |           |          |         |        |         |  |  |  |
|----------------------------|-----------|----------|---------|--------|---------|--|--|--|
| Peak#                      | Ret. Time | Area     | Height  | Conc.  | Area%   |  |  |  |
| 1                          | 17.504    | 11833903 | 518072  | 51.298 | 51.298  |  |  |  |
| 2                          | 18.670    | 11235135 | 1150511 | 48.702 | 48.702  |  |  |  |
| Total                      |           | 23069038 | 1668583 |        | 100.000 |  |  |  |



| Jetector A Channel 2 254nm |           |          |        |        |         |  |  |  |
|----------------------------|-----------|----------|--------|--------|---------|--|--|--|
| Peak#                      | Ret. Time | Area     | Height | Conc.  | Area%   |  |  |  |
| 1                          | 17.307    | 22658649 | 918919 | 99.777 | 99.777  |  |  |  |
| 2                          | 18.700    | 50543    | 6920   | 0.223  | 0.223   |  |  |  |
| Total                      |           | 22709192 | 925839 |        | 100.000 |  |  |  |



(R)-3-(4-methylpent-1-en-3-yl)-2-phenylindolizine (3ha).





273626 273624 Total







| I | Detector A Channel 2 254nm |           |          |         |        |         |  |  |  |  |
|---|----------------------------|-----------|----------|---------|--------|---------|--|--|--|--|
|   | Peak#                      | Ret. Time | Area     | Height  | Conc.  | Area%   |  |  |  |  |
|   | 1                          | 14.163    | 17014715 | 2117425 | 54.891 | 54.891  |  |  |  |  |
|   | 2                          | 15.337    | 13982322 | 539804  | 45.109 | 45.109  |  |  |  |  |
|   | Total                      |           | 30997037 | 2657230 |        | 100.000 |  |  |  |  |

| Detector A Champel 2 234mm |           |         |        |        |         |  |  |  |
|----------------------------|-----------|---------|--------|--------|---------|--|--|--|
| Peak#                      | Ret. Time | Area    | Height | Conc.  | Area%   |  |  |  |
| 1                          | 14.349    | 1515    | 102    | 0.036  | 0.036   |  |  |  |
| 2                          | 15.310    | 4150046 | 917487 | 99.964 | 99.964  |  |  |  |
| Total                      |           | 4151561 | 917589 |        | 100.000 |  |  |  |



(R)-3-(hex-1-en-3-yl)-2-(4-methoxyphenyl)indolizine (3ab).



## S56







(R)-3-(hex-1-en-3-yl)-2-(3-nitrophenyl)indolizine (3ad).

The ee value was determined after the hydroboration/oxidation sequence.





| 2     | 00.440 | 120/3949 | 102655 | <b>33./43</b> | <u>99./4</u> 3 |
|-------|--------|----------|--------|---------------|----------------|
| Total |        | 12708627 | 103503 |               | 100.000        |



(R)-3-(hex-1-en-3-yl)-2-methylindolizine (3ae).



Peak Table

Chromatogram

| Detector A Channel 2 254nm |           |          |        |        |         |  |  |
|----------------------------|-----------|----------|--------|--------|---------|--|--|
| Peak#                      | Ret. Time | Area     | Height | Conc.  | Area%   |  |  |
| 1                          | 38.506    | 17394612 | 403843 | 49.049 | 49.049  |  |  |
| 2                          | 40.548    | 18069283 | 387251 | 50.951 | 50.951  |  |  |
| Total                      |           | 35463895 | 791094 |        | 100.000 |  |  |

mV



| Peak# | Ret. Time | Area     | Height | Conc.  | Area%   |
|-------|-----------|----------|--------|--------|---------|
| 1     | 38.074    | 183792   | 4559   | 0.346  | 0.346   |
| 2     | 39.709    | 52897015 | 977984 | 99.654 | 99.654  |
| Total |           | 53080807 | 982542 |        | 100.000 |



## (R)-3-(hex-1-en-3-yl)-1-methyl-2-phenylindolizine (3af).



| Detector A Channel 2 254nm |           |          |        |        |         |  |  |
|----------------------------|-----------|----------|--------|--------|---------|--|--|
| Peak#                      | Ret. Time | Area     | Height | Conc.  | Area%   |  |  |
| 1                          | 44.520    | 12346386 | 133761 | 49.650 | 49.650  |  |  |
| 2                          | 49.213    | 12520352 | 92361  | 50.350 | 50.350  |  |  |
| Total                      |           | 24866738 | 226122 |        | 100.000 |  |  |



| Peak# | Ret. Time | Area     | Height | Conc.  | Area%   |
|-------|-----------|----------|--------|--------|---------|
| 1     | 44.506    | 281408   | 3022   | 0.346  | 0.346   |
| 2     | 49.114    | 81030640 | 590752 | 99.654 | 99.654  |
| Total |           | 81312048 | 593774 |        | 100.000 |

(R)-3-(hex-1-en-3-yl)-1,2-diphenylindolizine (3ag).







(R)-3-(hex-1-en-3-yl)-8-methyl-2-phenylindolizine (3ah).



| 1     | 19.262 | 229582   | 8257    | 0.305  | 0.30   |
|-------|--------|----------|---------|--------|--------|
| 2     | 20.019 | 75051013 | 1656558 | 99.695 | 99.69  |
| Total |        | 75280596 | 1664815 |        | 100.00 |



(R)-6-bromo-3-(hex-1-en-3-yl)-2-phenylindolizine (3ai).



| Ι | Detector A Channel 2 254nm |           |         |        |        |         |  |  |  |
|---|----------------------------|-----------|---------|--------|--------|---------|--|--|--|
|   | Peak#                      | Ret. Time | Area    | Height | Conc.  | Area%   |  |  |  |
| Г | 1                          | 7.416     | 3162900 | 321544 | 52.907 | 52.907  |  |  |  |
|   | 2                          | 8.326     | 2815272 | 257775 | 47.093 | 47.093  |  |  |  |
|   | Total                      |           | 5978172 | 579319 |        | 100.000 |  |  |  |



| Detector |           |          |         |        |         |  |  |  |
|----------|-----------|----------|---------|--------|---------|--|--|--|
| Peak#    | Ret. Time | Area     | Height  | Conc.  | Area%   |  |  |  |
| 1        | 7.379     | 10516020 | 1042000 | 99.558 | 99.558  |  |  |  |
| 2        | 8.318     | 46679    | 3883    | 0.442  | 0.442   |  |  |  |
| Total    |           | 10562698 | 1045883 |        | 100.000 |  |  |  |










|  | Peak# | Ret. Time | Area    | Height | Conc.  | Area%   |
|--|-------|-----------|---------|--------|--------|---------|
|  | 1     | 19.070    | 4181    | 188    | 0.337  | 0.337   |
|  | 2     | 19.809    | 1235814 | 43918  | 99.663 | 99.663  |
|  | Total |           | 1239995 | 44106  |        | 100.000 |

mV



(R)-3-(2-phenylindolizin-3-yl)butan-1-ol (9).

Chromatogram



S75



(R)-3-(but-3-en-2-yl)-2-phenylindolizine-1-carbaldehyde (10).

Chromatogram



Area 84364 29173479 29257843 100.000 Total 140110

mV



5-methyl-6-propylbenzo[e]pyrido[1,2-a]indole (11).



3-(hex-1-en-3-yl)-2-hydroxy-2-phenyl-2,3-dihydro-1H-indolizin-4-ium bromide (4).



2-hydroxy-2-phenyl-2,3-dihydro-1H-indolizin-4-ium bromide (5).





## 13. References.

- 1. Ghorai, S.; Chirke, S. S.; Xu, W.-B.; Chen, J.-F.; Li, C. Cobalt-Catalyzed Regio- and Enantioselective Allylic Amination. J. Am. Chem. Soc. 2019, 141, 11430-11434.
- Li, C.; Breit, B. Rhodium-Catalyzed Dynamic Kinetic Asymmetric Allylation of Phenols and 2-Hydroxypyridines. *Chem. Eur. J.* 2016, 22, 14655-14663.
- 3. Allgäuer, D. S.; Mayer, P.; Mayr, H. Nucleophilicity Parameters of Pyridinium Ylides and Their Use in Mechanistic Analyses. J. Am. Chem. Soc. 2013, 135, 15216-15224.
- a) Amaral, Mônica F. Z. J.; Deliberto, Laila A.; de Souza, Camila R.; Naal, Rose M. Z. G.; Naal, Zeki; Clososki, Giuliano C. Synthesis, Photophysical, and Electrochemical Properties of 2,5-Diaryl-Indolizines. *Tetrahedron* 2014, *70*, 3249-3258. b) Castillo, R. R.; Burgos, C.; Vaquero, J. J.; Alvarez-Builla, J. Radical Intramolecular Arylation of Pyridinium Salts: A Straightforward Entry to 7-Hydroxypyrido[2,1-α]isoquinolinylium Salts. *Eur. J. Org. Chem.* 2011, 619-628. c) Liang, F.; Hu, J.-X.; Zhang, L.-D.; Hu, Y.-F.; Hu, H.-W. Preparation of Pyrrolo[2,1,5-cd]indolizine Derivatives By Intramolecular Condensation of 3-Acyl-5-Methylindolizines. *J. Heterocyclic Chem.* 2001, *38*, 853. d) Kalinin, A. A.; Smirnov, M. A.; Islamova, L. N.; Fazleeva, G. M.; Vakhonina, T. A.; Levitskaya, A. I.; Fominykh, O. D.; Ivanova, N. V.; Khamatgalimov, A. R.; Nizameev, I. R.; Balakina, M. Y. Synthesis and Characterization of New Second-Order NLO Chromophores Containing the Isomeric Indolizine Moiety for Electro-Optical Materials. *Dyes and Pigments* 2017, *147*, 444-454. e) Studies on The Reactivity of Some Pyridine Derivatives. *Pharmazie*, 1980, *35*, 203-204.
- 5. Xu, K.; Wang, Y.-H.; Khakyzadeh, V.; Breit, B. Asymmetric Synthesis of Allylic Amines via Hydroamination of Allenes with Benzophenone Imine. *Chem. Sci.* **2016**, *7*, 3313-3316.
- 6. Jones, G.; Stanforth, S. P. The Vilsmeier Reaction of Fully Conjugated Carbocycles and Heterocycles, *Organic Reactions*, **1997**, *49*.