Supporting Information

Regioselective C-H Alkenylation and Unsymmetrical BisOlefination of Heteroarene Carboxylic Acids with Ruthenium Catalysis in Water

Anup Mandal, Ratnadeep Bera, and Mahiuddin Baidya*
Department of Chemistry, Indian Institute of Technology Madras,
Chennai-600036, Tamil Nadu, India
E-mail: mbaidya@iitm.ac.in

Table of Contents

Page
Mechanistic Studies:
H-D Exchange Study So3
Radical Scavenger Experiment So4
Kinetic Isotope Effect Study via Parallel Experiment So4
Crystallographic Experimental Section So5
NMR Spectra of Synthesized Compounds S15

Mechanistic Studies:

1) H-D Exchange Study

5-Methyl-2-thiophenecarboxylic acid $\mathbf{1 i}(0.2 \mathrm{mmol})$, phenyl vinyl sulfone 2a (1.1 equiv), $[\mathrm{Ru}(p$ cymene $\left.) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1 equiv) were added in an oven-dried screw cap reaction tube with a magnetic stir bar under open-air. Then, $\mathrm{D}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added with a syringe. The reaction tube was capped and the resulting mixture was heated at $100^{\circ} \mathrm{C}$ (in oil-bath) for 35 minutes. After that, it was allowed to cool at room temperature and then quenched with AcOH and diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with ethyl acetate (10 mL , two times). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting deuterium incorporated 5-methyl-2-thiophenecarboxylic acid and the olefinated product were purified by silica gel column chromatography. The H/D exchange result was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Figure S1. ${ }^{1}$ H NMR spectrum of deuterium-incorporated 5-methyl-2-thiophenecarboxylic acid $\mathbf{1 i}$ '.

2) Radical Scavenger Experiment

2-Thiophenecarboxylic acid $\mathbf{1 a}(0.2 \mathrm{mmol})$ and phenyl vinyl sulfone $\mathbf{2 a}$ (1.1 equiv), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$), $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1 equiv), and corresponding radical scavenger (3 equiv) were added in an oven-dried screw cap reaction tube with a magnetic stir bar under open-air. Then, $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added with a syringe. The reaction tube was capped and the resulting mixture was heated at $100^{\circ} \mathrm{C}$ (in oil-bath) for 24 h . After that, it was allowed to cool at room temperature and then quenched with AcOH and diluted with $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with ethyl acetate (10 mL , two times). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv), MeI (3 equiv) in MeCN (1 mL) at room temperature for 4 h and then concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography.

3) Kinetic Isotope Effect Study via Parallel Experiment

$$
K I E=k_{\mathrm{H}} / k_{\mathrm{D}}=1.68
$$

5-Methyl-2-thiophenecarboxylic acid $\mathbf{1 i}$ and deuterated-5-methyl-2-thiophenecarboxylic acid $\mathbf{1 i \prime}$ were independently reacted with 2a for five different time intervals (10-40 minutes) under the standard reaction conditions [$\mathbf{1 i}(0.2 \mathrm{mmol})$ or $\mathbf{1 i}^{\prime \prime}(0.2 \mathrm{mmol})$, phenyl vinyl sulfone $\mathbf{2 a}$ (1.1 equiv), $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(5$ $\mathrm{mol} \%$), and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1 equiv), $\left.\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})\right]$. The product distributions were analyzed from the worked-up crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy using dibromomethane as an internal standard.

time (min)	10 min	15 min	20 min	25 min	30 min	35 min	40 min
$\mathbf{1 i} \rightarrow$ Product (\%)	27.1	33.2	36.3	41.2	43.2	-	-
$\mathbf{1 1}^{\prime \prime} \rightarrow$ Product (\%)	-	17.4	20.9	-	24.2	26.7	30.3

Figure S2. Time vs yield plot for KIE determination.

Crystallographic Experimental Section:

Single Crystal X-ray Crystallography: X-ray data of the crystals were collected and integrated using a Bruker Axs (Kappa Apex 2) CCD diffractometer equipped with graphite monochromatic Mo ($\mathrm{K} \alpha$) radiation. Crystals were mounted over fine nylon loop which was attached to the copper mounting pin held on by a magnetic base. The APEX 3 and APEX 3-SAINT/Bruker SAINT programs were used for the data collection and unit-cell determination, respectively. The crystal structures were solved by direct methods using SHELXL-2014/4 or SHELXS-97 and refined by full-matrix least-squares on F^{2} method using program SHELXL-2014/7 or SHELXL-2018/3.

Method of Crystallization: All the single crystals were grown in a small glass vial by slow evaporation technique from DCM/Hexane solvent system at room temperature over a period of 1-2 weeks.

Crystal Structure of Compound 3c: ORTEP representation (40\% ellipsoids probability) of 3c (CCDC 1975675).

Table S1. Crystal data and structure refinement for 3c (CCDC 1975675).

Identification code	532
Empirical formula	C 14 H 12 O 5 S
Formula weight	292.30
Temperature	$296(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions	$\mathrm{a}=7.6046(2) \AA \alpha=90^{\circ}$
	$\mathrm{b}=15.5125(5) \AA \beta=90^{\circ}$
	$\mathrm{c}=23.2195(7) \AA \gamma=90^{\circ}$
Volume	$2739.12(14) \mathrm{A}^{\wedge} 3$
Z, Calculated density	$8,1.418 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.252 \mathrm{~mm} \wedge-1$
F(000)	1216
Crystal size	$0.250 \times 0.220 \times 0.100 \mathrm{~mm}$
Theta range for data collection	2.769 to 24.999 deg.
Limiting indices	$-7<=\mathrm{h}<=9,-18<=\mathrm{k}<=15,-27<=1<=27$
Reflections collected / unique	$15544 / 2406[\mathrm{R}(\mathrm{int})=0.0244]$
Completeness to theta $=25.000$	99.9%
Absorption correction	None
Refinement method	Full-matrix least-squares on $\mathrm{F} \wedge 2$
Data / restraints / parameters	$2406 / 0 / 182$
Goodness-of-fit on $\mathrm{F} \wedge 2$	1.054

Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
$\mathrm{R} 1=0.0352, \mathrm{wR} 2=0.0837$
R indices (all data)
Extinction coefficient
$\mathrm{R} 1=0.0445, \mathrm{wR} 2=0.0916$

Largest diff. peak and hole
n/a
0.184 and -0.305 e. $\mathrm{A}^{\wedge}-3$

Crystal Structure of Compound 3f: ORTEP representation (40% ellipsoids probability) of $\mathbf{3 f}$ (CCDC 1975672).

Table S2. Crystal data and structure refinement for $\mathbf{3 f}$ (CCDC 1975672).

Identification code	787
Empirical formula	C 18 H 14 O 5 S
Formula weight	342.35
Temperature	$296(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions	$\mathrm{a}=17.7265(7) \AA \alpha=90^{\circ}$
	$\mathrm{b}=11.8090(4) \AA \beta=90^{\circ}$
	$\mathrm{c}=15.2926(4) \AA \gamma=90^{\circ}$
Volume	$3201.23(19) \mathrm{A}^{\wedge} 3$
Z, Calculated density	$8,1.421 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.227 \mathrm{~mm} \wedge-1$
F(000)	1424
Crystal size	0.250 x 0.220 x 0.100 mm
Theta range for data collection	2.072 to 24.998 deg.

Limiting indices
Reflections collected / unique
Completeness to theta $=25.000$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$-13<=\mathrm{h}<=21,-13<=\mathrm{k}<=14,-18<=1<=12$
$10818 / 2815[\mathrm{R}($ int $)=0.0224]$
99.9 \%

None
Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
2815/0/218
1.053
$\mathrm{R} 1=0.0403, \mathrm{wR} 2=0.0959$
$R 1=0.0531, w R 2=0.1040$
n/a
0.277 and -0.301 e. $\mathrm{A}^{\wedge}-3$

Crystal Structure of Compound $\mathbf{3} \mathbf{h}$: ORTEP representation (40% ellipsoids probability) of $\mathbf{3 h}$ (CCDC 1975673).

Table S3. Crystal data and structure refinement for $\mathbf{3 h}$ (CCDC 1975673).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

28
C16 H14 O6 S2
366.39

296(2) K
0.71073 Å

Orthorhombic, Pbca
$\mathrm{a}=8.0160(2) \AA \alpha=90^{\circ}$

$$
\begin{aligned}
& \mathrm{b}=19.6309(8) \AA \beta=90^{\circ} \\
& \mathrm{c}=21.6558(8) \AA \gamma=90^{\circ}
\end{aligned}
$$

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=25.000$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
3407.8(2) A^3
$8,1.428 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$0.341 \mathrm{~mm}^{\wedge}-1$
1520
$0.250 \times 0.220 \times 0.100 \mathrm{~mm}$
1.881 to 24.996 deg.
$-9<=\mathrm{h}<=9,-21<=\mathrm{k}<=23,-25<=1<=19$
$7967 / 2995[R($ int $)=0.0402]$
99.9 \%

None
Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
2995 / 0 / 219
1.009
$\mathrm{R} 1=0.0486, \mathrm{wR} 2=0.0978$
$\mathrm{R} 1=0.0957, \mathrm{wR} 2=0.1207$
n/a
0.243 and -0.300 e. $\mathrm{A}^{\wedge}-3$

Crystal Structure of Compound 4g: ORTEP representation (40\% ellipsoids probability) of $\mathbf{4 g}$ (CCDC 1975676).

Table S4. Crystal data and structure refinement for $\mathbf{4 g}$ (CCDC 1975676).

Identification code	891
Empirical formula	C17 H22 N O5 P
Formula weight	351.32
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$\begin{aligned} & a=7.4902(15) \AA \alpha=88.249(6)^{\circ} \\ & b=10.012(2) \AA \beta=82.343(6)^{\circ} \\ & c=25.476(5) \AA \gamma=71.214(6)^{\circ} \end{aligned}$
Volume	1792.4(6) $\AA^{\wedge} \wedge 3$
Z, Calculated density	$4,1.302 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.179 \mathrm{~mm}^{\wedge}-1$
F(000)	744
Crystal size	$0.200 \times 0.150 \times 0.150 \mathrm{~mm} \wedge 3$
Theta range for data collection	0.807 to 24.997 deg .
Limiting indices	$-8<=\mathrm{h}<=8,-11<=\mathrm{k}<=11,-30<=1<=30$
Reflections collected / unique	$32648 / 32648$ [R(int) $=$?]
Completeness to theta $=25.000$	99.9\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.5243
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	32648 / 39 / 454
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.107
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.1044, \mathrm{wR} 2=0.2823$
R indices (all data)	$\mathrm{R} 1=0.1436, \mathrm{wR} 2=0.3062$
Extinction coefficient	0.017(3)
Largest diff. peak and hole	0.470 and -0.495 e. \AA^{\wedge} - 3

Crystal Structure of Compound $\mathbf{5 g}$: ORTEP representation (40% ellipsoids probability) of $\mathbf{5 g}$ (CCDC 1975674).

Table S5. Crystal data and structure refinement for $\mathbf{5 g}$ (CCDC 1975674).

Identification code	21
Empirical formula	C 15 H 15 N O 4
Formula weight	546.56
Temperature	$296(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Triclinic, $\mathrm{P}-1$
Unit cell dimensions	$\mathrm{a}=10.9033(4) \AA \alpha=100.1998(15)^{\circ}$
	$\mathrm{b}=11.1118(4) \AA \beta=92.2428(17)^{\circ}$
	$\mathrm{c}=13.1220(4) \AA \gamma=118.6290(14)^{\circ}$
Volume	$1359.16(8) \mathrm{A}^{\wedge} 3$
Z, Calculated density	$2,1.336 \mathrm{Mg} / \mathrm{m} \wedge 3$
Absorption coefficient	$0.098 \mathrm{~mm} \wedge-1$
F(000)	576
Crystal size	$0.250 \times 0.220 \times 0.100 \mathrm{~mm}$
Theta range for data collection	1.593 to 24.999 deg.
Limiting indices	$-12<=\mathrm{h}<=12,-13<=\mathrm{k}<=12,-15<=1<=15$
Reflections collected $/$ unique	$20423 / 4779[\mathrm{R}(\mathrm{int})=0.0272]$

Completeness to theta $=25.000$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
99.6 \%

None
Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
4779 / 0 / 368
1.026
$\mathrm{R} 1=0.0453, \mathrm{wR} 2=0.1172$
$\mathrm{R} 1=0.0625, \mathrm{wR} 2=0.1333$
0.014(2)
0.305 and -0.264 e. $\mathrm{A}^{\wedge}-3$

Crystal Structure of Compound 6b: ORTEP representation (40\% ellipsoids probability) of $\mathbf{6 b}$ (CCDC 2017084).

Table S6. Crystal data and structure refinement for $\mathbf{6 b}$ (CCDC 2017084).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

999
C9 H7 N O2 S
193.22

296(2) K
$0.71073 \AA$
Orthorhombic
Fdd 2

$$
\begin{array}{ll}
\mathrm{a}=21.3018(14) \AA & \alpha=90^{\circ} . \\
\mathrm{b}=43.351(3) \AA & \beta=90^{\circ} . \\
\mathrm{c}=3.9547(3) \AA & \gamma=90^{\circ} .
\end{array}
$$

Volume	$3652.0(4) \AA^{3}$
Z	16
Density (calculated)	$1.406 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.317 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1600
Crystal size	$0.300 \times 0.250 \times 0.200 \mathrm{~mm}^{3}$
Theta range for data collection	3.407 to 28.310°.
Index ranges	$-28<=\mathrm{h}<=28,-56<=\mathrm{k}<=56,-5<=1<=5$
Reflections collected	11871
Independent reflections	$2267[\mathrm{R}($ int $)=0.0603]$
Completeness to theta $=25.242^{\circ}$	99.4%
Absorption correction	$\mathrm{Semi}-\mathrm{empirical}$ from equivalents
Max. and min. transmission	0.7457 and 0.5387
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$2267 / 1 / 119$
Goodness-of-fit on F^{2}	1.119
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0433, \mathrm{wR} 2=0.0983$
R indices (all data)	$\mathrm{R} 1=0.0560, \mathrm{wR} 2=0.1076$
Absolute structure parameter	$0.04(4)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.219 and $-0.277 \mathrm{e} . \AA^{-3}$

Crystal Structure of Compound $\mathbf{8 p}$: ORTEP representation (40% ellipsoids probability) of $\mathbf{8 p}$ (CCDC 2017085).

Table S7. Crystal data and structure refinement for $\mathbf{8 p}$ (CCDC 2017085).

Identification code	1013
Empirical formula	C15 H16 O7
Formula weight	308.28
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=4.03230(10) \AA \quad \alpha=94.501(2)^{\circ}$.
	$\mathrm{b}=12.1406(2) \AA \quad \beta=91.3350(10)^{\circ}$.
	$\mathrm{c}=15.7776(2) \AA \quad \gamma=93.6930(10)^{\circ}$.
Volume	$768.09(2) \AA^{3}$
Z	2
Density (calculated)	$1.333 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.107 \mathrm{~mm}^{-1}$
F(000)	324
Crystal size	$0.300 \times 0.250 \times 0.200 \mathrm{~mm}^{3}$
Theta range for data collection	2.976 to 24.997°.
Index ranges	$-4<=\mathrm{h}<=4,-14<=\mathrm{k}<=14,-18<=1<=18$
Reflections collected	23407
Independent reflections	$2695[\mathrm{R}(\mathrm{int})=0.0939]$
Completeness to theta $=24.997^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7454 and 0.4080
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2695 / 0 / 202
Goodness-of-fit on F^{2}	1.047
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I}$] $]$	$\mathrm{R} 1=0.0599, \mathrm{wR} 2=0.1440$
R indices (all data)	$\mathrm{R} 1=0.0911, \mathrm{wR} 2=0.1702$
Extinction coefficient	n/a
Largest diff. peak and hole	0.192 and -0.207e..$^{-}{ }^{-3}$

Analytical Data:

Compounds 5a, ${ }^{\text {S1 }}(\mathbf{5 b}, \mathbf{g}),{ }^{\mathrm{S} 2} \mathbf{6 a},{ }^{\mathrm{S}}(\mathbf{7 b}$, and $\mathbf{8 a}, \mathbf{n}){ }^{54}$ are known in literature and thus only ${ }^{1} \mathrm{H}$ NMR data of these compounds are provided.

References:

(S1) Oger, N.; Grognec, E. L.; Felpin, F.-X. J. Org. Chem. 2014, 79, 8255.
(S2) Padala, K.; Pimparkar, S.; Madasamy, P.; Jeganmohan, M. Chem. Commun. 2012, 48, 7140.
(S3) Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 706.
(S4) Mandal, A.; Mehta, G.; Dana, S.; Baidya, M. Org. Lett. 2019, 21, 5879.

NMR Spectra of Synthesized Compounds

$\operatorname{ln\mathrm {CDCl}_{3}:400\mathrm {MHz}}$

00	190	180	170	160		140		120	110											
00	190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10	0

In $\mathrm{CDCl}_{3}: 400 \mathrm{MHz}$
In $\mathrm{CDCl}_{3}: 100 \mathrm{MHz}$

In $\mathrm{CDCl}_{3}: 400 \mathrm{MHz}$

In $\mathrm{CDCl}_{3}: 100 \mathrm{MHz}$

	1	1	1	1	1	1	1	1	1	，	1	1	1	1	1	1	1	
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(ln CDCl $3: 400 \mathrm{MHz}$

$\frac{\ln \mathrm{CDCl}_{3}: 100 \mathrm{MHz}}{\text { 4a }}$


```
*)
```


$\frac{\ln \mathrm{CDCl}_{3}: 125 \mathrm{MHz}}{\text { 4c }}$

$\stackrel{\stackrel{\pi}{\infty}}{\stackrel{\infty}{\infty}}$

$$
\text { In CDCle }: 400 \mathrm{MHz}
$$

\qquad


```
* *)
```

In $\mathrm{CDCl}_{3}: 400 \mathrm{MHz}$

W	4	\!

$\stackrel{\text { ¢ }}{\text { ¢ }}$				
I	-	下T	11	$\xrightarrow{\sim}$

$\frac{\ln \mathrm{CDCl}_{3}: 100 \mathrm{MHz}}{\text { 4j}}$

In $\mathrm{CDCl}_{3}: 400 \mathrm{MHz}$

In $\mathrm{CDCl}_{3}: 100 \mathrm{MHz}$

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
:00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20		0	-1

$\stackrel{\infty}{\infty}$

E	
V	V

$\ln \mathrm{CDCl}_{3}: 400 \mathrm{MHz}$

				1					110		1	1	7		1		1			
00	190	180	170	160	150	140	130	120	110	${ }^{100}$		80	70	60	50	40	30	20	10	0

$\begin{aligned} & \text { F⿳亠丷厂犬 } \\ & \stackrel{\rightharpoonup}{6} \\ & \stackrel{i}{1} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{e} \\ & \stackrel{\rightharpoonup}{\mid} \end{aligned}$			$\stackrel{\text { ¢ }}{\stackrel{1}{*}}$	\％

In $\mathrm{CDCl}_{3}: 400 \mathrm{MHz}$

			∞ \% \%		$\frac{\stackrel{8}{\square}}{\stackrel{\circ}{6}}$
	11	$\rightarrow 1$	1	\checkmark	\|

$\underbrace{\text { すw }}$

	尔			部安犬	筞
Vノ	－	111	く1	－	＂

	1	1	1		1	1	1	1	1	,	,		1	1	1	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^0]

			AR		范	
｜｜	｜Vにて｜	$11 \backslash$	\checkmark	V＇	｜	V／

In CDCl $: 400 \mathrm{MHz}$

				160	15	14	13		1			1	7	1		1	1	1	1	
:00	190	180	170	160	150	140	130	120	110	${ }^{100}$	90	80	70	60	50	40	30	20	10	0

[^1]

[^2]

```
氃郱
##
```


[^0]:

[^1]:

[^2]:

