Supporting Information

Highly Sensitive Interlocked Piezoresistive Sensors Based on Ultrathin Ordered Nanocone Array Films and Their Sensitivity Simulation

Yawen Lu, $^{\dagger, \, \ddagger, \, \#}$ Yin He, $^{\dagger, \, \ddagger, \, \#}$ Jutao Qiao, $^{\dagger, \, \ddagger}$ Xin Niu, $^{\dagger, \, \ddagger}$ Xiaojiu Li, $^{\$}$ Hao Liu, $^{\dagger, \, \ddagger, \, *}$ and Li Liu $_{\#, \, *}$

[†]School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China.

[‡]Institute of Smart Wearable Electronic Textiles, Tiangong University, Tianjin 300387, China.

§Key Laboratory of Advanced Textile Composite Materials, Ministry of Education, Tiangong University, Tianjin 300387, China.

^{||} Beijing Institute of Fashion Technology, Beijing 100029, China.

*Corresponding authors: liuhao_0760@163.com, fzyll@bift.edu.cn

#These authors contributed equally to this work.

Section 1 Calculation of theoretical resistance

Piezoresistive mainly on the contact resistance (R^c) and the intrinsic resistance (Rⁱ) between the two neighboring nanocones of IOCA.

$$R = R^c + R^i \quad (1)$$

The R^c at the contact surface between the interlocked nanocones can be defined by Holm's equation ^[1]:

$$R^c = \frac{1}{2k\sqrt{A/\pi}}$$
 (2)

where A is the contact area between interlocked nanocones, k is the equivalent conductivity of the two contacting nanocones.

The R^{i} of PPy nanocones in the composite film can be defined as:

$$R^{i} = \rho \frac{L}{s} \tag{3}$$

where ρ is resistivity of PPy nanocones, L is the height of the interlocked nanocones, s is the equivalent cross-sectional area of the interlocked nanocones.

Since the influence on the resistivity ρ and conductivity k are small under the small load, the change of ρ and k are not considered during the loading process. Longitudinal compression has a great influence on the variation of the longitudinal length (L) of the conductor, while the variation on the lateral cross-sectional area (s) is negligibly small.

Therefore, the relative resistance change can be derived as follows:

$$R_0 = R_0^c + R_0^i (4)$$

$$\frac{\Delta R^c}{R_0^c} = 1 - \sqrt{\frac{A_0}{A}} \tag{5}$$

$$\frac{\Delta R^i}{R_0^i} = \frac{\Delta L}{L_0} \tag{6}$$

$$\frac{\Delta R}{R_0} = \frac{R_0^c}{R_0} \times \frac{\Delta R^c}{R_0^c} + \frac{R_0^i}{R_0} \times \frac{\Delta R^i}{R_0^i} = \frac{R_0^c}{R_0} \times \left(1 - \sqrt{\frac{A_0}{A}}\right) + \frac{R_0^i}{R_0} \times \frac{\Delta L}{L_0} \tag{7}$$

$$\frac{R_0^c}{R_0} + \frac{R_0^i}{R_0} = 1 \tag{8}$$

$$\frac{\Delta R}{R_0} = \left(1 - \frac{R_0^i}{R_0}\right) \times \left(1 - \sqrt{\frac{A_0}{A}}\right) + \frac{R_0^i}{R_0} \times \frac{\Delta L}{L_0} \tag{9}$$

$$S = \frac{\Delta R/R_0}{P} = \left(1 - \frac{R_0^i}{R_0}\right) \times \frac{\left(1 - \sqrt{A_0/A}\right)}{P} + \frac{R_0^i}{R_0} \times \frac{\Delta L/L_0}{P} \tag{10}$$

The R_0 is the initial resistance of the IOCA, and the R_0^i is equal to the sum of interlocked OCA sheet resistances, which are constant and can be measured by U3402A digital multimeters (Agilent Technologies, USA) (in Table. S1). The resistance change ($\Delta R/R_0$) are affected by contact area (A) and interlocked layers height changes (L). The calculation of theoretical formula were shown in Table. S2.

Table S1. Summary of the resistance parameters of different pressure sensors based on planar, 1460 nm, 750 nm and 460 nm sized OCA.

Structure		Corresponding Resistance				
		r^i	R_0^i	R_0	R_0^i/R_0	
	1460 nm	2219.092	4438.185	26996.259	0.1644	
	750 nm	2032.172	4064.343	14117.204	0.2879	
Interlocked	460 nm	1703.195	3406.389	7108.492	0.4792	
	planar	1000.000	2000.000	2043.945	0.9785	
Single	single	-	3219.092	13497.243	0.2385	

Table S2. Theoretical Formula of IOCA based on planar, 1460 nm, 750 nm and 460 nm sized OCA.

Structure	Theoretical Formula				
1460	$\Delta R/R_0 = 0.8356 \left(1 - \sqrt{A_0/A}\right) + 0.1644 \Delta L/L_0$				
750	$\Delta R/R_0 = 0.7121 \left(1 - \sqrt{A_0/A}\right) + 0.2879 \Delta L/L_0$				
460	$\Delta R/R_0 = 0.5208 \left(1 - \sqrt{A_0/A}\right) + 0.4792 \Delta L/L_0$				
Planar	$\Delta R/R_0 = 0.0215 (1 - \sqrt{A_0/A}) + 0.9785 \Delta L/L_0$				
Single	$\Delta R/R_0 = 0.7615 (1 - \sqrt{A_0/A}) + 0.2385 \Delta L/L_0$				

Section 2 Experiment Supplement

Figure S1. Schematic illustration of the preparation of t-AAO.

Figure S2. Top view and side view FESEM images of OCA with the length of (a) 750 nm, (b) 460 nm.

Table S3. Dimensions of four different finite elements geometry structure of the OCA in Side view and in 45°C angle view.

Note: m is the thickness of PPy, which is equivalent to (c-d); n is the thickness of PMMA, which is equivalent to (b-c).

Table S4. Summary of the key parameters of recently reported micro-nano structure sensors.

Materials	Electrical signal	Pressure sensitivity [kPa ⁻¹]	Pressure range [kPa]	Minimum pressure detection [Pa]	Ref. in Main
PVDF/rGO interlocked microdome	Resistance	31.9	< 0.02	0.6	[26]
ZnO Nanowire/PDMS micropillar	Resistance	6.8	< 0.3	0.6	[28]
CNT/PDMS	Resistance	15.1	< 0.5	0.2	[29]
PANI/Au/PDMS micropillars	Current	2.0	< 0.22	15	[33]
Ag Nanowire/ rose petals	Capacitance	1.54	< 1	0.6	[34]
Ag Nanowire/PVDF	Capacitance	54.31	< 0.5	0.1	[35]
Ag Nanowire/PDMS	Capacitance	1.2	< 2	0.8	[38]
Microstructured Au film/PDMS	Current	50.17	< 0.07	10.4	[42]
Au Nanowire/ tissue paper	Current	1.14	< 5	13	[58]
SCNT/PDMS	Current	1.07	20	-	[59]
Polypyrrole hollow- sphere PPy hydrogels	Resistance	133.1	< 0.03	0.8	[60]

Table S5. Comparison of the key parameters of recently reported interlocked microstructured sensors.

Microstructure surface	Size (diameter/ height)	Electrical signal	Sensitivity [kPa ⁻¹]	Pressure range [kPa]	Ref. in Main
Microcapsule	28μm /-	Current	24.63	0.01-0.2	[11]
Nanowire	$50~nm/1\mu m$	Resistance	5	0.5	[20]
Microdome1	$10\mu m / 4\mu m$	Resistance	31.9	< 0.02	[26]
Micropillar &Nanowire	$10\mu m / 10\mu m$	Resistance	6.8	< 0.3	[28]
Hemisphere	$3.5\mu m$ / $6\mu m$	Resistance	15.1	< 0.5	[29]
Microdomain	18.4 μm / 16.1μm	Current	50.17	< 0.07	[42]
Microdome2	$45\mu m/30\mu m$	Resistance	1.24	0.15	[61]
Microdome3	$2.5\mu m/1.5\mu m$	Current	196	10	[62]
Microridge1	100μm / 120μm	Triboelectricity	0.55	-	[63]
Microridge2	$35\mu m/30\mu m$	Current	3.3-10	1	[64]
Nanocone	260-440nm/ 1460 nm	Resistance	268.36	0.2	this work

Figure S3. Resistance variations at a pressure of 2 kPa with applying speeds of (a) 0.025 mm/s, (b) 0.05 mm/s, (c) 0.1 mm/s, (d) 0.2 mm/s, and (e) 0.4 mm/s.

Figure S4. Resistance variations of the IOCA with angles of (a) 3° , (b) 15° , (c) 30° , (d) 60° , and (e) 90° .

References

(1) Wu, Z.; Wang, S.; Zhang, L.; Hu, J. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells. Journal of Power Sources, **2009**, *189*(2),1066-1073.