Supporting Information

Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/5 or 6/5/6 Metallocycles

Guijie Li,*, ${ }^{1}$ Gang Shen, ${ }^{1}$ Xiaoli Fang, ${ }^{1}$ Yun-Fang Yang, ${ }^{*}{ }^{1}$ Feng Zhan, ${ }^{1}$ Jianbing Zheng, ${ }^{1}$ Weiwei Lou, ${ }^{1}$ Qisheng Zhang ${ }^{2}$ and Yuanbin She*, ${ }^{1}$
${ }^{1}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
${ }^{2}$ MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

E-mail: guijieli@zjut.edu.cn; yangyf@zjut.edu.cn; sheyb@zjut.edu.cn

Table of Contents

1	General Information	S-3-S-4
2	Table S1. DFT calculations for Pt(II) complexes	S-5
3	Table S2. Selected bond lengths, bond angles and dihedral angles of the $\operatorname{Pt}(\mathrm{II})$ complexes based on the DFT calculation	S-6
4	Table S3. Crystal data and structure refinement for $\operatorname{Pt}(b p-6)$	S-7
5	Table S4. Crystal data and structure refinement for $\operatorname{Pt}(b p-7)$	S-8
6	Figure S1. Density functional theory calculations of frontier orbitals and spin densities of T_{1} states for $\mathrm{Pt}(\mathrm{II})$ complexes based on optimized S_{0} and T_{1} geometries.	S-9
7	Figure S2: Cyclic voltammograms of the $\mathrm{Pt}(\mathrm{II})$ complexes	S-10
8	Figure S3: Absorption spectra of the $\mathrm{Pt}(\mathrm{II})$ complexes and their ligands	S-11
9	Tables S5-S8: DFT calculations of excited state energy level, wavelength and frontier orbitals for the $\mathrm{Pt}(\mathrm{II})$ complexes	S-11-S-12
10	Figure S4. Natural transition orbitals (NTOs) of the S_{1} and T_{1} states for $\mathrm{Pt}(\mathrm{II})$ complexes based on optimized S_{0} geometry	S-13
11	Figure S5. Luminescence spectra of the $\mathrm{Pt}(\mathrm{II})$ complexes at 77 K in 2-MeTHF, at RT in DCM solution and at RT in PMMA film	S-14
12	Figure S6. Luminescence spectra comparison measured by different spectrometers.	S-14
13	Detailed synthetic procedures of the $\mathrm{Pt}(\mathrm{II})$ complexes	S-15-S-25
14	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and HRMS of the Pt(II) complexes	S-26-S-36
15	Cartesian Coordinates of the Structures	S-37-S-51
16	References	S-52

General Information.

Synthesis and Characterization. Unless noted, all commercial reagents were purchased and used as received without further purification. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 or 500 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 or 150 MHz NMR instruments in CDCl_{3} or DMSO- d_{6} solutions and chemical shifts were referenced to tetramethylsilane (TMS) or residual protiated solvent. If CDCl_{3} was used as solvent, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with TMS $(\delta=0.00$ $\mathrm{ppm})$ and $\mathrm{CDCl}_{3}(\delta=77.00 \mathrm{ppm})$ as internal references, respectively. If DMSO- d_{6} was used as solvent, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with TMS $(\delta=0.00 \mathrm{ppm})$ and DMSO- $d_{6}(\delta=39.52$ ppm) as internal references, respectively. The following abbreviations (or combinations thereof) were used to explain ${ }^{1} \mathrm{H}$ NMR ultiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. All of the new compounds were analyzed for HRMS on a mass spectrometer using electrospray ionization in positive ion mode on ESI-QTOF mass spectrometer from Applied Biosystems.

Electrochemistry. Cyclic voltammetry and different pulsed voltammetry were performed using a CH1760E electrochemical analyzeraccording previous report. ${ }^{1} 0.1 \mathrm{M}$ tetra- n-butylammonium hexafluorophosphate was used as the supporting electrolyte, anhydrous N, N-dimethylformamide, was used as the solvents for the E_{ox} and E_{red} measurements, and the solutions were bubbled with nitrogen for 15 min prior to the test. Silver wire, platinum wire and glassy carbon were used as pseudoreference electrode, counter electrode, and working electrode respectively. Scan rate was 300 mV / s. The redox potentials are based on the values measured from different pulsed voltammetry and are reported relative to an internal reference ferrocenium/ferrocene $\left(\mathrm{Cp}_{2} \mathrm{Fe}_{2} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}\right)$. ${ }^{2}$ The reversibility of reduction or oxidation was determined using CV^{3} As defined, if the magnitudes of the peak anodic and the peak cathodic current have an equal magnitude as scan speeds of $100 \mathrm{mV} / \mathrm{s}$ or slower, then the process is considered reversible; if the magnitudes of the peak anodic and the peak cathodic currents are not equal, but the return sweeps are nonzero, the process is considered quasi-reversible; otherwise, the process is considered irreversible. ${ }^{2,3}$

DFT Calculations. The theoretical calculations of the $\mathrm{Pt}(\mathrm{II})$ complexes were performed using Gaussian 09. The molecular geometries of ground states $\left(\mathrm{S}_{0}\right)$ were optimized with the density functional theory (DFT) method. The DFT calculations were performed using a B3LYP function with
a basis set of 6-31G(d) for $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and N atoms and a LANL2DZ basis set for Pt atom. ${ }^{4}$ The energies of the singlet and triplet excited states of the complexes were calculated using TD-B3LYP method with a basis set of SV for H, SVP for C, O and N atoms, and a def2-TZVP basis set for Pt atom base on the optimized S_{0} geometry. ${ }^{4}$

Photophysical Measurements. The absorption spectra were measured on an Agilent 8453 UV-VS Spectrometer. Steady state emission experiments and lifetime measurements were performed on a Horiba Jobin Yvon FluoroLog-3 spectrometer. Low temperature (77 K) emission spectra and lifetimes were measured in 2-MeTHF cooled with liquid nitrogen.

Device Fabrication and Characterization. All devices were fabricated by vacuum thermal evaporation, and were tested outside glove box after encapsulation. Prior to deposition, the prepatterned ITO coated glass substrates were cleaned by subsequent sonication in deionized water, acetone, and isopropanol. Organic layers were deposited at rates of 0.5 to $2.0 \AA / \mathrm{s}$, monitored by crystal oscillator, in a custom-made vacuum thermal evaporation chamber built by LN Inc (LN-1082FS). The Al cathode was deposited through a shadow mask without breaking vacuum, defining device areas of $0.09 \mathrm{~cm}^{2}$. The current-voltage-luminance characteristics were measured using a Keithley 2400 SourceMeter in conjunction with a PMTH-S1-CR131A Photodiode. Electroluminescent spectra were measured with an Ocean Optics USB2000 spectrometer.

Table S1. DFT Calculations for Pt(II) Complexes ${ }^{a}$

${ }^{a}$ Optimized S_{0} were calculated using a B3LYP method with a basic set of $6-31 \mathrm{G}(\mathrm{d})$ for $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and N atoms and a LANL2DZ basic set for Pt atom.

Table S2. Selected Bond Lengths (\AA), Bond Angles $\left({ }^{\circ}\right)$ and Dihedral Angles $\left({ }^{\circ}\right)$ for Tetradentate Pt(II) Complexes Based on the DFT Calculations and X-ray analysis.

Pt(ppy-1)

Pt (II) complexes

Pt(ppy-1)	Pt - ${ }^{1}$	Pt-C	Pt - ${ }^{2}$	Pt-O
$\operatorname{Pt}(p p y-1) \mathrm{S}_{0}$	2.047	1.952	1.973	2.186
$\mathrm{Pt}(p p y-1) \mathrm{T}_{1}$	2.055	1.921	1.948	2.132
complexes	$\mathrm{Pt}-\mathrm{N}^{1}$	Pt-C ${ }^{1}$	Pt-C ${ }^{2}$	Pt - ${ }^{2}$
Pt(bp-6)_X-ray	$2.115(2)$	1.981(3)	1.968(3)	2.121(3)
$\mathrm{Pt}(b p-6) \mathrm{S}_{0}$	2.187	1.984	1.980	2.195
$\operatorname{Pt}(b p-6) \mathrm{T}_{1}$	2.176	1.956	1.954	2.166
$\mathrm{Pt}(b p-7)$ _X-ray	2.1460(19)	1.953(2)	$2.126(2)$	1.973(2)
$\mathrm{Pt}(b p-7) \mathrm{S}_{0}$	2.232	1.970	1.981	2.196
$\mathrm{Pt}(b p-7) \mathrm{T}_{1}$	2.209	1.942	1.961	2.195
$\mathrm{Pt}(b p-8) \mathrm{S}_{0}$	2.237	1.970	1.993	2.184
$\mathrm{Pt}(b p-8) \mathrm{T}_{1}$	2.214	1.942	1.972	2.174

Pt(ppy-1)	N^{1}-Pt-C	C-Pt-N ${ }^{2}$	N^{2}-Pt-O	$\mathrm{O}-\mathrm{Pt}-\mathrm{N}^{1}$	$\mathrm{N}^{1}-\mathrm{Pt}-\mathrm{N}^{2}$	C-Pt-O	dihedral angle ${ }^{a}$
$\mathrm{Pt}(p p y-1) \mathrm{S}_{0}$	93.14	82.43	79.33	104.99	173.27	161.75	16.6
$\mathrm{Pt}(p p y-1) \mathrm{T}_{1}$	93.12	83.65	79.84	103.36	174.76	163.49	16.5
complexes	$\mathrm{N}^{1}-\mathrm{Pt}-\mathrm{C}^{1}$	$\mathrm{C}^{1}-\mathrm{Pt}-\mathrm{C}^{2}$	$\mathrm{C}^{2}-\mathrm{Pt}-\mathrm{N}^{2}$	$\mathrm{N}^{2}-\mathrm{Pt}-\mathrm{N}^{1}$	$\mathrm{N}^{1}-\mathrm{Pt}-\mathrm{C}^{2}$	$\mathrm{C}^{1}-\mathrm{Pt}-\mathrm{N}^{2}$	dihedral angle ${ }^{a}$
$\begin{aligned} & \mathrm{Pt}(b p-6)_{-} \\ & \text {X-ray } \end{aligned}$	90.24(10)	82.17(12)	89.65(12)	99.86(9)	164.93(10)	167.23(10)	55.2
$\mathrm{Pt}(b p-6) \mathrm{S}_{0}$	89.04	82.25	89.69	100.63	164.85	168.12	48.9
$\mathrm{Pt}(b p-6) \mathrm{T}_{1}$	89.22	82.93	89.61	99.80	165.86	168.50	46.9
$\mathrm{Pt}(b p-7) _$X-ray	88.56(9)	81.43(10)	89.96(9)	101.46(7)	165.37(9)	167.62(9)	51.2
$\mathrm{Pt}(b p-7) \mathrm{S}_{0}$	88.67	81.44	89.48	102.09	165.12	166.27	52.4
$\mathrm{Pt}(b p-7) \mathrm{T}_{1}$	88.79	82.15	89.40	101.28	166.29	166.47	50.8
$\mathrm{Pt}(b p-8) _\mathrm{S}_{0}$	88.65	81.95	90.15	100.95	165.65	166.89	52.6
$\mathrm{Pt}(b p-8) \mathrm{T}_{1}$	88.61	82.60	90.22	100.21	166.41	167.37	50.0

${ }^{a}$ Dihedral angle between terminal pyridine and carboxyl planes for $\operatorname{Pt}(p p y-1)$, between two terminal pyridine planes for $\operatorname{Pt}(b p-6)$ and $\operatorname{Pt}(b p-7)$, between terminal pyridine and aza carbazole planes for $\mathrm{Pt}(b p-8)$. Optimized S_{0} were calculated using a B3LYP method with a basic set of $6-31 \mathrm{G}(\mathrm{d})$ for C, H, O and N atoms and a LANL2DZ basic set for Pt atom.

Table S3. Crystal data and structure refinement for $\operatorname{Pt}(b p-6)$ (CCDC 2036928).

Identification code	201013_BP_6_0m_sq
Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OPt}$
Formula weight	648.61
Temperature/K	170.0
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a / \AA	15.274(6)
b / \AA	11.865(3)
c/Å	16.488(5)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	117.245(14)
γ°	90
Volume/ $/{ }^{3}$	2656.5(15)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.622
μ / mm^{-1}	5.310
$\mathrm{F}(000)$	1264.0
Crystal size $/ \mathrm{mm}^{3}$	$0.35 \times 0.16 \times 0.03$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.416 to 58.182
Index ranges	$-18 \leq \mathrm{h} \leq 20,-16 \leq \mathrm{k} \leq 16,-22 \leq 1 \leq 22$
Reflections collected	35564
Independent reflections	$7107\left[\mathrm{R}_{\text {int }}=0.0397, \mathrm{R}_{\text {sigma }}=0.0336\right]$
Data/restraints/parameters	7107/0/327
Goodness-of-fit on F^{2}	1.038
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0238, \mathrm{wR}_{2}=0.0534$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0388, \mathrm{wR}_{2}=0.0598$
Largest diff. peak/hole / e \AA^{-3}	0.64/-0.86

Table S4. Crystal data and structure refinement for $\operatorname{Pt}(b p-7)$ (CCDC 2036927).

Identification code	$200930 _0929 _1 _0 \mathrm{~m}$
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OPt}$
Formula weight	691.46
Temperature/K	170.0
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a / \AA	$8.0827(3)$
b / \AA	$11.0133(4)$
c / \AA	$25.8648(10)$
$\alpha /{ }^{\circ}$	90
β°	$98.4000(10)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2277.71(15)$
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	2.016
μ / mm^{-1}	6.426
$\mathrm{~F}(000)$	1336.0
Crystal size $/ \mathrm{mm}{ }^{3}$	$0.26 \times 0.16 \times 0.09$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection ${ }^{\circ}$	4.88 to 61.034
Index ranges	$-7 \leq \mathrm{h} \leq 11,-15 \leq \mathrm{k} \leq 15,-36 \leq 1 \leq 36$
Reflections collected	26825
Independent reflections	$6942\left[\mathrm{R}_{\text {int }}=0.0374, \mathrm{R}_{\text {sigma }}=0.0331\right]$
Data/restraints/parameters	$6942 / 0 / 325$
Goodness-of-fit on F^{2}	1.041
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0219, \mathrm{wR} \mathrm{R}_{2}=0.0505$
Final R indexes $[$ all data $]$	$\mathrm{R}_{1}=0.0245, \mathrm{wR} \mathrm{R}_{2}=0.0519$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.76 /-1.54$

Pt(ppy-1)
Figure S1. Density functional theory calculations of frontier orbitals and spin densities of T_{1} states for $\mathrm{Pt}(\mathrm{II})$ complexes based on optimized S_{0} and T_{1} geometries. The H atoms were omitted for clarity.

Figure S2. Cyclic voltammograms of $\operatorname{Pt}(\mathrm{II})$ complexes in N, N-dimethylformamide.

Figure S3. Absorption spectra of $\mathrm{Pt}(\mathrm{II})$ complexes and their ligands in dichloromethane solution.

Table S5. TD-B3LYP/SV/SVP/def2-TZVP results of $\mathbf{P t}(p p y-1)$ at optimized S_{0} geometry.
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { excited state } & \begin{array}{c}\text { energy } \\ {[\mathrm{eV}]}\end{array} & \begin{array}{c}\text { wavelength } \\ {[\mathrm{nm}]}\end{array} & \mathrm{f} & \text { major contributions } \\ \hline \mathrm{T}_{1} & 2.472 & 502 & 0.0000 & \text { HOMO } \rightarrow \text { LUMO (87\%) } \\ \hline \mathrm{S}_{1} & 2.716 & 457 & 0.0196 & \text { HOMO } \rightarrow \text { LUMO (96\%) } \\ \hline \mathrm{T}_{2} & 2.759 & 449 & 0.0000 & \begin{array}{c}\text { HOMO-1 } \rightarrow \text { LUMO (39\%) } \\ \text { HOMO- } \rightarrow \text { LUMO+2 (4\%) } \\ \text { HOMO } \rightarrow \text { LUMO (8\%) }\end{array} \\ \text { HOMO } \rightarrow \text { LUMO+1 (25\%) }\end{array}\right]$

Table S6. TD-B3LYP/SV/SVP/def2-TZVP results of $\mathbf{P t}(\boldsymbol{b} \boldsymbol{p}-\mathbf{6})$ at optimized S_{0} geometry.

| excited state | energy
 $[\mathrm{eV}]$ | wavelength
 $[\mathrm{nm}]$ | f | major contributions |
| :---: | :---: | :---: | :---: | :---: |$|$| T_{1} | 2.472 | 502 | 0.0000 | HOMO \rightarrow LUMO (80\%)
 HOMO \rightarrow LUMO+4 (6\%) |
| :---: | :---: | :---: | :---: | :---: |
| T_{2} | 2.587 | 479 | 0.0000 | HOMO-1 \rightarrow LUMO (11\%)
 HOMO \rightarrow LUMO (4\%)
 HOMO \rightarrow LUMO+1 (70\%)
 HOMO \rightarrow LUMO+4 (5\%) |
| S_{1} | 2.669 | 465 | 0.0212 | HOMO \rightarrow LUMO (97\%) |
| S_{2} | 2.764 | 449 | 0.0075 | HOMO \rightarrow LUMO+1 (96\%) |

Table S7. TD-B3LYP/SV/SVP/def2-TZVP results of $\mathbf{P t}(\boldsymbol{b} \boldsymbol{p}-7)$ at optimized S_{0} geometry.
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { excited state } & \begin{array}{c}\text { energy } \\ {[\mathrm{eV}]}\end{array} & \begin{array}{c}\text { wavelength } \\ {[\mathrm{nm}]}\end{array} & \mathrm{f} & \text { major contributions }\end{array} \left\lvert\, \begin{array}{cccc|}\hline \mathrm{T}_{1} & 2.249 & 551 & 0.0000\end{array} \begin{array}{c}\text { HOMO } \rightarrow \text { LUMO (72\%) } \\ \text { HOMO } \rightarrow \text { LUMO+2 (7\%) } \\ \text { HOMO } \rightarrow \text { LUMO+3 (9\%) }\end{array}\right.\right]$

Table S8. TD-B3LYP/SV/SVP/def2-TZVP results of $\mathbf{P t}(\boldsymbol{b p}-\mathbf{8})$ at optimized S_{0} geometry.

excited state	energy $[\mathrm{eV}]$	wavelength $[\mathrm{nm}]$	f	major contributions
T_{1}	2.196	565	0.0000	HOMO \rightarrow LUMO+1 (21\%) HOMO \rightarrow LUMO+2 (8\%) HOMO \rightarrow LUMO+3 (5\%)
T_{2}	2.344	529	0.0000	HOMO \rightarrow LUMO (32\%) HOMO \rightarrow LUMO+1 (55\%)
S_{1}	2.407	515	0.0338	HOMO \rightarrow LUMO (94\%)
S_{2}	2.533	490	0.0002	HOMO \rightarrow LUMO+1 (95\%)

Figure S4. Natural transition orbitals (NTOs) of the S_{1} and T_{1} states for $\mathrm{Pt}(\mathrm{II})$ complexes based on optimized S_{0} geometry. All the H atoms are omitted for clarity.

Figure S5. Luminescence spectra of (a) $\operatorname{Pt}(p p y-1)$, (b) $\operatorname{Pt}(b p-6)$, (c) $\operatorname{Pt}(b p-7)$, and (d) $\operatorname{Pt}(b p-8)$ at 77 K in 2-MeTHF (dash-dotted lines), at RT in DCM solution (solid lines) and at RT in PMMA film (solid-ball lines). The chemical structure of each $\operatorname{Pt}(\mathrm{II})$ complex is shown in the inset.

Figure S6. Luminescence spectra comparison measured by different spectrometers.

Experimental Procedures

Synthesis of $\operatorname{Pt}(p p y-1)$:

Synthesis of 1-B: 3-Bromo-9,9-dimethyl-10-(pyridin-2-yl)-9,10-dihydroacridine 1-Br ${ }^{5}(1.50 \mathrm{~g}$, $4.11 \mathrm{mmol}, 1.0$ equiv), OMBDB ($1.56 \mathrm{~g}, 6.15 \mathrm{mmol}, 1.5$ equiv), $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(121 \mathrm{mg}, 0.16 \mathrm{mmol}, 4$ $\mathrm{mol} \%$), $\mathrm{KOAc}(1.61 \mathrm{~g}, 16.50 \mathrm{mmol}, 4.0$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then DMSO (25 mL) were added under nitrogen atmosphere, and then the flask was placed in an oil bath and heated at $80{ }^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 2 days, the resulting mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/ethyl acetate $=10: 1-5: 1$ as eluent to afford the desired product as a white solid 896 mg in 55% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.28(\mathrm{~s}, 12 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}), 7.01-7.05(\mathrm{~m}, 2 \mathrm{H})$, $7.10(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{ddd}, J=7.0,4.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}$, $1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{td}, J$ $=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.76,29.07$, $36.97,83.57,118.93,119.11,120.07,122.56,123.90$, $124.29,124.74,126.08,129.26,135.32$, $138.75,138.80,139.94,140.43,149.68,155.58$. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+}$ 413.2395, found 413.2415.

Synthesis of 1-OCH3 $: \mathbf{1 - B}(0.68 \mathrm{~g}, 1.65 \mathrm{mmol}, 1.0$ equiv), 6-bromopyridine-2-carboxylic acid
methyl ester ($0.39 \mathrm{~g}, 1.81 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(57 \mathrm{mg}, 0.05 \mathrm{mmol}, 3 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.57$ $\mathrm{g}, 4.12 \mathrm{mmol}, 2.5$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then 1,4-dioxane (30 mL) were added under nitrogen atmosphere, and then the flask was placed in an oil bath and heated at $100{ }^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 2 days, the resulting mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel using petroleum ether/ethyl acetate $=10: 1-3: 1$ as eluent to afford the desired product as a yellow oily solid 640 mg in 92% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta 1.69(\mathrm{~s}, 6 \mathrm{H}), 4.00(\mathrm{~S}, 3 \mathrm{H}), 6.82$ (dd, $J=8.0,1.0,1 \mathrm{H}), 7.05(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{dt}, J=$ $8.0,1.0,1 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.87-7.88(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.72-8.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 29.80,36.60,52.61,116.14,117.59,121.12,121.15,122.33,123.02,123.52,124.67$, 125.27, 126.26, 133.84, 135.44, 136.67, 137.44, 139.13, 140.28, 140.71, 147.77, 150.11, 155.48, 157.60, 165.97. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 422.1877$, found 422.1873.
 40 equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. Then EtOH (30 mL) was added and the flask was placed in an oil bath and heated at $78{ }^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 3 hours, the resulting mixture was cooled down to room temperature, filtered and add hydrochloric acid to adjust pH to 6 , washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/ethyl acetate $=3: 1$ and then ethyl acetate $/ \mathrm{CH}_{3} \mathrm{OH}=10: 1$ as eluent to afford the desired product as a maroon solid 587 mg in 93% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.63$ (s, 6H), 6.64 (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (td, $J=7.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.93$ (m, 2H), 7.99 (t, $J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{td}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.67-8.69(\mathrm{~m}, 1 \mathrm{H}), 12.73(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 30.18,36.81,115.71,117.18,120.52,121.72,121.96,121.99,122.64,124.69,125.05$,
$125.69,126.67,133.35,135.15,135.90,139.29,139.58,140.28,141.18,145.79,150.55,155.45$, 156.39, 164.23. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 430.1526$, found 430.1520 .

Synthesis of $\mathbf{P t}(\boldsymbol{p p y} \mathbf{- 1})$: A mixture of $\mathbf{L}(p p y-1)\left(300 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.00\right.$ equiv) and $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ ($336 \mathrm{mg}, 0.81 \mathrm{mmol}, 1.10$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then $\mathrm{AcOH}(40 \mathrm{~mL})$ and $\mathrm{CHCl}_{3}(4 \mathrm{~mL})$ were added into the flask under nitrogen atmosphere. The reaction mixture was bubbled with nitrogen for 15 minutes and then stirred at room temperature for 12 h . Then the flask was placed in an oil bath and heated at 110 ${ }^{\circ} \mathrm{C}$ with stirring. After 48 hours, the resulting mixture was cooled down to room temperature and concentrated in vacuum and the residue was diluted with dichloromethane. The mixture was washed with water, the organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/dichloromethane $=2: 1$, and then dichloromethane/ethyl acetate $/ \mathrm{CH}_{3} \mathrm{OH}=1: 1: 0.1$ as eluent to afford the desired product as a yellow solid 309 mg in 70% yield. m.p.: $>320{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 7.20-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=7.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.08-8.13(\mathrm{~m}, 2 \mathrm{H}), 8.85(\mathrm{dd}, J=6.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 22.96,31.32,37.26,118.29,118.94,119.87,120.92,121.29,121.34,122.37,122.79$, 124.31, 125.51, 126.73, 135.59, 137.12, 138.36, 139.32, 139.53, 141.41, 142.46, 150.93, 151.24, 151.79, 162.62, 172.86. HRMS (ESI): calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}^{195} \mathrm{Pt}[\mathrm{M}+\mathrm{Na}]^{+}$623.1017, found 623.1008. Anal. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Pt}$, Calcd.: C, 52.00 , H, 3.19, N, 7.00; Found: C, 51.65, H, 3.20, N, 6.95.

Synthesis of 2-Br: CuI ($440 \mathrm{mg}, 2.31 \mathrm{mmol}, 10 \mathrm{~mol} \%$), 2-picolinic acid ($568 \mathrm{mg}, 4.62 \mathrm{mmol}$, $20 \mathrm{~mol} \%)$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(10.31 \mathrm{~g}, 48.55 \mathrm{mmol}$, 2.1 equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuate ion and backfill procedure was repeated twice. Then m-bromophenol (4.00 g , 23.12 mmol , 1.00 equiv), 2-bromopyridine ($5.48 \mathrm{~g}, 34.68 \mathrm{mmol}, 1.50$ equiv) and DMSO (30 mL) were added under nitrogen atmosphere, and then the flask was placed in an oil bath and heated at 120 ${ }^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 36 hours, the resulting mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/dichloromethane $=40: 1-20: 1$ as eluent to afford the desired product as a white solid 4.67 g in 81% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.08(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14-7.18 (m, 2H), 7.36-7.43 (m, 3H), 7.86-7.90 (m, 1H), 7.08 (ddd, $J=4.5,2.0,0.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 111.81,118.96,119.85,122.58,124.45,127.66,130.62$, 139.61, 147.67, 154.84, 163.06. HRMS (ESI): calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NOBr}[\mathrm{M}+\mathrm{H}]^{+}$249.9862, found 249.9862.

Synthesis of 2-B: 2-(3-Bromophenoxy)pyridine 2-Br ($4.00 \mathrm{~g}, 16.00 \mathrm{mmol}, 1.00$ equiv), OMBDB ($6.92 \mathrm{~g}, 27.25 \mathrm{mmol}, 1.70$ equiv), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(886 \mathrm{mg}, 1.21 \mathrm{mmol}, 7.6 \mathrm{~mol} \%)$, KOAc ($5.94 \mathrm{~g}, 60.53 \mathrm{mmol}, 3.8$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill
procedure was repeated twice. Then DMSO (45 mL) was added under nitrogen atmosphere, and then the flask was placed in an oil bath and heated at $80^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 2 days, the resulting mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/ethyl acetate $=20: 1-14: 1$ as eluent to afford the desired product as a white solid 4.07 g in 86% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.33(\mathrm{~s}, 12 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.24$ (ddd, $J=4.0$, $3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.66(\mathrm{~m}, 1 \mathrm{H})$, $7.67-7.68(\mathrm{~m}, 1 \mathrm{H}), 8.19(\mathrm{ddd}, J=3.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 24.82$, 83.88, 111.36, 118.22, 124.35, 127.16, 129.15, 131.15, 139.33, 147.67, 153.62, 163.88. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+}$298.1609, found 298.1623.

Synthesis of L(bp-6): 3-Bromo-9,9-dimethyl-10-(pyridin-2-yl)-9,10-dihydroa cridine 1-Br ($1.30 \mathrm{~g}, 3.57 \mathrm{mmol}, 1.00$ equiv), 2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenoxy) pyridine 2-B ($1.16 \mathrm{~g}, 3.93 \mathrm{mmol}, 1.10$ equiv $), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(124 \mathrm{mg}, 0.11 \mathrm{mmol}, 3 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(888 \mathrm{mg}$, $6.43 \mathrm{mmol}, 1.8$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. Then toluene (25 mL), EtOH $(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were added, and then the flask was placed in an oil bath and heated at $90^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 1 day, the resulting mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was separated and washed with water, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/ethyl acetate $=$ 10:1-5:1 as eluent to afford the desired product as a white solid 950 mg in 58% yield. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.68(\mathrm{~s}, 6 \mathrm{H}), 6.78(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dt}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.98$ $(\mathrm{m}, 1 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{dt}, J=6.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33 (dt, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.68$ (dd, $J=9.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.49,35.86,110.96,115.53,116.79,117.90,118.99$, $119.16,120.46,120.69,120.72,121.64,122.80,124.16,124.62,125.66,129.13,132.75,133.19$,
138.05, 138.60, 138.80, 139.71, 140.06, 142.45, 147.24, 149.69, 153.86, 154.85, 163.11. HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 456.2070$, found 456.2068.

Synthesis of $\mathbf{P t}(\boldsymbol{b p}-\mathbf{6}):$ A mixture of $\mathbf{L}(\boldsymbol{b p}-\mathbf{6})\left(250 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.00\right.$ equiv) and PtCl_{2} (153 $\mathrm{mg}, 0.58 \mathrm{mmol}, 1.05$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then benzonitrile (30 mL) was added into the flask, and the flask was placed in an oil bath and heated at $180^{\circ} \mathrm{C}$ with stirring. After 2.5 days, the mixture was cooled to room temperature. THF (12 mL) and t-BuOK $(1.23 \mathrm{~g}, 10.98 \mathrm{mmol}, 20.00$ equiv) were added to the mixture under nitrogen atmosphere and stirred in an oil bath held at $76{ }^{\circ} \mathrm{C}$ for 5 h . The resulting mixture was cooled down to room temperature and concentrated in vacuum. The residue was diluted with dichloromethane, and washed with water. The organic layer was separated, and the aqueous phase was extracted with dichloromethane twice. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The crude solid was purified through column chromatography on silica gel using petroleum ether/dichloromethane $=3: 1-1: 1$ as eluent to afford the desired product as a yellow solid 104 mg in 29% yield. m.p.: 314.5-315.5 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 6.75$ (dd, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dt, $J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.98$ (m, 1H), 8.16-8.21 (m, 1H), 8.60 (dd, $J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.66 (dd, $J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta 22.72$, $32.33,36.29,113.26,116.06,116.18,118.12,119.75,119.88,120.53,120.90,123.80,124.26,122.80$, 124.54, 126.48, 128.43, 132.33, 135.28, 137.09, 138.21, 139.27, 140.19, 141.48, 148.89, 150.39, 151.74, 154.07, 156.96, 157.51. HRMS (ESI): calcd for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{ONa}^{195} \mathrm{Pt}[\mathrm{M}+\mathrm{Na}]^{+}$671.1381, found 671.1384. Anal. for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{OP} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}$, Calcd.: C, 56.62 , $\mathrm{H}, 3.68$, N, 6.39; Found: C, 56.65, H, 3.70, N, 6.26.

Synthesis of $\mathbf{P t}(\boldsymbol{b p}-7)$:

Synthesis of L(bp-7): 2-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2yl)phenoxy)pyridine 2-B $\left(1.00 \mathrm{~g}, 3.4 \mathrm{mmol}, 1.0\right.$ equiv), 2-bromo-9-(pyridin-2-yl)-9H-carbazole $3-\mathrm{Br}^{6}(1.20 \mathrm{~g}, 3.7 \mathrm{mmol}, 1.1$ equiv), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.10 \mathrm{mmol}, 3 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(1.16 \mathrm{~g}, 8.4 \mathrm{mmol}, 2.5$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then toluene $(20 \mathrm{~mL}), \mathrm{EtOH}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ were added, and then the flask was placed in an oil bath and heated at $90{ }^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 24 hours, the resulting mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/ethyl acetate $=10: 1-5: 1$ as eluent to afford the desired product as a white solid 1.32 g in 96% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.94$ (dd, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=6.0,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.0,1.5$ Hz, 1H), 7.64-7.66 (m, 1H), 7.67-7.70 (m, 1H), 7.82 (dd, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (td, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~m}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.23(\mathrm{~m}, 1 \mathrm{H})$, 8.72-8.75 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 109.95,111.26,111.66,118.65,119.36,119.89$, $120.40,120.48,120.55,120.73,121.20,121.51,123.88$, $124.11,124.14,126.44,129.99,138.71$, 139.08, 139.57, 140.21, 140.27, 144.04, 147.98, 149.89, 151.86, 154.67, 163.93. HRMS (ESI): calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 414.1601$, found 414.1596 .

Synthesis of $\mathbf{P t}\left(\boldsymbol{b p}\right.$-7): A mixture of $\mathbf{L}(\boldsymbol{b p} \boldsymbol{- 7})\left(350 \mathrm{mg}, 0.85 \mathrm{mmol}, 1.00\right.$ equiv) and PtCl_{2} (236 $\mathrm{mg}, 0.89 \mathrm{mmol}, 1.05$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then benzonitrile $(40 \mathrm{~mL})$ was added into the flask , and the flask was
placed in an oil bath and heated at $180^{\circ} \mathrm{C}$ with stirring. After 3 days, the mixture was cooled to room temperature. THF (15 mL) and t - $\mathrm{BuOK}(1.90 \mathrm{~g}, 16.93 \mathrm{mmol}, 20.00$ equiv) were added to the mixture under nitrogen atmosphere and stirred in an oil bath at $76{ }^{\circ} \mathrm{C}$ for 5 h . The resulting mixture was cooled down to room temperature and concentrated in vacuum. The residue was diluted with dichloromethane, and washed with water. The organic layer was separated, and the aqueous phase was extracted with dichloromethane twice. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The crude solid was purified through column chromatography on silica gel using petroleum ether/dichloromethane $=$ 3:1-1:1 as eluent to afford the desired product as a yellow solid 40 mg in 8% yield. m.p.: $317.6-318.9{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 6.75(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.52$ (dd, $J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=7.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.15-8.22(\mathrm{~m}, 2 \mathrm{H}), 8.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{dd}, J=6.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}): δ 113.91, 114.23, 114.91, 116.44, 116.50, 116.62, 120.16, 120.62, 120.95, 122.76, 124.94, 125.91, 127.67, 128.15, 129.11, 138.50, 139.54, 140.04, $140.64,148.98,152.17,152.63,152.68,156.98,158.37$. HRMS (DART positive ion mode): calcd for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{ON}_{3} \mathrm{Pt}[\mathrm{M}+\mathrm{H}]^{+} 607.1092$, found 607.1092. Anal. for $\mathrm{C}_{28} \mathrm{H}_{17} \mathrm{ON}_{3} \mathrm{Pt} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, Calcd.: C , $52.74, \mathrm{H}, 2.80$, N, 6.47 ; Found: C, 53.05, H, 2.95, N, 6.44.

Improved synthesis of $\mathbf{P t}(\boldsymbol{b} \boldsymbol{p}-\mathbf{7})$:

A mixture of $\mathrm{L}(b p-7)\left(200 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.00\right.$ equiv) and $\mathrm{PtCl}_{2}(135 \mathrm{mg}, 0.51 \mathrm{mmol}, 1.05$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and back-filled with nitrogen, this evacuation and backfill procedure was repeated twice. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then benzonitrile (30 mL) was added into the flask, and the flask was placed in an oil bath and heated at $180{ }^{\circ} \mathrm{C}$ with stirring. After 36 hours, the mixture was cooled to
room temperature and concentrated in vacuum. The residue was diluted with dichloromethane, and washed with water. The organic layer was separated, and the aqueous phase was extracted with dichloromethane twice. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The crude product and anhydrous SnCl_{2} (274 $\mathrm{mg}, 1.45 \mathrm{mmol}, 3.00$ equiv) were added to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then dichloroethane $(30 \mathrm{~mL})$ was added under nitrogen atmosphere and stirred at room temperature for two days. Then the mixture was washed with water, separated and the aqueous phase was extracted with dichloromethane. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The crude solid was purified through column chromatography on silica gel using petroleum ether/dichloromethane $=3: 1-$ 2:1 as eluent to afford the desired product as a yellow solid 213 mg in 72% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) : $\delta 6.75(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17$ (dd, $J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{td}, J=8.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-8.11(\mathrm{~m}$, $1 \mathrm{H}), 8.16-8.22(\mathrm{~m}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{dd}, J=6.0,2.0$ $\mathrm{Hz}, 1 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR is agreement with the data obtained above.

Synthesis of $\mathbf{P t}(\boldsymbol{b p}-\mathbf{8})$:

Synthesis of 3-B: 2-Bromo-9-(pyridin-2-yl)-9H-carbazole 3-Br ${ }^{6}$ ($1.50 \mathrm{~g}, 4.64 \mathrm{mmol}, 1.02$ equiv), OMBDB ($1.15 \mathrm{~g}, 4.53 \mathrm{mmol}, 1.00$ equiv), $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($263 \mathrm{mg}, 0.36 \mathrm{mmol}, 8 \mathrm{~mol} \%$), KOAc $(1.62 \mathrm{~g}, 16.48 \mathrm{mmol}, 3.6$ equiv) were added sequentially to a dry three-necked flask equipped with a
magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then DMSO (20 mL) were added under nitrogen atmosphere, and then the flask was placed in an oil bath and heated at $80^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 1day, the resulting mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/ethyl acetate $=20: 1-10: 1$ as eluent to afford the desired product as a white solid 1.10 g in 72% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{~s}, 12 \mathrm{H}), 7.22(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{dt}$, $J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (ddd, $J=7.5,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.92 (dt, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J$ $=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{dd}, J=4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.87,83.76$, 111.19, 117.04, 119.47, 119.49, 120.54, 120.82, 121.30, 123.94, 126.77, 127.07, 138.61, 139.12, 140.13, 149.67, 151.64.HRMS (ESI): calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~B}[\mathrm{M}+\mathrm{H}]^{+} 371.1925$, found 371.1945 .

Synthesis of L(bp-8): 3-B ($1.00 \mathrm{~g}, 2.70 \mathrm{mmol}, 1.00$ equiv), 4-Br ${ }^{5}(1.08 \mathrm{~g}, 3.34 \mathrm{mmol}, 1.24$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(94 \mathrm{mg}, 0.08 \mathrm{mmol}, 3 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(933 \mathrm{mg}, 6.75 \mathrm{mmol}, 2.50$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. Then toluene (20 $\mathrm{mL}), \mathrm{EtOH}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ were added, then the flask was placed in an oil bath and heated at $90^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by TLC until the reaction was completed. After 24 hours, the resulting mixture was cooled down to room temperature, filtered and washed with ethyl acetate. The organic layer was washed with water, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified through column chromatography on silica gel using petroleum ether/ethyl acetate $=10: 1-3: 1$ as eluent to afford the desired product as a white solid 1.04 g in 79% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28-7.34(\mathrm{~m}$, 2H), 7.33-7.37 (m, 2H), 7.43-7.46 (m, 1H), 7.46-7.49 (m, 1H), $7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63$ (dd, J $=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{dt}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.91-7.95 (m, 2H), 8.08 (d, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{t}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.41(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 109.99,110.55,111.15,116.11,116.41,119.24,120.32,120.53,120.71,120.78,120.89$, 120.96, 121.10, 121.40, 123.85, 124.01, 126.08, 126.37, 126.51, 126.96, 127.00, 128.32, 129.98,
136.68, 138.59, 138.88, 140.14, 140.17, 140.18, 143.74, 146.54, 149.77, 151.73, 152.03. HRMS (ESI): calcd for $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 487.1917$, found 487.1914.

Synthesis of $\mathbf{P t}(\boldsymbol{b} \boldsymbol{p}-\mathbf{8})$: A mixture of $\mathbf{L}(\boldsymbol{b p}-\mathbf{8})\left(200 \mathrm{mg}, 0.41 \mathrm{mmol}, 1.00\right.$ equiv), $\mathrm{K}_{2} \mathrm{PtCl}_{4}(188 \mathrm{mg}$, $0.45 \mathrm{mmol}, 1.10$ equiv) and $n-\mathrm{Bu}_{4} \mathrm{NBr}(13 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1$ equiv) were added sequentially to a dry three-necked flask equipped with a magnetic stir bar. The flask was evacuated and backfilled with nitrogen, this evacuation and backfill procedure was repeated twice. Then AcOH (30 mL) were added into the flask under nitrogen atmosphere at room temperature. The reaction mixture was bubbled with nitrogen for 30 minutes and then stirred at room temperature for 12 h . Then the flask was placed in an oil bath and heated at $120^{\circ} \mathrm{C}$ with stirring. After two days, the resulting mixture was cooled down to room temperature and concentrated in vacuum and the residue was diluted with dichloromethane. The mixture was washed with water, the organic layer was separated and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The residue obtained in last step, THF (15 mL) and t-BuOK ($460 \mathrm{mg}, 4.1 \mathrm{mmol}, 10.00$ equiv) were added to the mixture under nitrogen atmosphere and stirred in an oil bath at $76^{\circ} \mathrm{C}$ for 5 h . The resulting mixture was cooled down to room temperature and concentrated in vacuum. The residue was diluted with dichloromethane, and washed with water. The organic layer was separated, and the aqueous phase was extracted with dichloromethane twice. The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. The crude solid was purified through column chromatography on silica gel using petroleum ether/dichloromethane $=3: 1-1: 1$ as eluent to afford the desired product as a yellow solid 25 mg in 9% yield. m.p.: 221.1-222.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 7.07-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.50(\mathrm{~m}$, $1 \mathrm{H}), 7.51-7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.73(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.11-8.13 (m, 1H), 8.15-8.19 (m, 1H), 8.25-8.31 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.45-8.48$ (m, 1H), 8.53-8.56 (dd, $J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{dd}, J=5.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.05(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}): $\delta 113.97,114.89,115.60,116.42,116.66,116.73,118.38,119.64,119.84$, $120.65,120.88,121.97,122.16,122.36,122.71,124.43,125.88,127.85,128.11,129.50,130.50$, 135.63, 136.10, 138.26, 138.30, 139.36, 139.68, 146.39, 146.44, 149.00, 152.44, 153.61, 157.00. HRMS (DART positive ion mode): calcd for $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{Pt}[\mathrm{M}+\mathrm{H}]^{+}$680.1408, found 680.1411. Anal. for $\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{Pt}$, Calcd.: C, $60.09, \mathrm{H}, 2.97$, N, 8.24; Found: C, 59.60, H, 3.30, N, 7.88.

$\mathrm{Pt}(p y y-1)$
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d)

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
			\bigcirc												 						

Pt(pyy-1)
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathrm{Pt}(\mathrm{bp}-6)$
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

$\begin{array}{llllllll}9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5\end{array}$

| 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

Pt(bp-6)
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6})

diethyl

 etherdiethyl
ether

| |
| :--- |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

$\mathrm{Pt}(b p-6)$
${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6})

Pt (bp-7)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

| 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
| :--- |

禺 $\infty, \infty \infty \infty$

Pt (bp-7)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

Pt(bp-7)
${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6})

Pt(bp-7)
${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6})

Card Serial Number: D172118
Sample Serial Number: Z-9-2
Operator: DONG Date: 2017/12/20
Operation Mode: DART POSITIVE Ion Mode

\qquad

Pt (bp-8)
${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6})

petroleum ether * hexane

Pt (bp-8)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

Pt(bp-8)
${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6})

Pt(bp-8)
${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6})

| 168 | 164 | 160 | 156 | 152 | 148 | 144 | 140 | 136 | 132 | 128 | 124 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $120 \quad 116$

Card Serial Number: D172122.

Sample Serial Number: Z-10-72
Operator : DONG
Date: 2017/12/20
Operation Mode: DART POSITIVE Ion Mode
Elemental composition search on mass 680.14
$m / z=675.14-685.14$

m / z	Theo.	Delta	RDB	Composition

Mass

680.1411	680.1408	0.43	$26.5 \mathrm{C}_{34} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{Pt}$
	680.1415	-0.59	$17.0 \mathrm{C}_{28} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N} 3 \mathrm{PtS}$
	680.1422	-1.54	$26.0 \mathrm{C}_{36} \mathrm{H}_{23} \mathrm{ONPP}$
	680.1400	1.61	$33.0 \mathrm{C}_{43} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N} 2 \mathrm{~S}$
	680.1395	2.40	$21.5 \mathrm{C}_{33} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Pt}$

$680.1429 \quad-2.56 \quad 16.5 \mathrm{C}_{30} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Pt} \mathrm{S}$
$680.1387 \quad 3.59 \quad 33.5 \mathrm{C}_{41} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{5} \mathrm{~S}$
$680.1382 \quad 4.37 \quad 22.0 \mathrm{C}_{31} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{~N}_{3} \mathrm{Pt}$
$680.1442-4.53 \quad 21.5 \mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{Pt} \mathrm{S}$

Pt(bp-8)

Cartesian Coordinates of the Structures

$\mathbf{P t}(p p y-1) _\mathbf{S}_{\mathbf{0}}$

C
C

C

C
C

C

C
H
H

H

H

C

C
C
C

C

C

H

H

C

H
H

H

C
H
H
H
N
-3.53863900
-4.01847400
-4.78225700
-5.23098100
-3.18901600
-3.56171200
-5.62358700
-5.88463600
-2.88881600
-6.57408400
-5.06023700
-2.03968900
0.75872900
-1.24721100
-1.40222000
-0.02236100
0.13335900
-1.98725700
0.42813300
-4.32642000
-5.38682100
-3.96634700
-4.24173900
-3.72979900
-4.79296300
-3.18865900
-3.35928200
-1.91320300
$1.78471700-0.71644000$
0.74328600
0.30010000
2.16696900
0.99444000
$-0.36432600 \quad 0.55728400$
-1.32713700 1.50590600
-0.14280100 1.90925800
1.68090500
0.82004600
-2.14699600
1.73366200
-0.04936200 2.42657500
$-1.978759002 .89836900$
$1.97843500-0.46019400$
$2.20223200-0.13528800$
$0.83073800-0.24559100$
$3.22703900-0.46763200$
$3.34925000-0.29160100$
$0.92355300-0.13344100$
$4.12748000-0.61332300$
$4.33857100-0.28676600$
$3.10167700-0.61849900$
$2.93548300-0.83275100$
$3.81955600-1.36155400$
3.559013000 .37300300
$1.22040100-2.15516500$
$1.03765000-2.34969100$
0.28093100 -2.29771700
$1.93922900-2.89451600$
$-0.43226100-0.09210500$

C
C

C

C
C

H

C
C
C
N
C

C

H

H

H

H
Pt
H
H
N

C

0
0

$\mathbf{P t}(p p y-1) _\mathbf{T}_{1}$

2.22139800
4.94144000
3.14791100
4.50381400
3.98994500
2.81778400
-1.38762200
-0.43889400
-2.27029300
-0.06009800
0.39082800
-1.80292800
-3.31731800
1.46195100
-2.49085500
-0.02629500
1.38622900
5.22357800
5.98385400
2.69927900
4.28187700
3.23915800
5.44822700

2.16962800	0.05931900
1.59160000	0.40321600
3.21372700	0.12335500
2.91528600	0.30004200
4.57744500	0.33597900
-1.68833500	-0.42074700
-4.24192700	-1.01961300
-2.69321300	-0.87786400
-1.96888900	-0.31729400
-3.21832400	-0.61062800
-3.96043900	-1.17060100
-2.44793300	-1.00250500
-3.34894300	-0.49578200
-4.71979100	-1.53093000
-5.22172100	-1.23113600
-0.56336600	0.03448100
3.72773500	0.34930100
1.32170100	0.52599200
0.90131600	0.18636000
-0.93389500	0.38648400
-1.70239400	0.25697000
-1.28005800	0.52992300

3.53422300
4.02734700
4.79885100
5.24616700
3.19928400
3.57426800
-1.77954600
-0.73707700
-0.74329500
0.27820000
1.21325100
2.15836200
-0.83424300
0.96189100
0.36127100
0.55214900
1.31833500
s-38/s-52

C
H

H
H
H
C
C
C
C
C
C

H
H

C

H
H
H
C

H

H

H
N

C

C
C
C
C

H

C

C
5.64113600
0.13535600
1.88283400
5.90231900
-1.67634300
0.77319700
2.89911300
2.13240700
1.74682300
6.59649600
0.04123000
2.39107000
5.07964700
1.95962500
2.89573200
2.04298700
-1.96074400
-0.44886700
-0.81237100
1.25291700
1.37550300
0.00852300
-0.14346300
-0.90969600
-0.11960300
1.96743700
-4.11884800
-0.57194800
-0.41909100
-4.36929900
-0.24499700
4.31478200
-3.10167000
-0. 64194300
5.37432400
-2.94475600
-0.86748200
3.94260400
4.23709100
3.72475900
4.78762000
3.18775100
-0.27424500
-2.31676200
3.34499300
-1.93296800
-2.91386200
1.90880500
-2.22174500
-4.95859000
-3.19501100
-4.53046000
-4.00351900
-2.88148100
-4.25548500
0.05938800
1.38856500
1.69543200
-0.40183200
0.44068400
4.24183700
-0.99892800

C
N
C
C

H

H
H
H
Pt
H
H
N
C
0

0

$\operatorname{Pt}(\boldsymbol{b p}-6) \mathbf{S}_{\mathbf{0}}$

2.27388600
0.05763100
-0.39195700
1.80779500
3.32156800
-1.46361600
2.49503500
0.02757400
-1.38850800
-5.26782900
-6.00089500
-2.70337600
-4.25665500
-3.16786600
-5.39412100
-4.23357600
-4.37509700
-4.52245600
-5.49056000
-3.32128100
-3.39081100
-5.57596900
-6.31372400
-2.54938600
-6.45803900
-4.56749400
-2.77841400
-0.06460700
-1.74380600
$2.69685500-0.85287400$
$1.96512600-0.30933100$
$3.21946700-0.59831900$
$3.96537800-1.14859000$
$2.45182100-0.97123900$
$3.34982100-0.48953700$
4.72586700
-1.50635600
$5.22204900-1.20848600$
$0.54571500 \quad 0.03015600$
$-3.69940400 \quad 0.34646500$
$-1.267992000 .49870900$
$-0.88151200 \quad 0.20375700$
$0.95636300 \quad 0.36818300$
1.698819000 .25385000
1.38315000
0.48834400
$1.29923200-0.33079600$
$0.12043000 \quad 0.63702300$
$-2.13246800 \quad 2.32851300$
-0.10147600 1.45334100
$-0.80980100 \quad 0.69276100$
$-1.91977100 \quad 1.54626300$
$-1.21861200 \quad 2.28525700$
$0.60419200 \quad 1.43943300$
$-2.60344300 \quad 1.60307000$
$-1.36741200 \quad 2.90177200$
$-2.99559800 \quad 2.98695300$
$1.77909400-0.24211500$
$2.55923000-0.17638900$
$0.81484700-0.20127300$

C
C

C

H
H
C
H
H
H

C

H

H
H
N
C
C

C

C
C
C

H
C
C
C
N

C

C

H

H
H
-2.41435200
-1. 07431400
-0.40016700
-3.18055400
-0.83356400
-5.24107400
-6.26870600
-5.13360300
-5.10827600
-4.51134400
-5.53622900
-3.82323800
-4.38807300
-2.14655900
1.38401700
4.17269100
2.15339300
2.00773600
3.40133000
3.52926500
1.42031300
-1.52035100
-0.33290000
-2.31521700
-0.16890300
0.38631000
-1.72516800
-3.39156900
1.46300500
-2.34102200
$3.12821500-0.23649400$
$3.52011000-0.18903300$
$1.18059100-0.21749600$
$3.89510300-0.25803200$
$4.57951100-0.14682600$
$2.42009800-0.02402200$
$2.05436200-0.11820000$
$3.23929500-0.74099200$
2.825577000 .98459700
$0.79733900-1.77872600$
$0.41556700-1.86125700$
$-0.00125500-2.06996300$
$1.62165400-2.49012600$
$-0.56589200-0.07552900$
$2.81308600-0.04773600$
2.996652000 .15234600
$1.62202700 \quad 0.07025500$
$4.06223400-0.04644100$
$4.15080200 \quad 0.05765000$
$1.75218100 \quad 0.15308200$
$4.97204300-0.14007200$
$-1.63123900-0.71787500$
$-3.68823200-2.15532700$
$-2.65484100-1.28810100$
$-1.67441000-0.82770400$
$-2.66391600-1.57042600$
$-3.68434500-1.99469700$
$-2.59780700-1.18513200$
$-2.60689300-1.68080200$
$-4.45650800-2.44707200$

H
C
C
N

C

C

C

H

H

H
Pt

H
H

0

H

$\operatorname{Pt}(b p-6) _\mathbf{T}_{1}$

C
C
C
C
C

C
C
H
H
H
H
C
C
0.17759400
4.17267300
3.92938700
2.96228300
5.31672200
5.19724000
2.86244700
6.06876500
1.86242900
3.77385300
1.14002200
3.88651300
5.25534700
4.42305900
6.26127400 -0.83220700 0.89183100
-4.22338300
-4.37411700
-4.52484100
-5.49170100
-3.31975900
-3.39138100
-5.57776000
-6.31536300
-2.55042200
-6.46154300
-4.57232300
-2.77671400
-0.05294100
$1.25765600-0.40716300$
$0.11277500 \quad 0.60121000$
$-2.07412200 \quad 2.37592800$
$-0.07617300 \quad 1.42399800$
$-0.81386900 \quad 0.69613300$
$-1.89225900 \quad 1.58865600$
$-1.16088400 \quad 2.29691500$
$0.62781800 \quad 1.38036000$
$-2.57369700 \quad 1.67010300$
$-1.28745900 \quad 2.91603700$
$-2.91190300 \quad 3.06607300$
$1.74197700-0.28908200$
$2.58177100-0.17257700$

C
C

C

C

H

H
C
H
H
H

C

H

H

H

N
C
C
C
C

C

C

H

C
C
C
N
C

C

H

H
-1.74361800
-2.41242100
-1.11055200
-0.39940500
-3.19880400
-0.88323200
-5.24489200
-6.26689700
-5.12991300
-5.13836200
-4.46943800
-5.49247200
-3.77496500
-4.33234100
-2.13916000
1.31530800
4.12957700
2.13266000
1.95840900
3.32468100
3.51020100
1.36431600
-1.50061400
-0.28309900
-2.27904700
-0.14387400
0.42224100
-1.67749200
-3.35583300
1.49543600

0.78425700	-0.21701500
3.12974900	-0.28583100
3.54747900	-0.23293800
1.15237900	-0.21592900
3.87564700	-0.32274200
4.60936100	-0.21176800
2.38116700	-0.15884100
2.00235200	-0.26100100
3.17646500	-0.90147600
2.82185300	0.83821800
0.70731100	-1.84448700
0.32170300	-1.93561900
-0.09989000	-2.09239900
1.50719900	-2.58118900
-0.58962100	-0.06928900
2.83327800	-0.00686100
3.01215200	0.18212300
1.61281500	0.06861800
4.11701300	0.06454700
4.18880800	0.15135300
1.75983600	0.13633300
5.02544000	0.03186000
-1.66941900	-0.68049300
-3.75388600	-2.04451600
-2.72111600	-1.2083780
-1.68440700	-0.79543800
-2.69658600	-1.51105500
-3.77313700	-1.87759700
-2.67486300	-1.10297100
-2.62166000	-1.64065500

H

H

C
C

N

C
C
C
H

H
H
Pt
H

H
0

H

$\mathbf{P t}(\boldsymbol{b} p-7) \mathbf{S O}_{\mathbf{0}}$

-2.28179400	-4.57140000	-2.29771500
0.23901200	-4.53179300	-2.59123400
4.17612100	-0.60582700	0.39977300
3.95149000	-3.27076100	1.03811100
2.95508500	-1.17816500	0.33264400
5.33138400	-1.33776400	0.73032100
5.22599900	-2.68081600	1.04483500
2.86816200	-2.49254800	0.68875200
6.10833200	-3.25511300	1.31009600
1.86563200	-2.90223700	0.68400600
3.80307600	-4.31134400	1.30576900
1.13631400	-0.05652500	-0.12629300
3.81793000	5.15625800	0.19557100
5.21070100	3.07509600	0.24335300
4.40962300	0.68981800	0.14004000
6.27762100	-0.80962800	0.74341500

C
C
C
H
H
N
C
C
C
C
C
C

H

C

C

C

N

C

C
H

H
H
H
C
C
N
C

C

C

H
-2.69326900
-1.35530000
-0.67527100
-3.45869000
-1.09305300
-2.57038700
1.11035100
3.90924500
1.86907200
1.75595300
3.15406900
3.24644800
1.17987900
-1.97363300
-0.81098000
-2.77382900
-0.61999000
-0.08100500
-2.19794900
-3.83460200
1.00083600
-2.81994800
-0.30442400
3.88353800
3.67279300
2.65919400
5.05292600
4.94889300
2.57716200
5.84149200
3.14819700
0.05583400
$3.51194000-0.10893600$
$1.15870300-0.20199500$
3.910996000 .17008500
$4.56699300-0.11356000$
$-0.47894000 \quad 0.02545200$
$2.77075700-0.25975500$
$2.88808800-0.40081800$
$1.56881300-0.15797300$
$3.99919800-0.41181200$
$4.05431400-0.48062300$
$1.66431100-0.23942800$
$4.91732300-0.49524800$
$-1.63421700-0.47740400$
$-3.92886200-1.52200400$
$-2.62517100-1.08843800$
$-1.77502900-0.42782900$
$-2.89684300-0.96020000$
$-3.77534100-1.59591100$
$-2.45133400-1.19965700$
$-2.94265100-0.93880200$
$-4.52734900-2.07303800$
$-4.80231400-1.91731900$
$-0.65543700 \quad 0.31480900$
$-3.14085000 \quad 1.48349500$
$-1.20055300 \quad 0.45392900$
$-1.34853100 \quad 0.69368200$
$-2.59733500 \quad 1.27291700$
$-2.41039000 \quad 1.06673300$
$-3.13562600 \quad 1.57814300$

H
H
Pt
H

H
0

H

$\operatorname{Pt}(b p-7) \mathbf{T}_{1}$

1.56962900
3.53301300
0.82492100
3.65481800
4.99318300
4.11186800
6.00640200
-0.85925500
0.53292600

C
C
C
C

C

C
H
H
H
H
C

C
C

C
C

C
H
H
N
C
C
4.23435200
6.17583400
5.54731400
3.93223400
4.88941400
6.50322400
5.79376800
4.64934900
7.51384200
6.92821900
3.03249300
0.32877200
2.00422400
2.68561500
1.37925100
0.67700000
3.46824400
1.12917500
2.56683400
-1.06477700
-3.88370000
$1.06387400-0.33636200$
$-0.83330700-1.02496000$
$1.48443100-0.64751600$
$-0.33932400-0.33085900$
$-1.28088700-0.70927800$
$0.53647700-0.97578400$
$2.54249300-0.64514300$
$-2.33442700-0.79427900$
$0.85223600-1.22046500$
$-1.55668200-1.32504600$
1.76437000 -0.06742200
$2.56524100 \quad 0.22611900$
0.80079900
0.08842900
3.16338200
3.54267100
0.15822100
1.12843200
0.21391200
3.91215100
-0.08639700
4.59954700
0.19033700
$-0.50081800-0.00109800$
$2.78873100 \quad 0.23276700$
2.89746900
0.33619500

C
C
C
C

H

C
C
C
N
C

C

H
H
H
H
C

C

N

C

C

C

H
H
H
Pt
H
H
0

H
-1.85015400
-1.73710700
-3.11384800
-3.23151800
-1.16410600
1.95560800
0.76531400
2.74512000
0.58997700
0.04472500
2.16256000
3.80917100
-1.03786500
2.77621900
0.24831200
-3.87599100
-3.67270600
-2.64918100
-5.04643100
-4.94867200
-2.57210200
-5.84330800
-1.56626900
-3.53581900
-0.81781500
-3.62725200
-4.96724700
-4.09206100
-5.99805700

1.56150900	0.15681400
4.04464200	0.32341900
4.08476400	0.37768000
4.66790500	0.22887300
-1.96605100	0.37394300
-3.97222400	1.44145800
-2.68746600	1.03088200
-1.77264200	0.42970400
-2.91261500	0.93403100
-3.84665300	1.50685200
-2.52850100	1.13589700
-2.93945700	0.93693600
-4.62042600	1.95801000
-4.84957100	1.81442400
-0.65100800	-0.29223500
-3.12480600	-1.47631100
-1.19055100	-0.44353700
-1.33934500	-0.66014100
-2.58820900	-1.24750800
-2.39706900	-1.07010100
-3.12624300	-1.54605300
-2.76178200	-1.24049300
-4.08307400	-1.96538100
-0.10471700	0.08873900
-0.03913600	0.45780300
-0.48670900	

$\operatorname{Pt}(\boldsymbol{b p}-\mathbf{8}) \mathbf{S}_{\mathbf{0}}$

C

C

C

C

C
C
H
H

H

H

C

C

C

C
C
C
H

H

N
C
C
C
C

C

C
H

N
C

C

-5.07770300	1.10717800	0.08530000
-7.09462400	-0.75960300	0.54530500
-6.39121100	1.54479500	0.27949400
-4.78824700	-0.28207000	0.08460700
-5.79034300	-1.21978800	0.34938000
-7.39928900	0.60728800	0.49539000
-6.61679800	2.60772500	0.27846100
-5.57472500	-2.27840300	0.43583200
-8.42288600	0.93776000	0.64756400
-7.88135300	-1.48040300	0.75002400
-3.82087300	1.81414900	-0.05959900
-1.11450100	2.52320700	-0.12505000
-2.80448900	0.83816500	-0.13765000
-3.46572900	3.16822400	-0.06404600
-2.11414000	3.51277200	-0.09943800
-1.45812400	1.15100400	-0.16958900
-4.22825800	3.94074100	-0.01352700
-1.83923800	4.56395200	-0.06705300
-3.39271700	-0.45812200	-0.10332300
0.34138400	2.74441900	-0.02591400
3.12100200	2.89425500	0.18200300
1.10230400	1.53988900	0.04408200
0.97130400	3.98874100	0.01518400
2.35899100	4.05712000	0.15324800
2.49798100	1.63566000	0.06170600
0.38913600	4.90498100	-0.03666100
3.32233500	0.45380900	0.01337200
5.48297600	1.33278600	-1.01835200
6.61192300	-1.09281500	-0.0738700

C
C
C
C

H

H
C
C
C
N
C

C

H
H

H

H
C
C

N

C

C

C
H
H
H
Pt
H
H
H
4.69871600
6.82720200
7.39835200
5.25683900
7.44277400
8.45123600
-2.76408600
-1.54162200
-3.51116800
-1.42701500
-0.85699400
-2.90681400
-4.54818200
0.21330400
-3.48638000
-1.01254600
2.99492100
2.78485000
1.75966100
4.17145800
4.05771300
1.68121800
4.93001100
0.67860900
2.63744000
0.01458000
2.85345200
5.06013300
4.19045700

$$
0.41737400
$$

$$
1.02838900
$$

$$
-1.22322500
$$

$$
-0.16195500
$$

$$
-0.74269000
$$

$$
-0.81071700
$$

$$
1.72948100
$$

$$
-1.77995100
$$

$$
-0.36394100
$$

$$
-1.63309800
$$

$$
-3.98102800
$$

$$
-2.62798700
$$

$$
-1.79130300
$$

$$
-2.94209700
$$

$$
-3.80501300
$$

$$
-2.43776100
$$

$$
-3.00768800
$$

$$
-4.56131900
$$

$$
-4.87748500
$$

$$
-0.79275600
$$

$$
0.52189100
$$

$$
-3.25879600
$$

$$
1.66639300
$$

$$
-1.25143900
$$

$$
0.77935600
$$

-1.58013700 0.68774200
-2.83376800
-2.45583500
1.39031200
-3.46213100 1.43223300
-2.78047700 1.64515800
-4.21619000 2.15444100
-0.12936800 0.09834400 $5.02057700 \quad 0.24321700$ $2.23964100-1.43041200$
2.96695700
0.33166200
5.04608700
7.07085300
6.37097100
4.76932600
5.77186000
7.36836200
6.59652700
5.55962800
8.38969100
7.85848500
3.81243000
1.08441900
2.79344000
0.81749200
0.16444300
3.43984800
3.18881000
0.12822000
2.11780500
3.54526800
0.17609900
1.45163300
1.12233200
0.19218300
4.21401500
1.84905200
3.38482800
-0.30607100
2.75501900
0.02541700
-3.09941200
2.87763600
-0.24685600
-1.08955000
1.52318800
-0.04209100
-0.96056300
4.01668000
-0.06672100
-2.32511200
-2. 49024300
-0.38358800
-3.31225000
0.45117400
-0.01328200
-5.48132800
1.35212500
0.97922200
-6.60425500
-1.08479800
0.05566800
-4.69376600
0.42422700
0.28957800

C
C

C

H

H

C
C
C
N
C

C

H

H
H
H
C
C
N
C
C

C

H
H
H
Pt

H

H
H

H
-6.83007300
-7.39605400
-5.24584800
-7.45097100
-8.45149900
2.75412000
1.52378000
3.50710800
1.40135700
0.83339800
2.90483600
4.55270000
-0.24250900
3.48778400
0.99110600
-2.98320200
-2.76042200
-1.74097800
-4.15564500
-4.03896500
-1.65908900
-4.90890600
-0.65637600
-2.60791100
-0.01088600
-2.83193800
-5.05989000
-4.16392400
-7.02712800
1.05423500
1.17300600
-0.14171000
0.70236700
$-0.80928400-0.13986200$
1.76438500
1.71192500
-0.33940200 0.86515200
-1.65437700
0.49922600
-4.00308800
1.30683900
-2.67419100
1.11804600
-1.78273300
0.33504400
-2.94447300
0.75622300
-3.85414300
1.51055700
-2.49806400
1.32807500
-2.99245000
0.64917100
-4. 62772500
2.00113600
-4.89890100
1.60658400
$-0.80185000-0.50828100$
-3.27392900 -1.62657400
$-1.25537900-0.75130300$
$-1.58714100-0.67440800$
-2.85140500 -1.24765400
$-2.46834400-1.35940400$
$-3.48190400-1.40554900$
$-2.79029000-1.61491800$
-4.23459600 -2.10706400
$-0.12751600-0.07236300$
$5.01638000-0.34148000$
$2.26522700 \quad 1.37987700$
$2.95134500-0.42569300$
$-2.02874000-0.27760400$

References:

(1) Li, G.; Wolfe, A.; Brooks, J.; Zhu, Z.-Q.; Li, J. Modifying Emission Spectral Bandwidth of Phosphorescent Platinum(II) Complexes Through Synthetic Control. Inorg. Chem. 2017, 56, 8244-8256.
(2) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877-910.
(3) Harris, D. C. In Quantitative Chemical Analysis, 6th ed.; W. H. Freeman: New York, 2002; pp 394-396.
(4) Li, G.; Chen, Q.; Zheng, J.; Wang, Q.; Zhan, F.; Lou, W.; Yang, Y.-F.; She, Y. Metal-assisted delayed fluorescent $\mathrm{Pd}(\mathrm{II})$ complexes and phosphorescent $\mathrm{Pt}(\mathrm{II})$ complex based on [1,2,4]triazolo[4,3-a]pyridine-containing ligands: synthesis, characterization, electrochemistry, photophysical studies, and application. Inorg. Chem. 2019, 58, 21, 14349-14360.
(5) Li, G.; Zhan, F.; Zheng, J.; Yang, Y.-F.; Wang, Q.; Chen, Q.; Shen, G.; She, Y. Highly Efficient Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/6 Metallocycles. Inorg. Chem. 2020, 59, 3718-3729.
(6) Zhao, X.; She, Y.; Fang, K.; Li, G. CuCl-catalyzed Ullmann-Type C-N Cross-Coupling Reaction of Carbazoles and 2-Bromopyridine Derivatives. J. Org. Chem. 2017, 82, 1024-1033.

