Supplemental Information

Dual sample preconcentration for simultaneous quantification of metal ions using electrochemical and colorimetric assays

Benjawan Ninwong^{a,b}, Nalin Ratnarathorn^a, Charles S. Henry^c, Charles R. Mace^d and Wijitar Dungchai ^{a,e*}

^aOrganic Synthesis, Electrochemistry & Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok, 10140, Thailand.

^bNanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand.

^cDepartments of Chemistry and Chemical & Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA

^dDepartment of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA 02155, USA ^eApplied Science & Engineering for Social Solution Unit, Faculty of Science, King Mongkut's University of Technology Thonburi, Prachautid Road, Thungkru, Bangkok, 10140, Thailand.

*Corresponding author: Asst. Prof. Dr. Wijitar Dungchai

E-mail: wijitar.dun@kmutt.ac.th; Fax: +66-2-470-8840; Tel: +66-2-470-9553

Figure S1. Impact of heater system patterns on the preconcentration of blue food coloring. 500 μ L of blue food coloring was added to paper devices and heated at 100 °C of 20 min.

Figure S2. Impact of temperature (25–200 °C) on the preconcentration of blue food coloring after 10 min of heating.

Figure S3. The effect of sample volume (100–500 μ L) and heating time (5–20 min) on preconcentration of blue food coloring.

Figure S4. The effect of 1,10-phenanthroline concentration (4 to 12 g L^{-1}) on the development of a colorimetric assay for Fe³⁺.

Figure S5. The effect of hydroxylamine concentration (0.05 to 0.9 g mL⁻¹) on the development of a colorimetric assay for Fe³⁺.

Figure S6. The effect of ammonium hydroxide concentration (14%-28% w/w) on the development of a colorimetric assay for Ni²⁺.

Figure S7. The effect of DMG concentration (40–120 mM) on the development of a colorimetric assay for Ni^{2+} .

Figure S8. Optimizing conditions to detect lead and cadmium using anodic stripping voltammetry. (a) Effect of Bi concentration on the stripping peak currents of solutions containing 0.5 mg L⁻¹ Pb²⁺ and Cd²⁺, which were eluted with 1 M HCl after 10 min of preconcentration. (b) Comparison of Bi film (8 mg L⁻¹) and bare electrodes for the detection of Cd²⁺ and Pb²⁺ at 0.5 mg L⁻¹ *without* sample preconcentration, using HCl as background. (c) Comparison of Bi film (8 mg L⁻¹) and bare electrodes for the detection of Cd²⁺ and Pb²⁺ at 0.5 mg L⁻¹ with sample preconcentration, using HCl as background.

Figure S9. Effect of deposition potential on the stripping peak currents of a solution containing $0.5 \text{ mg L}^{-1} \text{ Pb}^{2+}$ and Cd^{2+} with 1 M HCl.

Figure S10. Effect of step potential on the stripping peak currents of a solution containing 0.5 mg L⁻¹ Pb²⁺ and Cd²⁺ with 1 M HCl.

Figure S11. Effect of amplitude on the stripping peak currents of a solution containing 0.5 mg L^{-1} Pb²⁺ and Cd²⁺ with 1 M HCl.

Figure S12. Effect of frequency on the stripping peak currents of a solution containing 0.5 mg L^{-1} Pb²⁺ and Cd²⁺ with 1 M HCl.

Figure S13. Effect of deposition time on the square-wave anodic stripping voltammetric peak currents used to detect 0.5 mg L⁻¹ of Cd²⁺ and Pb²⁺ eluted with 1 M HCl. This 500 μ L sample volume was subjected to 10 min of preconcentration.

Figure S14. Stability of paper-based devices used to detect Fe^{3+} and Ni^{2+} (0.20 mg L⁻¹) when stored at 4 °C for up to 4 weeks.

Figure S15. Effect of interferents on assays for (a) Cd^{2+} , (b) Pb^{2+} , (c) Fe^{3+} , and (d) Ni^{2+} .

Parameters	Cd(II)	Pb(II)	Fe(III)	Ni(II)
Linear range (mg L ⁻¹)	0.005 - 0.100	0.005 - 0.100	0.050 - 0.250	0.050 - 0.250
\mathbf{R}^2	0.9962	0.9975	0.9920	0.9908
Linear equations	y = 1067.5x + 1.7628	y = 875.15x - 4.3192	y = 274x + 47.9	y = 206x + 39.9
$LOD (mg L^{-1})$	0.00233 (2.33 μg L ⁻¹)	0.00097 (0.97 μg L ⁻¹)	0.03	0.04
$LOQ (mg L^{-1})$	0.005	0.005	0.05	0.05
%RSD	7.25% (0.050 ppm) 5.39% (0.075 ppm)	8.01% (0.050 ppm) 6.89% (0.075 ppm)	8.23% (0.05 ppm) 7.26% (0.20 ppm)	5.76% (0.05 ppm) 10.12% (0.20 ppm)

Table S1. Analytical performance of assays for Pb^{2+} , Cd^{2+} , Fe^{3+} , and Ni^{2+} .

Table 52. Survey of methods to detect FD ⁻ and Cd ⁻ using electrochemical as	Table S2	. Survey	of methods to	detect Pb ²⁺	and Cd ²⁺	using	electrochem	nical assays
---	----------	----------	---------------	-------------------------	----------------------	-------	-------------	--------------

Electrode	Method	Analyte	Linearity (µg L ⁻¹)	LOD (µg L ⁻¹)	Sample	Ref.
Glassy-carbon with bismuth film	SWASV	$\begin{array}{c} Pb^{2+}\\ Cd^{2+}\end{array}$	40 - 200	1.1	-	(43)
Glassy carbon and multifiber microelectrodes with bismuth film	SWASV Double deposition using two electrodes	Pb^{2+} Cd^{2+}	0.1 - 1 0.02 - 0.6	0.040 0.005	Synthetic freshwater sample	(44)
Sputtered-bismuth screen-printed sensors	SWASV	$\begin{array}{c} Pb^{2+}\\ Cd^{2+}\end{array}$	20 – 150 20 – 80	6.1 11.8	Atmospheric particulate matter	(45)
Bismuth bulk electrode	SWASV	$\begin{array}{c} Pb^{2+}\\ Cd^{2+}\\ Zn^{2+}\end{array}$	10 - 100	0.093 0.054 0.396	River water	(50)
Stencil-printed transparency electrodes with bismuth film	SWASV	Pb^{2+} Cd^{2+}	1 - 200	0.3 0.2	Seawater	(49)
Dendritic bismuth film electrodes	SWASV	$\begin{array}{c} Pb^{2+}\\ Cd^{2+}\end{array}$	5 - 50	0.1 0.4	Wastewater	(46)
Glassy carbon disc electrode with bismuth film	SWASV	Pb^{2+} Cd^{2+}	10 - 100	6.9 1.4	Surface water	(47)
carbon-based sensor with Bi	SWASV	$\begin{array}{c} Pb^{2+}\\ Cd^{2+}\end{array}$	5 - 100	1.8 1.2		(48)
Screen printed electrode with heating preconcentration	SWASV	$\begin{array}{c} Pb^{2+}\\ Cd^{2+}\end{array}$	5 - 100	0.97 2.33	Drinking, pond, tap water and wastewater	Our work

Method	Reagent	Analyte	Linearity (mg L ⁻¹)	LOD (mg L ⁻¹)	Sample	Ref.
Colorimetric	1,10-phen Dimethylglyoxime	Fe Ni Cu	188 – 1,250 125 – 213 125 – 188	188 125 125	Particulate metals	(40)
Electrochemical and colorimetric	1,10-phen Dimethylglyoxime Electrochemical Electrochemical	Fe Ni Cu Cr Pb Cd	$\begin{array}{r} 30-300\\ 30-300\\ 60-300\\ 7.6-120\\ 0.005-0.150\\ 0.005-0.150\end{array}$	15 15 15 2.4 0.001 0.001	Particulate metals	(26)
Colorimetric (distance)	Bathophenanthroline Dimethylglyoxime Dithiooxamide	Fe Ni Cu	20 - 1,300 100 - 1,100 100 - 1,300	1 2 2	Particulate metals	(54)
Colorimetric	1,10-phen	Fe	100 - 1000 40 - 350	20	Natural hot spring water	(55)
Colorimetric	Ferrozine	Fe	0.005 - 0.100	0.004	Fortified foods	(56)
Smartphone	AgNPs/CTAB	Fe	0.05 - 0.90	0.20	Water and blood plasma	(57)
Colorimetric with heating	1,10-phen Dimethylglyoxime	Fe Ni	0.05 - 0.25	0.03	Drinking, pond tap water and	This

0.03 0.04

water and

wastewater

work

preconcentration

Table S3. Survey of methods to detect Fe^{3+} and Ni^{2+} using colorimetric assays.

	Concentration ratio of -	Recovery of analyte signal (%)				
Interferences	analyte : interference	Cd(II)	Pb(II)	Fe(III)	Ni(II)	
Fe ²⁺	1:1	97	98	-	101	
	1:100	80	117		120	
Fe ³⁺	1:1	98	105	-	104	
	1:100	74	104		109	
Ni ²⁺	1:1	102	95	97	-	
	1:100	85	76	106		
	1:1		98	95	106	
Cd^{2+}	1:100	-	95	90	110	
	1.1	102		98	105	
Pb^{2+}	1:100	97	-	109	110	
Ca ²⁺	1:1	95	102	99	105	
	1:100	91	103	102	109	
	1:1000	90	104			
Mg^{2+}	1:1	89	100	102	104	
	1:100	91	92	106	111	
	1:1000	95	105			
Na ⁺	1:1	100	108	101	101	
	1:100	90	107	105	109	
	1:1000	70	107			
K^+	1:1	88	94	98	103	
	1:100	87	90	106	107	
	1:1000	82	90			
Co^{2+}	1:1	90	104	97	102	
	1:100	83	136	108	110	
Cu ²⁺	1:1	80	87	98	105	
	1:100	62	70	110	109	
Zn^{2+}	1:1	94	104	102	106	
	1:100	114	118	109	110	
Cl-	1:1	102	93	95	105	
	1:100	97	96	106	108	
	1:1000	83	96			
SO_4^{2-}	1:1	97	104	105	103	
	1:100	93	110	110	111	
	1:1000	68	127			
NO ₃ -	1:1	95	101	97	106	
	1:100	86	93	105	109	
	1:1000	77	89			
CO ₃ ²⁻	1:1	99	98	98	103	
	1:100	80	73	90	110	

Table S4. Effect of interfering ions on the voltammetric and colorimetric response of Cd²⁺, Pb²⁺, Fe³⁺, and Ni²⁺.

Samples	Temperature (°C)	pН	DO (mg/L)
Drinking water	26.4	7.1	0.3
Tap water	26.2	6.7	0.5
Pond water 1	26.5	6.4*	2.5
Pond water 2	27.1	6.2*	3.0
Wastewater	27.5	5.9*	3.9

 Table S5. General parameters for water samples.

*Pond water and wastewater were preserved with HNO₃ (pH<1) after measurement of temp, pH, and dissolved oxygen (DO).

Table S6. Statistical comparison between our electrochemical method and ICP-AES to detect

 Pb²⁺ and Cd²⁺.

	Variable 1	Variable 2
Mean	40.929	40.402
Variance	5.326921111	9.266084444
Observations	10	10
Pearson Correlation	0.18659605	
Hypothesized Mean		
Difference	0	
df	9	
t Stat	0.481663533	
P(T<=t) one-tail	0.320770405	
t Critical one-tail	1.833112933	
P(T<=t) two-tail	0.64154081	
t Critical two-tail	2.262157163	

Table S7. Statistical comparison between our colorimetric method and ICP-AES to detect Fe^{3+} and Ni^{2+} .

	Variable 1	Variable 2
Mean	119.032	117.753
Variance	69.77152889	67.59926778
Observations	10	10
Pearson Correlation	0.121593624	
Hypothesized Mean		
Difference	0	
df	9	
t Stat	0.325843089	
P(T<=t) one-tail	0.375995745	
t Critical one-tail	1.833112933	
P(T<=t) two-tail	0.751991489	
t Critical two-tail	2.262157163	