1	Supporting Information
2	
3	Long-Term Continuous Co-reduction of 1,1,1-Trichloroethane and
4	Trichloroethene over Palladium Nanoparticles Spontaneously
5	Deposited on H ₂ -transfer Membranes
6	
7	Yi-Hao Luo, [†] Chen Zhou, ^{*,†} Yuqiang Bi, [‡] Xiangxing Long, ^{†,‡} Boya Wang, [§] Youneng Tang, [§] Rosa
8	Krajmalnik-Brown, ^{†,∥} Bruce E. Rittmann [†]
9	
10 11	[†] Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona, USA
12	[‡] Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State
13	University, Tempe, Arizona, USA
14	[§] Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State
15	University, Tallahassee, Florida, USA
16 17	[®] Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, Arizona, USA
18	* Corresponding author
19	Present address: 1001 S. McAllister Ave.
20	Tempe, AZ 85287-5701
21	USA
22	Tel: +01-480-727-0848
23	Email: <u>zhou_SCEB(<i>a</i>)asu.edu</u>
24	Pages: 8
25	Tables: 4
26	Figures: 3

PART II: TABLES

				DETECTOR	DETECTION	
ANALYTES	INSTRUMENT	MODEL	COLUMN TYPE	Type	Limit	MCL
Pd	ICP	Thermo Scientific X-Series II	-	MS	0.1 ppb	-
H ₂	GC	Shimadzu GC 2010	1010 plot Capillary column	Thermal	1 ppmv	-
			30m× 0.53mm×10 mm	Conductivity		
			(Carboxen®, Bellefonte, PA)	Detector		
				(TCD)		
TCE	GC	-	Rt-QSPLOT column	FID	5 ppb	5 ppb
1,1 - DCE	GC	-	30m×0.53mm×10 mm	FID	3 ppb	7 ppb
cis-1,2-DCE	GC	-	(Restek®, Bellefonte, PA)	FID	3 ppb	70 ppb
VC	GC	-		FID	2 ppb	2 ppb
Ethene	GC	-		FID	0.29 ppb	-
1,1,1 - TCA	GC	-		FID	40 ppb	200
						ppb
1,1 - DCA	GC	-		FID	5 ppb	-
1,2-DCA	GC	-		FID	5 ppb	5 ppb
MCA	GC	-		FID	3 ppb	-
Ethane	GC	-		FID	0.3 ppb	-

Table S1. Detection methods for analytes in this study

(catalytic activity, products, and selectivity) of Pd-catalyzed 1,						1,1,1-TCA or TCE reduction in previous studies and this study.				
Catalyst					Reactant					
Туре	Supporter	Dosage	System	Туре	Conc.	Temp.	Conti.	Activity	Reference	
		(g/L)			(<i>uM</i>)	(K)		L/g/min		
Pd	Al_2O_3	0.047	Suspended	TCE	22.8	295	N	34	Lowry and Reinhard 1	
Pd	N.A.	0.017	Suspended	TCE	22.8	295	N	4.4	Lowry and Reinhard 1	
Pd	N.A.	0.025	Suspended	TCE	389	295	N	62	Nutt, et al. ²	
Pd	Al_2O_3	0.025	Suspended	TCE	389	295	N	12	Nutt, et al. ²	
Pd	Al_2O_3	0.039	Suspended	TCE	452	295	N	47	Nutt, et al. ³	
Pd	Biomass	0.05	Suspended	TCE	782	295	12 days	1.37	Hennebel, et al. ⁴	
Pd	Biomass	0.1~1.0	Suspended	TCE	800	295	0.5 day	0.7	Hennebel, et al. ⁵	
Pd	Al_2O_3	N.A.	Suspended	1,2-DCA	N.A.	400-600	N	N.A.	Feijen-Jeurissen, et al. ⁶	
Pd	N.A.	1	Suspended	1,2-DCA	323	295	N	0.0007	El-Sharnouby, et al. 7	
Pd/Au	N.A.	0.025	Suspended	TCE	389	295	N	943	Nutt, et al. ²	
Pd/Au	N.A.	0.039	Suspended	TCE	452	295	N	1956	Nutt, et al. ³	
Ni/Fe	biochar	1 (10% Ni)	Suspended	1,1,1 - TCA	1500	295	N	0.7-10	Li, et al. ⁸	
Pd/Fe	N.A.	0.075-0.75	Suspended	TCE	84	295	N	311	Lin, et al. 9	
Ru/Fe	N.A.	0.075-0.75	Suspended	TCE	84	295	N	3.5	Lin, et al. ⁹	
Pt/Fe	N.A.	0.075-0.75	Suspended	TCE	84	295	N	0.5	Lin, et al. ⁹	
Au/Fe	N.A.	0.075-0.75	Suspended	TCE	84	295	N	0.3	Lin, et al. ⁹	
Pd	Al_2O_3	0.48	Immobilized	TCE	27	295	60 days	0.0008	Lowry and Reinhard 10	
Pd	Al_2O_3	0.095	Immobilized	TCE	140-180	295	N	0.14	Lowry and Reinhard 11	
Pd	Silica	N.A.	Immobilized	1,1,1 - TCA	N.A.	358-633	1 day	N.A.	Mori, et al. ¹²	

Table S2. Details of catalysts (type, support, and dosage), conditions (temperature, pH, and substrate concentration), and performance(catalytic activity, products, and selectivity) of Pd-catalyzed 1,1,1-TCA or TCE reduction in previous studies and this study.

Pd	PP	0.001~0.013	Immobilized	1,1,1 - TCA	100-	295	90 days	3-11	This study
	membrane			and TCE	1000				

	_		
Data series	Simulation model	Equation	R ²
1,1,1-TCA Loading vs flux	Exponential, limited growth	$y = 2.7 \times (1 - e^{-0.4x})$	0.993
TCE Loading vs flux	Exponential, limited growth	$y = 5.7 \times (1 - e^{-0.2x})$	0.999
1,1,1-TCA removal vs H ₂ ratio	Exponential, limited growth	$y = 93.3 \times (1 - e^{-2.4x})$	0.949
TCE removal vs H ₂ ratio	Exponential, limited growth	$y = 98.0 \times (1 - e^{-3.6x})$	0.943
1,1-DCA selectivity vs H ₂ ratio	Exponential, limited decay	$y = 2.3 + 97.7e^{-5.1x}$	0.867
MCA selectivity vs H ₂ ratio	Exponential, limited decay	$y = 8.3 + 91.7e^{-2.0x}$	0.878
Ethane selectivity vs H ₂ ratio	Exponential, limited growth	$y = 89.7 \times (1 - e^{-1.9x})$	0.904

34 **Table S3.** Simulation information for the data in Figure 7

35

Table S4. H₂ supply and discharge at the nine steady states of the continuous operation.

	Supply Pressure ^a	Supply flux <u>b</u>	Demand		Dischar	'Ge	
Stage	atm	e- eq/	m^2/day	mg/min ^d	mL/min ^e	atm ^f	μM^g
I	1.2	131	11	0.003	0.037	0.342	6.49
II	1.2	131	52	0.002	0.024	0.010	0.18
III	1.2	131	105	0.001	0.008	0.010	0.18
IV	1.2	262	107	0.004	0.047	0.378	7.18
V	1.2	393	105	0.007	0.088	0.785	14.9
VI	1.4	131	108	0.001	0.007	0.012	0.23
VII	1.6	131	105	0.001	0.008	0.012	0.23
VIII	1.2	131	203	0.000	0.000	0.005	0.09
IX	1.2	131	53	0.002	0.024	0.157	2.99

37 <u>Note</u>:

 $\frac{a}{2}$ The supply pressure refers to the H₂ pressure from a gas cylinder or generator to fiber lumens.

 $\frac{b}{2}$ Supply fluxes are calculated using Eqn. 1 in the paper.

40 = c Demand fluxes are calculated on basis of total reduction of all the TCA and TCE in the influent to

41 ethane.

42 $\frac{d}{d}$ H₂ discharge flow rates are calculated as $(J_{supply} - J_{demand}) \cdot A$, where J_{supply} is the H₂ supply flux, J_{demand} is

43 the H_2 demand flux, A is the total membrane area.

44 e The unit conversion of the H₂ discharge flow rate is based on the ideal gas law.

45 f These values refer to the H₂ partial pressures detected in the gas sampling port.

46 g These values refer to the aqueous H_2 concentrations in the effluent.

49 PART III: FIGURES

Figure S1. Schematic of H₂ supply exclusively to the headspace via the sampling port in
 the MPfR.

Figure S2. TCE and product concentrations in the supplementary batch tests of TCE reduction catalyzed by 25.1 mg /m² PdNPs in the MPfR for 10 psig H₂ supplied to (A) the headspace of the sampling port (Fig. S1) and (B) the nonporous membranes where the PdNPs were anchored.

Figure S3. Separated and combined 1,1,1-TCA/TCE depletions over time in the batch tests shown in Figure 3.

62 **REFERENCES:**

- Lowry, G. V.; Reinhard, M., Hydrodehalogenation of 1-to 3-carbon halogenated organic
 compounds in water using a palladium catalyst and hydrogen gas. *Environmental Science & Technology* 1999, *33*, (11), 1905-1910.
- Nutt, M. O.; Hughes, J. B.; Wong, M. S., Designing Pd-on-Au bimetallic nanoparticle
 catalysts for trichloroethene hydrodechlorination. *Environmental science & technology*2005, *39*, (5), 1346-1353.
- 3. Nutt, M. O.; Heck, K. N.; Alvarez, P.; Wong, M. S., Improved Pd-on-Au bimetallic
 nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. *Applied Catalysis B: Environmental* 2006, *69*, (1-2), 115-125.
- 4. Hennebel, T.; Simoen, H.; De Windt, W.; Verloo, M.; Boon, N.; Verstraete, W.,
 Biocatalytic dechlorination of trichloroethylene with bio palladium in a pilot scale
- membrane reactor. *Biotechnology and Bioengineering* **2009**, *102*, (4), 995-1002.
- 5. Hennebel, T.; Verhagen, P.; Simoen, H.; De Gusseme, B.; Vlaeminck, S. E.; Boon, N.;
 Verstraete, W., Remediation of trichloroethylene by bio-precipitated and encapsulated
 palladium nanoparticles in a fixed bed reactor. *Chemosphere* 2009, *76*, (9), 1221-1225.
- 6. Feijen-Jeurissen, M. M.; Jorna, J. J.; Nieuwenhuys, B. E.; Sinquin, G.; Petit, C.; Hindermann, J.-P., Mechanism of catalytic destruction of 1, 2-dichloroethane and trichloroethylene over γ -Al2O3 and γ -Al2O3 supported chromium and palladium catalysts. *Catalysis today* **1999**, *54*, (1), 65-79.
- 7. El-Sharnouby, O.; Boparai, H. K.; Herrera, J.; O'Carroll, D. M., Aqueous-phase
 catalytic hydrodechlorination of 1, 2-dichloroethane over palladium nanoparticles (nPd)
 with residual borohydride from nPd synthesis. *Chemical Engineering Journal* 2018, *342*,
 281-292.
- 86 8. Li, H.; Qiu, Y.-f.; Wang, X.-l.; Yang, J.; Yu, Y.-j.; Chen, Y.-q., Biochar supported Ni/Fe
 87 bimetallic nanoparticles to remove 1, 1, 1-trichloroethane under various reaction
 88 conditions. *Chemosphere* 2017, *169*, 534-541.
- 9. Lin, C. J.; Lo, S. L.; Liou, Y. H., Dechlorination of trichloroethylene in aqueous solution
 by noble metal-modified iron. *Journal of hazardous materials* 2004, *116*, (3), 219-228.
- 91 10. Lowry, G. V.; Reinhard, M., Pd-catalyzed TCE dechlorination in groundwater: Solute
- 92 effects, biological control, and oxidative catalyst regeneration. *Environmental Science*93 & *Technology* 2000, *34*, (15), 3217-3223.
- 11. Lowry, G. V.; Reinhard, M., Pd-catalyzed TCE dechlorination in water: effect of
 [H₂](aq) and H₂-utilizing competitive solutes on the TCE dechlorination rate and
 product distribution. *Environmental science & technology* 2001, 35, (4), 696-702.
- 97 12. Mori, T.; Kubo, J.; Morikawa, Y., Hydrodechlorination of 1, 1, 1-trichloroethane over
- 98 silica-supported palladium catalyst. *Applied Catalysis A: General* **2004**, *271*, (1-2), 69-
- 99 76.